Method of Lower and Upper Solutions for Differential Equations of Fractional Order with Integral Boundary Conditions

J. A.Nanware ${ }^{1}$ and B.D.Dawkar ${ }^{2}$
${ }^{l}$ Department of Mathematics, Shrikrishna Mahavidyalaya Gunjoti Dist.Osmanabad(M.S),INDIA.
${ }^{2}$ Deparment of Mathematics, Vivekanand Arts, Sardar Dalipsing Commerce and Science College, Aurangabad (M.S)-431004,INDIA

Abstract

System of Riemann-Liouville fractional differential equations with integral boundary conditions is considered. Method of lower and upper solutions is developed for system of Riemann-Liouville fractional differential equations with integral boundary conditions. Method is successfully employed to study existence and uniqueness results for the problem.

Keywords: Lower and upper solutions, fractional differential equations, integral boundary conditions, monotone technique, existence and uniqueness.

I.INTRODUCTION

A wide range of applications of fractional differential equations attracted researchers in the last three decades. [1, 3, 17]. Numerous techniques have been developed to study fractional differential equations. The qualitative properties of solution of fractional differential equations [6] parallel to the well-known theory of ordinary differential equations [4] has been growing recently. Amongst various techniques, the monotone iterative technique is widely used in the study of fractional differential equations. Ladde et al.[4] have developed and extensively employed this method in the study of differential equations which arise in biological and physical problems. In the year 2008, Lakshmikantham and Vatsala [5, 6, 7, 9] developed the basic theory of fractional differential equation with Riemann-Liouville fractional derivative. In 2009, McRae [10] developed monotone method for Riemann-Liouville fractional differential equation with initial conditions and studied the qualitative properties of solutions of initial value problem (IVP). Vatsala, McRae, Vasundhara Devi, Zhang and author have developed monotone method for fractional differential equations [11, 12, 13, 14, 15]. Comparison results, existence and uniqueness of solution of ordinary differential equation with integral boundary condition was firstly obtained by Jankowski [2]. In 2012 , Nanware and Dhaigude [15] developed the monotone method for RiemannLiouville fractional differential equations with integral boundary condition when the right hand side function is splited as sum of two non-decreasing and non-increasing function. Wang and Xie [18] developed the monotone method and obtained existence and uniqueness of solution of fractional differential equation with integral boundary condition.

The paper is organized as follows:
In section II, some definitions and basic results are given. In section III, monotone iterative technique is developed and it is applied to obtain existence and uniqueness of solutions for the system of Riemann-Liouville fractional differential equations with integral boundary conditions.

II. PRELIMINARIES

The Riemann-Liouville fractional derivative [14] of order $q(0<q<1)$ of function $u(t)$ is defined as

$$
\begin{equation*}
D^{q} u(t)=\frac{1}{\Gamma(1-q)} \frac{d}{d t} \int_{0}^{t} \frac{u(s)}{(t-s)^{q}} d s \tag{2.1}
\end{equation*}
$$

Wang and Xie in 2008, have proved existence and uniqueness of solution of the following Riemann -Liouville fractional differential equation with integral boundary condition
$D^{q} u(t)=f(t, u), \quad t \in J=[0, T], \quad T \geq 0, \quad u(0)=\lambda \int_{0}^{T} u(s) d s+d, \quad d \in R$.
where $0<q<1, \lambda$ is 1 or -1 and $f \in C[J \times R, R]$, by monotone method. He has studied the above problem for any choice of $\lambda \geq 0$ and developed monotone iterative technique [19]. This motivates us to study the following system of Riemann-Liouville fractional differential equations with integral boundary conditions when $\lambda \geq 0$:

$$
\begin{equation*}
D^{q} u_{i}(t)=f_{i}\left(t, u_{1}(t), u_{2}(t)\right), \quad u_{i}(0)=\lambda \int_{0}^{T} u_{i}(s) d s+d_{i}, \quad i=1,2 \tag{2.3}
\end{equation*}
$$

where $d_{i} \in R, \quad t \in[0, T] f_{1}, f_{2}$ in $C\left(J \times R^{2}, R\right), J=[0, T], 0<q<1$.
We apply monotone technique, to prove the existence and uniqueness of solution of problem (2.3).

Definition 2.1 A pair of functions $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in $C_{p}(J, R)$ is continuous with exponent $\lambda>q$. A pair (x, y) of functions x and y is called ordered lower and upper solutions $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right)$ of problem (2.3) if

$$
D^{q} x_{i}(t) \leq f_{i}\left(t, x_{1}(t), x_{2}(t)\right), \quad x_{i}(0) \leq \lambda \int_{0}^{T} x_{i}(s) d s+d_{i}
$$

and

$$
D^{q} y_{i}(t) \geq f_{i}\left(t, y_{1}(t), y_{2}(t)\right), \quad y_{i}(0) \geq \lambda \int_{0}^{T} y_{i}(s) d s+d_{i}
$$

Definition 2.2 A function $f_{i}=f_{i}\left(t, u_{1}, u_{2}\right)$ in $C\left(J \times R^{2}, R\right)$ is said to be quasi-monotone non-decreasing if for $i, j=1,2$ $f_{i}\left(t, u_{1}(t), u_{2}(t)\right) \leq f_{i}\left(t, v_{1}(t), v_{2}(t)\right)$ if $u_{i}=v_{i}$ and $u_{j} \leq v_{j}, i \neq j$.

Lemma 2.1 [5] Let $m \in C_{p}(J, R)$ be continuous with exponent $\lambda>q$ and for any $t_{1} \in\left(0, T\right.$] we have $m\left(t_{1}\right)=0$ and $m(t) \leq 0$ for $0 \leq t \leq t_{1}$. Then it follows that $D^{q} m\left(t_{1}\right) \geq 0$.
Lemma 2.2 Let $\left\{u_{c}(t)\right\}$ be a family of continuous functions on J, for
each $_{\epsilon}>0$ where $D^{q} u_{\epsilon}(t)=f\left(t, u_{\epsilon}(t)\right), \quad u_{\epsilon}(0)=u_{0}$ and $\left|f\left(t, u_{\epsilon}(t)\right)\right| \leq M f o r 0 \leq t \leq T$. Then the family $\left\{u_{\epsilon}(l)\right\}$ is equi-continuous on $[0, T]$.

Theorem 2.1 [5] Suppose that
(i) $x(t)$ and $y(t)$ in $C_{p}(J, R)$ are continuous functions and f in $C(J \times R, R)$
(ii) $x(t)$ and $y(t)$ satisfies following inequalities for $0 \leq t \leq T$:

$$
\begin{aligned}
& D^{q} x(t) \leq f(t, x(t)) \\
& D^{q} y(t) \geq f(t, y(t))
\end{aligned}
$$

(iii) f satisfies one-sided Lipschitz condition:

$$
f(t, x(t))-f(t, y(t)) \leq \frac{L}{1+t^{q}}(x-y) \quad \text { when ever } \quad x \geq y
$$

and $0<L T^{q} \leq \frac{1}{\Gamma(1-q)}$. Then $x(0) \leq y(0)$ implies that $x(t) \leq y(t), 0 \leq t \leq \mathrm{T}$.

III. MAIN RESULTS

In this section we develop monotone technique for system of fractional differential equations with integral boundary conditions. We apply developed method to obtain existence and uniqueness of solution of problem (2.3).
Theorem 3.1 Assume that
(i) $f_{i}=f_{i}\left(t, u_{1}, u_{2}\right) \in C\left[J \times R^{2}, R\right]$ is quasi-monotone non-decreasing,
(ii) $x^{0}=\left(x_{1}^{0}, x_{2}^{0}\right)$ and $y^{0}=\left(y_{1}^{0}, y_{2}^{0}\right) \in C(J, R)$, are ordered lower and upper solutions of problem (2.3) such that $x_{1}^{0}(0) \leq y_{1}^{0}(0), x_{2}^{0}(0) \leq y_{2}^{0}(0)$ on $[0, T]$
(iii) $f_{i} \equiv f_{i}\left(t, u_{1}, u_{2}\right)$ satisfies one-sided Lipschitz condition,

$$
\begin{equation*}
f_{i}\left(t, u_{1}, \bar{u}_{2}\right)-f_{i}\left(t, u_{1}, u_{2}\right) \quad \geq-M_{i}\left[u_{i}-u_{i}\right] \tag{3.1}
\end{equation*}
$$

whenever $x^{0}{ }_{i}(0) \leq u_{i} \leq y_{i}{ }^{0}(0), M_{i} \geq 0, \quad x^{0}{ }_{i}(0) \leq u_{i} \leq \bar{u}_{i} \leq y_{i}{ }^{0}(0)$
Then there exists monotone sequences $\left\{x^{n}(t)\right\}=\left(x_{1}^{n}, x_{2}^{n}\right)$ and $\left\{y^{n}(t)\right\}=$
$\left(y_{1}^{n}, y_{2}^{n}\right)$ such that

$$
\left\{x^{n}(t)\right\} \rightarrow x(t)=\left(x_{1}, x_{2}\right) \quad \text { and }\left\{y^{n}(t)\right\} \rightarrow y(t)=\left(y_{1}, y_{2}\right) \text { as } n \rightarrow \infty
$$

where $x(t)$ and $y(t)$ are minimal and maximal solutions of problem (2.3) respectively.
Proof. For any $\eta(t)=\left(\eta_{1}, \eta_{2}\right)$ in $C(J, R)$ such that for $x_{1}^{0}(0) \leq \eta_{1}, x_{2}^{0}(0) \leq \eta_{2}$ on $J=[0, T]$, consider the following system of linear fractional differential equations
$D^{q} u_{i}^{1}(t)=f_{i}\left(t, \eta_{1}(t), \eta_{2}(t)\right)-M_{i}\left[u_{i}^{1}(t)-\eta_{i}(t)\right], \quad u_{i}^{1}(0)=\lambda \int_{0}^{T} u_{i}^{0}(s) d s+d_{i}$.
Clearly, for every $\eta(t)$ there exists a unique solution $u^{1}(t)=\left(u_{1}^{1}(t), u_{2}^{1}(t)\right)$ ofthe system (3.2) on J. For each $\eta(t)$ and $\mu(t)$ in $C(J, R)$ satisfying $x^{0}{ }_{i}(0) \leq \eta_{i}(t)$,
$x^{0}{ }_{i}(0) \leq \mu_{i}(t)$, define a mapping A by $A[\eta, \mu]=u^{1}(t)$ where $u(t)$ is the unique solution of system (3.2). This mapping defines the sequences $\left\{x^{n}(t)\right\}$ and $\left\{y^{n}(t)\right\}$. Firstly, we prove that $\left(A_{1}\right) x^{0} \leq A\left[x^{0}, y^{0}\right], y^{0} \geq A\left[y^{0}, x^{0}\right]$
$\left(A_{2}\right)$ A possesses monotone property on segment

$$
\left[x^{0}, y^{0}\right]=\left\{\left(u_{1}, u_{2}\right) \in C\left(J, R^{2}\right): x_{i}^{0} \leq u_{i} \leq y_{i}^{0}\right\}, i=1,2 .
$$

Set $A\left[x^{0}, y^{0}\right]=x^{1}(t)$, where $x^{1}(t)-\left(x_{1}^{1}, x_{2}^{1}\right)$ is the unique solution of system (3.2) with $\eta_{i}=x^{0}{ }_{i}(0)$.
Setting $p_{i}(t)=x_{i}^{0}(t)-x_{i}^{1}(t)$ we see that

$$
\begin{aligned}
D^{q} p_{i}(t)= & D^{q} x^{0}{ }_{i}(t)-D^{q} x^{1}{ }_{i}(t) \\
& \leq-M_{i}\left[x_{i}^{0}(t)-x^{1}{ }_{i}(t)\right] \\
& \leq-M_{i} p_{i}(t) \text { and } \quad p_{i}(0)=0 .
\end{aligned}
$$

By Theorem 2.1, it follows that $p_{i}(t) \leq 0$ on $0 \leq t \leq T$ and hence $x_{i}^{0}(t)-x_{i}^{1}(t) \leq 0$ which implies $x^{0} \leq A\left[x^{0}, y^{0}\right]$. Set $A\left[y^{0}, x^{0}\right]=$ $y^{1}(t)$, where $y^{1}(t)=\left(y_{1}^{1}, y_{2}^{1}\right)$ is the unique solution of system (3.2) with $\mu_{i}=y_{i}^{0}(t)$.

Setting $p_{i}(t)=y_{i}{ }^{0}(t)-y_{i}{ }^{1}(t)$ we see that

$$
\begin{aligned}
D^{q} p_{i}(t)= & D^{q} y_{i}{ }^{0}(t)-D^{q} y_{i}{ }^{1}(t) \\
& \geq-M_{i}\left[y_{i}^{0}(t)-y_{i}{ }^{1}(t)\right] \\
& \geq-M_{i} p_{i}(t)
\end{aligned}
$$

and

$$
p_{i}(0)=0 .
$$

By Theorem 2.1, it follows that $y_{i}{ }^{0}(t) \geq y_{i}{ }^{1}(t)$. Hence $y^{0} \geq A\left[x^{0}, y^{0}\right]$.
To prove $\left(A_{2}\right)$, let $\eta_{1}(t), \eta_{2}(t), \mu(t) \in\left[x^{0}, y^{0}\right]$ be such that $\eta_{1}(t) \leq \eta_{2}(t)$.
Suppose that $A\left[\eta_{1}, \mu\right]=u_{1}(t)=\left(u_{1}^{1}, u_{2}^{1}\right), A\left[\eta_{2}, \mu\right]=u_{2}(t)=\left(u_{1}^{2}, u_{2}^{2}\right)$.
Then setting $p_{i}(t)=u_{1}^{i}(t)-u_{2}^{i}(t)$ we find that

$$
\begin{aligned}
D^{q} p_{i}(t)= & D^{q} u_{1}^{i}(t)-D^{q} u_{2}^{i}(t) \\
& =f_{i}\left(t, \eta_{1}(t), u_{2}(t)\right)-f_{i}\left(t, \eta_{2}(t), u_{2}(t)\right)-M_{i}\left[u_{1}^{i}(t)-\eta_{1}(t)\right]+M_{i}\left[u_{2}^{i}(t)-\eta_{2}(t)\right] \\
& \leq-M_{i}\left[\eta_{1}(t)-\eta_{2}\right]-M_{i}\left[u^{i}{ }_{1}(t)-\eta_{1}(t)\right]+M_{i}\left[u_{2}^{i}(t)-\eta_{2}(t)\right] \\
& \leq-M_{i}\left[u^{i}(t)-u_{2}^{i}(t)\right] \\
& \leq-M_{i} p_{i}(t) \text { and } \quad p_{i}(0)=0 .
\end{aligned}
$$

As before in $\left(A_{1}\right)$, we have $A\left[\eta_{1}, \mu\right] \leq A\left[\eta_{2}, \mu\right]$.
Similarly, if we let $\eta(t), \mu_{1}(t), \mu_{2}(t) \in\left[v^{0}, w^{0}\right]$ be such that $\mu_{1}(t) \leq \mu_{2}(t)$. Suppose that $A\left[\eta, \mu_{i}\right]=u_{i}(t)$ we prove that $A\left[\eta, \mu_{1}\right] \geq A\left[\eta, \mu_{2}\right]$.Thus it follows that mapping A possesses monotone property on the segment $\left[x^{0}, y^{0}\right]$. In view of $\left(A_{1}\right)$ and $\left(A_{2}\right)$, define the sequences

$$
x_{i}^{n}(t)=A\left[x_{i}^{n-1}, y_{i}^{n-1}\right], \quad x_{i}^{n}(t)=A\left[y_{i}^{n-1}, x_{i}^{n-1}\right]
$$

on the segment $\left[x^{0}, y^{0}\right]$ by

$$
\begin{array}{ll}
D^{q} x_{i}^{n}(t)=f_{i}\left(t, x_{1}^{n-1}, x_{2}^{n-1}\right)-M_{i}\left[x_{i}^{n}-x_{i}^{n-1}\right], & x_{i}^{n}(0)=\int_{0}^{T} x_{i}^{n-1}(s) d s+d \\
D^{q} y_{i}^{n}(t)=f_{i}\left(t, x_{1}^{n-1}, y_{2}^{n-1}\right)-M_{i}\left[y_{i}^{n}-y_{i}^{n-1}\right], & x_{i}^{n}(0)=\int_{0}^{T} y_{i}^{n-1}(s) d s+d
\end{array}
$$

From $\left(A_{1}\right)$, we have $x_{i}^{0}(t) \leq x_{i}^{1}(t), \quad y_{i}{ }^{0}(t) \geq y_{i}{ }^{1}(t)$.
Assume that $x_{i}^{k-1}(t) \leq x_{i}^{k}(t), \quad y_{i}^{k-1}(t) \geq y_{i}^{k}(t)$. To prove $x_{i}^{k}(t) \leq x_{i}^{k+1}(t), \quad y_{i}^{k}(t) \geq$ $y_{i}^{k+1}(t)$ and $x^{k}{ }_{i}(t) \geq y_{i}^{k}(t)$, we define $p_{i}(t)=x_{i}^{k}(t)-x_{i}^{k+1}(t)$. Thus

$$
\begin{aligned}
D^{q} p_{i}(t)= & D^{q} x_{i}^{k}(t)-D^{q} x_{i}^{k+1}(t) \\
= & f_{i}\left(t, x_{1}^{k-1}(t), x_{2}^{k-1}(t)\right)-M_{i}\left[x_{1}^{k}(t)-x_{1}^{k-1}(t)\right] \\
& \quad-\left\{f_{i}\left(t, x_{1}^{k}(t), x_{2}^{k}(t)\right)-M_{i}\left[x_{1}^{k+1}(t)-x_{1}^{k}(t)\right]\right\} \\
& \quad M_{i}\left[x_{i}^{k}(t)-x_{i}^{k-1}(t)\right]-M_{i}\left[x_{i}^{k}(t)-x_{i}^{k-1}(t)\right]+M_{i}\left[x_{1}^{k+1}(t)-x_{1}^{k}(t)\right] \\
\leq & -M_{i} p_{i}(t)
\end{aligned}
$$

and $\quad p_{i}(0)=0$.

Applying Theorem 2.1, we have $p_{i}(t) \leq 0$. This gives $x_{i}^{k}(t) \leq x_{i}^{k+1}(t)$.
Similarly we can prove $x_{i}^{k}(t) \geq y_{i}^{k+1}(t)$ and $y_{i}^{k}(t) \geq y_{i}^{k}(t)$. By induction, it follows that

$$
\begin{equation*}
x_{i}^{0}(t) \leq x^{1}{ }_{i}(t) \leq x^{2}{ }_{i}(t) \leq \ldots \leq x^{n}{ }_{i}(t) \leq y_{i}^{n}(t) \leq y_{i}^{n-1}(t) \leq \ldots \leq y_{i}{ }^{1}(t) \leq y_{i}{ }^{0}(t) . \tag{3.3}
\end{equation*}
$$

Thus the sequences $\left\{x^{n}(t)\right\}$ and $\left\{y^{n}(t)\right\}$ are bounded from below and bounded from above respectively and monotonically nond-ecreasing and monotonically non-increasing on [$0, T]$. Hence pointwise limit exists and are given by $\lim _{n \rightarrow \infty} x^{n}{ }_{i}(t)=x_{i}(t), \lim _{n \rightarrow \infty}{ }^{y n} i^{n}(t)=y_{i}(t)$ on [0,T]. Using corresponding Volterra fractional integral equations

$$
\begin{align*}
& x_{i}^{n}(t)=x_{i}^{0}+\frac{1}{\Gamma(q)} \int_{0}^{T}(t-s)^{q-1}\left\{f_{i}\left(s, x_{1}^{n}(s), x_{2}^{n}(s)\right)-M_{i}\left[x_{i}^{n}-x_{i}^{n-1}\right]\right\} d s \\
& y_{i}^{n}(t)=y_{i}^{0}+\frac{1}{\Gamma(q)} \int_{0}^{T}(t-s)^{q-1}\left\{f_{i}\left(s, y_{1}^{n}(s), y_{2}^{n}(s)\right)-M_{i}\left[y_{1}^{n}-y_{1}^{n-1}\right]\right\} d s \tag{3.4}
\end{align*}
$$

it follows that $x(t)$ and $y(t)$ are solutions of system (3.2).
Lastly we prove $x(t)$ and $y(t)$ are the minimal and maximal solution of the system (3.2). Let $u(t)=\left(u_{1}, u_{2}\right)$ be any solution of (2.3) different from $x(t)$ and $y(t)$, so that there exists k such that $x^{k}{ }_{i}(t) \leq u_{i}(t) \leq y_{i}{ }^{k}(t)$ on $[0, T]$ and set $p_{i}(t)=x_{i}^{k+1}(t)-u_{i}(t)$ so that

$$
\begin{aligned}
D^{q} p_{i}(t)= & f_{i}\left(t, x^{k}(t), x^{k}{ }_{2}(t)\right)-M_{i}\left[x_{i}^{k+1}(t)-x_{i}^{k}(t)\right]-f_{i}\left(t, u_{1}(t), u_{2}(t)\right) \\
& \geq-M_{i}\left[x_{i}^{k+1}(t)-u_{i}(t)\right] \\
& \geq-M_{i} p_{i}(t) \text { and } p_{i}(0)=0 .
\end{aligned}
$$

Thus $x_{i}^{k+1}(t) \leq u_{i}(t)$ on $[0, T]$. Since $x^{0}{ }_{i}(t) \leq u_{i}(t)$ on [0,T], by induction it follows that $x_{i}^{k}(t) \leq u_{i}(t)$ for all k. Similarly, we can prove $u_{i}(t) \leq y_{i}^{k}(t)$ for all k on $[0, T]$. Thus $x^{k}{ }_{i}(t) \leq u_{i}(t) \leq y_{i}^{k}(t)$ on $[0, T]$. Taking limit as $n \rightarrow \infty$, it follows that $x_{i}(t) \leq u_{i}(t) \leq y_{i}(t)$ on $[0, T]$. Thus the theorem.

The uniqueness of solution of the system (2.3) is proved in the following theorem
Theorem 3.2 Assume that
(i) $f_{i}=f_{i}\left(t, u_{1}, u_{2}\right)$ in $C\left[J \times R, R^{2}\right]$ is quasimonotone nondecreasing,
(ii) $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in $C(J, R)$ are ordered lower and upper solutions of (2.3) on $[0, T]$
(iii) $f_{i}=f_{i}\left(t, u_{1}, u_{2}\right)$ satisfies Lipschitz condition,

$$
\begin{equation*}
\left|f_{i}\left(t, u_{1}, u_{2}\right)-f_{i}\left(t, \bar{u}_{1}, \bar{u}_{2}\right)\right| \leq-M_{i}\left|u_{i}-\bar{u}_{i}\right| \tag{3.5}
\end{equation*}
$$

(iv) $\quad \lim _{n \rightarrow \infty}\left\|y^{n}-x^{n}\right\|=0$, where the norm is defined by $\|f\|=\int_{0}^{q}|f(s)| d s$, then the solution of system (2.3) is unique.

Proof. We need to prove $v(t) \geq w(t)$, since $x(t) \leq y(t)$.. Set $p_{i}(t)=y_{i}(t)-x_{i}(t)$, we find that

$$
\begin{aligned}
D^{q} p_{i}(t)= & D^{q} y_{i}(t)-D^{q} x_{i}(t) \\
& \leq-M_{i}\left[y_{i}(t)-x_{i}(t)\right] \\
& \leq-M_{i} p_{i}(t) \text { and } p_{i}(0)=0
\end{aligned}
$$

By Theorem 2.1, it follows that $p_{i}(t) \leq 0$. This gives $y_{i}(t) \leq x_{i}(t)$. Hence $x(t)=y(t)$ is the unique solution of system (2.3) on $[0, T]$. This proves the uniqueness of solution of the system (2.3) on $[0, T]$.

References

[1] Debnath Lokenath, Bhatta Dambaru : Integral Transforms and Their Applications, Second Edition, Taylor and Francis Group, New York, 2007.
[2] Jankwoski T., "Differential Equations with Integral Boundary Conditions", Journal of Computational and Applied Mathematics 147 pp 1-8,2012
[3] Kilbas A. A., Srivastava H. M., and Trujillo J. J.: Theory and Applications of Fractional Differential Equations, North Holland Mathematical Studies Vol.204. Elsevier(North-Holland) Sciences Publishers, Amsterdam, 2006.
[4] Ladde G. S., Lakshmikantham V., Vatsala A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Advanced Publishing Program, London, 1985.
[5] Lakshmikantham V., Vatsala A. S.: Theory of Fractional Differential Equations and Applications, Commun.Appl.Anal. 11(2007)395-402.
[6] Lakshmikantham V., Vatsala A. S.,"Basic Theory of Fractional Differential Equations and Applications", Non. Anal. 69, no.8, pp 2677-2682, 2008.
[7] Lakshmikantham V., Vatsala A. S.,"General Uniqueness and Monotone Iterative Technique for Fractional Differential Equations," Appl.Math. Lett. 21, no.8, pp 828-834, 2008.
[8] Lakshmikantham V., Leela S.: Differential and Integral Inequalities, Vol.I, Academic Press, New York, 1969.
[9] Lakshmikantham V., Leela S. and Devi J. V.: Theory and Applications of Fractional Dynamical Systems, Cambridge Scientific Publishers Ltd, 2009.
[10] McRae F. A.," Monotone Iterative Technique and Existence Results for Fractional Differential Equations, Non. Anal. 71(12) pp 6093-6096, 2009.
[11] F.A.McRae, "Monotone Method for Periodic Boundary Value Problems of Caputo Fractional Differential Equations", Commun.Appl.Anal.14(1) pp 73-80,2010.
[12] J.A. Nanware, "Existence and Uniqueness Results for Fractional Differential Equations Via Monotone Method," Bull.Marathwada Math.Soc.14(1),pp 39-56, 2013.
[13] J.A.Nanware, Monotone Method In Fractional Differential Equations and Applications, Dr.Babsaheb Ambedkar Marathwada University, Ph.D Thesis, 2013.
[14] J.A.Nanware, D.B.Dhaigude, "Boundary Value Problems for Differential Equations of Non-integer Order Involving Caputo Fractional Derivative," Advanced Studies in Contemporary Mathematics, 24(3), pp 369-376,2014.
[15] J.A.Nanware, D.B.Dhaigude, "Monotone Iterative Scheme for System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions", Math.Modelling Sci.Compu., Vol. 283 (2012), 395-402, Springer-Verlag.
[16] Oldham K. B., Spanier J.: The Fractional Calculus,Dover Publications, INC, New York, 2002.
[17] Podlubny I.: Fractional Differential Equations, Academic Press, San Diego, 1999.
[18] Wang T. and Xie " Existence and Uniqueness of Fractional Differential Equations with Integral Boundary Conditions", The Journal of Nonlinear Sciences and Applications, 1 no.4, pp 206-212,2008.
[19] Wang X., Wang L., Zeng Q.," Fractional Differential Equations with Integral Boundary Conditions", The Journal of Nonlinear Sciences and Applications, 8(4), pp 309-314,2015.

