SOME CURVATURE PROPERTIES OF LP-SASAKIAN MANIFOLD WITH RESPECT TO QUARTER SYMMETRIC NON METRIC $\xi-$ CONNECTION

Abhijit Mandal ${ }^{1}$, Iltutmiss Nayer ${ }^{2}$, Manjurul Sarkar ${ }^{3}$
${ }^{1}$ Department of Mathematics, Raiganj Surndranath Mahavidyalaya, Raiganj, Uttar Dianjpur, Pin-733134, West Bengal, India.
${ }^{2}$ Kasba M. M. High Madrasah, Mirual, Raiganj, Uttar Dianjpur, Pin-733130, West Bengal, India.
${ }^{3}$ Panchagram I.S.A. High School, Sherpur, S.D: Jangipur, Dist- Murshidabad, Pin-742224, West Bengal, India.

Abstract

The purpose of the present paper is to study some properties of LP-Sasakian manifold with respect to quarter symmetric non metric $\xi-$ connection. Also, we study Conharmonically flat, ξ-Conharmonically flat and quasi conharmonically flat LP-Sasakian manifolds with respect to quarter symmetric non metric ξ - connection. Moreover, we study Ricci soliton on LP-Sasakian manifold with respect to Quarter symmetric non metric ξ-connection.

Key words and phrases : LP-Sasakian manifolds, Quarter Symmetric non metric $\xi-$ connection, Conharmonic Curvature tensor, Ricci soliton

Mathematics Subject Classification 2010: 53C15, 53C25, 53C50.

1 INTRODUCTION

In 1989, K. Matsumoto[9] first introduced the notion of Lorentzian Para-Sasakian manifolds. Also in 1992, I. Mihai and R. Rosca[10] introduced independently the notion of Lorentzian Para-Sasakian manifolds (briefly, LP-Sasakian Manifolds) in classical analysis.

Levi-Civita was the first to define a linear connection for a Riemannian space generalizing the concept of parallelism in Euclidean space. A linear connection $\widetilde{\nabla}$ on a pseudo Riemannian manifold M is said to be symmetric or torsion free if the torsion tensor \widetilde{T} is zero i.e., $\widetilde{T}(X, Y)=$ 0 , for all $X, Y \in \chi(M)$. On contrast, the linear connection $\widetilde{\nabla}$ is said to be non-symmetric if its torsion tensor does not vanish. Again, if the torsion tensor \widetilde{T} of the connection $\widetilde{\nabla}$ have the form $\widetilde{T}(X, Y)=\eta(Y) X-\eta(X) Y$, for all $X, Y \in \chi(M)$, then the connection $\widetilde{\nabla}$ is called semisymmetric linear connection. Also if, $\widetilde{T}(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y$, for all $X, Y \in \chi(M)$, then the linear connection is called a quarter symmetric connection[6]. A quarter symmetric connection is said to be metric compatible if $\widetilde{\nabla} g=0$. And for a non metric compatible quarter
symmetric connection, $\widetilde{\nabla} g \neq 0$. The quarter symmetric non metric connections on different structures have been studied by many researcher, we cite ([1],[4],[15]) and their references.

For an n-dimensional LP-Sasakian manifold M with a Lorentzian metric g, a $(1,1)$ tensor field ϕ, a vector field ξ and a 1-form η, a new type of quarter symmetric non metric connection $\widetilde{\nabla}$, called a quarter symmetric non metric ξ-connection have been recently introduced by S.K. Chaubey and U.C. $\operatorname{De}[2]$ and the connection $\widetilde{\nabla}$ is defined as

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X-g(\phi X, \phi Y) \xi \tag{1.1}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} g\right)(Y, Z)=\eta(Y)\{g(\phi X, \phi Z)-g(\phi X, Z)\}+\eta(Z)\{g(\phi X, \phi Y)-g(\phi X, Y)\} \tag{1.2}
\end{equation*}
$$

for all $X, Y, Z \in \chi(M)$, where ∇ denotes the Levi-Civita connection. From (1.1), it follows that $\widetilde{\nabla}_{X} \xi=0$, i.e., M is $\xi-$ parallel with respect to $\widetilde{\nabla}$.

In 1957, Y. Ishii [8] introduced and defined Conharmonic curvature tensor of type $(0,3)$ on Riemannian manifold of dimenssion n in terms of Riemannian curvature tensor, Ricci curvature tensor, scalar curvature and metric tensor. The Conharmonic curvature tensor was further studied by many authors. For instance, see ([3],[14],[5]). A Conharmonic curvature tensor K of rank three for an n-dimensional Riemannian Manifold M is given by

$$
\begin{align*}
K(X, Y) Z= & R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \\
& -\frac{1}{n-1}[g(Y, Z) Q X-g(X, Z) Q Y] \tag{1.3}
\end{align*}
$$

for all $X, Y, Z \in \chi(M)$, where R is the Riemannian tensor of type (0,3), K is the Conharmonic curvature tensor of type $(0,3)$ and S denotes the Ricci tensor of type $(0,2), Q$ is the Ricci operator.

The concept of Ricci flow and its existence was introduced by R.S. Hamilton[7] in the year 1982. R.S. Hamilton observed that the Ricci flow is an excellent tool for symplifying the structure of a manifold. This concept was developed to answer Thurston's geometric conjecture which says that each closed three manifolds admits a geometric decomposition. The Ricci flow equation is given by

$$
\begin{equation*}
\frac{\partial g}{\partial t}=-2 S \tag{1.4}
\end{equation*}
$$

where g is Riemannian metric, S is Ricci curvature tensor and t is the time. A Ricci soliton is a self similar solution of the Ricci flow equation, where the metrices at different times differ by a diffeomorphism of the manifold. A Ricci soliton is represented by a tripple (g, V, λ), where g is Riemannian metric, V is a vector field and λ is a scalar, which satisfies the equation:

$$
\begin{equation*}
L_{V} g+2 S+2 \lambda g=0 \tag{1.5}
\end{equation*}
$$

where, S is Ricci curvature tensor, $L_{V} g$ denotes the Lie derivative of g along the vector field V. The Ricci soliton is said to be shrinking, steady or expanding according as $\lambda<0, \lambda=0$ or $\lambda>0$ respectively. If the vector field V is gradient of a smooth function h, then the Ricci soliton (g, V, λ) is called a gradient Ricci soliton and the function h is called the potential function. Ricci soliton was further studied by many researchers. For nore details, we refer ([11],[12],[13],[16]) and their references there in.

Definition 1.1 An n-dimensional LP-Sasakian manifold M is said to be generalized η-Einstein manifold if the Ricci tensor of type(0,2) is of the form

$$
\begin{equation*}
S(Y, Z)=k_{1} g(Y, Z)+k_{2} \eta(Y) \eta(Z)+k_{3} \omega(X, Y) \tag{1.6}
\end{equation*}
$$

for all $X, Y \in \chi(M)$, set of all vector fields of the manifold M and k_{1}, k_{2} and k_{3} are constants on M and $\omega(X, Y)$ is a 2-form given by $\omega(X, Y)=g(X, \phi Y)$.

Definition 1.2 An n-dimensional LP-Sasakian manifold is said to be Conharmonically if $K(X, Y) Z=0$ for all $X, Y, Z \in \chi(M)$.

Definition 1.3 An n-dimensional LP-Sasakian manifold is said to be ξ - Conharmonically flat if $K(X, Y) \xi=0$ for all $X, Y \in \chi(M)$.

Definition 1.4 An n-dimensional LP-Sasakian manifold is said to be quasi ϕ - Conharmonically flat if $g(K(\phi X, Y) Z, \phi W)=0$ for all $X, Y, Z, W \in \chi(M)$.

This paper is structured as follows:
After introduction, a short description of LP-Sasakian manifold is given in section (2). In section (3) ,we have discussed LP-Sasakian manifold admitting quarter symmetric non metric ξ - connection and obtained curvature tensor \widetilde{R}, Ricci tensor \widetilde{S}, Scalar curvature tensor \widetilde{r}. Section (4) contains Conharmonically flat, ξ-Conharmonically flat LP-Sasakian manifolds with respect to the quarter symmetric non metric ξ-connection. Section (5) concerns with quasi Conharmonically flat LP-Sasakian manifold with respect to the quarter symmetric non metric $\xi-$ connection. In section (6), we have disscused LP-Sasakian manifold satisfying $\widetilde{K}(\xi, U) \circ$ $\widetilde{R}(X, Y) Z=0$, where \widetilde{K} is the Conharmonic curvature tensor with respect to $\widetilde{\nabla}$. In section (7), we have discussed Ricci soliton on LP-Sasakian manifold with respect to the connection $\widetilde{\nabla}$.

2 PRELIMINARIES

An n-dimensional differentiable manifold is called an Lorentzian Para-Sasakian manifold if it admits a $(1,1)$ tensor field ϕ, a vector field ξ, a 1-form η and a Lorentzian metric g which satisfies

$$
\begin{align*}
\phi^{2} Y & =Y+\eta(Y) \xi, \eta(\xi)=-1, \eta(\phi X)=0, \phi \xi=0, \tag{2.1}\\
g(\phi X, \phi Y) & =g(X, Y)+\eta(X) \eta(Y), \tag{2.2}\\
g(X, \phi Y) & =g(\phi X, Y), \eta(Y)=g(Y, \xi), \tag{2.3}\\
\nabla_{X} \xi & =\phi X, g(X, \xi)=\eta(X) \tag{2.4}\\
\left(\nabla_{X} \phi\right) Y & =g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.5}\\
\forall X, Y & \in \chi(M .)
\end{align*}
$$

where ∇ denotes the operator of covarient differentiation with respect to the Lorentzian metric g.

Let us introduced a symmetric $(0,2)$ tensor field such that

$$
\begin{equation*}
\omega(X, Y)=g(X, \phi Y) \tag{2.6}
\end{equation*}
$$

Also since the vector field η is closed in LP- Sasakian manifold we have

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=\omega(X, Y), \omega(X, \xi)=0, \forall X, Y \in \chi(M) \tag{2.7}
\end{equation*}
$$

In LP- Sasakian manifold, the following relations also hold:

$$
\begin{align*}
& \eta(R(X, Y) Z=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{2.8}\\
& R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.9}\\
& R(\xi, Y) Z=g(Y, Z) \xi-\eta(Z) Y \tag{2.10}\\
& R(\xi, Y) \xi=\eta(Y) \xi+Y \tag{2.11}\\
& S(X, \xi)=(n-1) \eta(X) \tag{2.12}\\
& S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{2.13}\\
& Q \xi=(n-1) \xi, Q \phi=\phi Q, S(X, Y)=g(Q X, Y), S^{2}(X, Y)=S(Q X, Y) \tag{2.14}
\end{align*}
$$

3 SOME PROPERTIES OF LP-SASAKIAN MANIFOLD ADMITTING QUARTER SYMMETRIC NON METRIC $\xi-$ CONNECTION

Due to [2], the Riemannian curvature tensor with respect to the quarter symmetric non metric $\xi-$ connection is given by

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & R(X, Y) Z+g(\phi X, Z) \phi Y+\eta(Y) \eta(Z) X \\
& -g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \phi X \\
& -\eta(X) \eta(Z) Y+g(Y, \phi Z) \eta(X) \xi \tag{3.1}
\end{align*}
$$

Considering a frame field and then contracting the equation (3.1) along the vector field X, we find that

$$
\begin{equation*}
\widetilde{S}(Y, Z)=S(Y, Z)+g(Y, Z)+n \eta(Y) \eta(Z)-(1+\psi) g(Y, \phi Z) \tag{3.2}
\end{equation*}
$$

for all $X, Y \in \chi(M)$, where $\psi=\operatorname{tr}(\phi)$.
Consequently one can easily bring out the following results

$$
\begin{align*}
\widetilde{S}(Y, \xi)= & \widetilde{S}(\xi, Z)=0 \tag{3.3}\\
\widetilde{Q} Y= & Q Y+Y+n \eta(Y) \xi-(1+\psi) \phi Y \tag{3.4}\\
\widetilde{Q} \xi= & 0 \tag{3.5}\\
\widetilde{r}= & r-\psi(1+\psi) \tag{3.6}\\
\widetilde{R}(X, Y) \xi= & 0 \tag{3.7}\\
\widetilde{R}(X, \xi) Z= & \eta(Z) X-g(X, Z) \xi-\eta(Z) X \\
& +g(X, \phi Z) \xi-\eta(X) \eta(Z) \xi \tag{3.8}\\
\widetilde{R}(\xi, Y) Z= & g(Y, Z) \xi-g(Y, \phi Z) \xi+\eta(Y) \eta(Z) \xi \tag{3.9}
\end{align*}
$$

Thus we can state the followings:
Proposition 3.1: Let M be an n-dimensional LP-Sasakian manifold admitting Quarter symmetric non metric ξ-connection $\widetilde{\nabla}$, Then
(i) The curvature tensor \widetilde{R} of $\widetilde{\nabla}$ is given by (3.1),
(ii) The Ricci tensor \widetilde{S} of $\widetilde{\nabla}$ is given by (3.2),
(iii) The scalar curvature \widetilde{r} of $\widetilde{\nabla}$ is given by (3.6)
(iv) The Ricci tensor \widetilde{S} of $\widetilde{\nabla}$ is symmetric.

Now if we suppose that the LP-Sasakian manifold is Ricci flat with respect to the Quarter symmetric non metric $\xi-$ connection. Then from (3.2) we get

$$
S(Y, Z)=-g(Y, Z)-n \eta(Y) \eta(Z)+(1+\psi) \omega(Y, Z)
$$

for all $Y, Z \in \chi(M)$ where $\omega(Y, Z)=g(Y, \phi Z)$
This leads to the following theorem:
Theorem 3.1 If the LP-Sasakian manifold M is Ricci flat with respect to the Quarter symmetric non metric $\xi-$ connection, then M is a generalized η-Einstein manifold.

4 CONHARMONICALLY FLAT AND $\xi-$ CONHARMONICALLY FLAT LP-SASAKIAN MANIFOLD WITH RESPECT TO $\widetilde{\nabla}$

The Conharmonic curvature tensor with respect to Quarter symmetric non metric $\xi-$ connection is given by

$$
\begin{align*}
\widetilde{K}(X, Y) Z= & \widetilde{R}(X, Y) Z-\frac{1}{n-1}[\widetilde{S}(Y, Z) X-\widetilde{S}(X, Z) Y] \\
& -\frac{1}{n-1}[g(Y, Z) \widetilde{Q} X-g(X, Z) \widetilde{Q} Y] \tag{4.1}
\end{align*}
$$

Let us assume the LP-sasakian manifold M be Conharmonically flat with respect to $\widetilde{\nabla}$, then from (4.1)

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & \frac{1}{n-1}[\widetilde{S}(Y, Z) X-\widetilde{S}(X, Z) Y] \\
& \frac{1}{n-1}[g(Y, Z) \widetilde{Q} X-g(X, Z) \widetilde{Q} Y] \tag{4.2}
\end{align*}
$$

Taking inner product of (4.2) with a vector field W, we get

$$
\begin{align*}
\widetilde{R}(X, Y, Z, W)= & \frac{1}{n-1}[\widetilde{S}(Y, Z) g(X, W)-\widetilde{S}(X, Z) g(Y, W)] \\
& \frac{1}{n-1}[g(Y, Z) \widetilde{S}(X, W)-g(X, Z) \widetilde{S}(X, W)] \tag{4.3}
\end{align*}
$$

Let $\left\{e_{i}\right\}(1 \leq i \leq n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $X=W=e_{i}$ and taking summation over $i(1 \leq i \leq n)$ and using (3.3) we get

$$
\begin{equation*}
\widetilde{S}(Y, Z)=\frac{1}{n-1}(n-2) \widetilde{S}(Y, Z)+\frac{\widetilde{r}}{n-1} g(Y, Z) \tag{4.4}
\end{equation*}
$$

Using (3.2), (3.6) in (4.4), we get

$$
S(Y, Z)=\{r-\psi(1+\psi)-1\} g(Y, Z)-n \eta(Y) \eta(Z)+(1+\psi) \omega(Y, Z)
$$

for all $Y, Z \in \chi(M)$ where $\omega(Y, Z)=g(Y, \phi Z)$
Thus we have the following theorem:
Theorem 4.1 If an n-dimensional LP-sasakian manifold is Conharmonically flat, then it is a generalized $\eta-$ Einstein manifold.

In reference to (3.1) and (4.1), we get

$$
\begin{align*}
\widetilde{K}(X, Y) Z= & R(X, Y) Z+g(\phi X, Z) \phi Y+\eta(Y) \eta(Z) X \\
& -g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \phi X-\eta(X) \eta(Z) Y \\
& +g(Y, \phi Z) \eta(X) \xi-\frac{1}{n-1}[\widetilde{S}(Y, Z) X-\widetilde{S}(X, Z) Y] \\
& -\frac{1}{n-1}[g(Y, Z) \widetilde{Q} X-g(X, Z) \widetilde{Q} Y] \tag{4.5}
\end{align*}
$$

Using (1.3), (3.2) in (4.5), we get

$$
\begin{align*}
\widetilde{K}(X, Y) Z= & K(X, Y) Z+g(\phi X, Z) \phi Y+\eta(Y) \eta(Z) X \\
& -g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \phi X-\eta(X) \eta(Z) Y \\
& +g(Y, \phi Z) \eta(X) \xi-\frac{1}{n-1}[g(Y, Z) X-g(X, Z) Y] \\
& -\frac{n}{n-1}[\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y] \\
& -\frac{n}{n-1}[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi] \\
& +\frac{1}{n-1}[(1+\psi) g(Y, \phi Z) X-(1+\psi) g(X, \phi Z) Y] \\
& +\frac{1}{n-1}[(1+\psi) g(Y, Z) Q X-(1+\psi) g(X, Z) Q Y] \tag{4.6}
\end{align*}
$$

Setting $Z=\xi$ in (4.6)

$$
\begin{align*}
\widetilde{K}(X, Y) \xi= & K(X, Y) \xi-2 \eta(Y) X+2 \eta(X) Y \\
& +\frac{1}{n-1}[(1+\psi) \eta(Y) Q X-(1+\psi) \eta(X) Q Y] \tag{4.7}
\end{align*}
$$

Thus we have the following theorem:
Theorem 4.2 An n-dimensional LP-Sasakian manifold is ξ-Conharmonically flat with respect to the quarter symmetric non-metric ξ-connection if and only if it is so with respect to the Levi- Civita connection, provided the vector fields are horizontal vector fields.

5 QUASI-CONHARMONICALLY FLAT LP-SASAKIAN MANIFOLD WITH RESPECT TO $\widetilde{\nabla}$

We consider an n-dimensional quasi-Conharmonically flat LP-Sasakian manifold with respect to quarter symmetric non metric ξ-connection, i.e.,

$$
\begin{equation*}
g(\widetilde{K}(\phi X, Y) Z, \phi W)=0 \tag{5.1}
\end{equation*}
$$

for all $X, Y, Z, W \in \chi(M)$.
In view of (4.1), we have

$$
\begin{align*}
& g(\widetilde{R}(\phi X, Y) Z, \phi W) \\
= & \frac{1}{n-1}[\widetilde{S}(Y, Z) g(\phi X, \phi W)-\widetilde{S}(\phi X, Z) g(Y, \phi W)] \\
& +\frac{1}{n-1}[g(Y, Z) \widetilde{S}(\phi X, \phi W)-g(\phi X, Z) \widetilde{S}(Y, \phi W)] \tag{5.2}
\end{align*}
$$

Let $\left\{e_{i}\right\}(1 \leq i \leq n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $Y=Z=e_{i}$ and taking summation over $i(1 \leq i \leq n)$ and using (3.3) in (5.2), we get

$$
\begin{equation*}
\widetilde{S}(\phi X, \phi W)=\widetilde{r} g(\phi X, \phi W) \tag{5.3}
\end{equation*}
$$

Using (3.2), (3.6) in (5.3), we get

$$
\begin{align*}
S(X, W)= & \{r-\psi(1+\psi)-1\} g(X, W) \\
& +\{r-\psi(1+\psi)-n\} \eta(X) \eta(W)+(1+\psi) \omega(X, W) \tag{5.4}
\end{align*}
$$

for all $X, W \in \chi(M)$ where $\omega(X, W)=g(X, \phi W)$ and $\psi=\operatorname{trace}(\phi)$.
Thus we have the following theorem:

Theorem 5.1 An n-dimensional quasi-Conharmonically flat LP-Sasakian manifold is a generalized η-Einstein manifold.

6 LP-SASAKIAN MANFOLD SATISFYING $\widetilde{K}(\xi, U) \circ \widetilde{R}=0$

Let us consider a LP- Sasakian manifold M satisfying the condition

$$
\begin{equation*}
\widetilde{K}(\xi, U) \circ \widetilde{R}(X, Y) Z=0 . \tag{6.1}
\end{equation*}
$$

where \widetilde{K} and \widetilde{R} denote the Conharmonic curvature tensor and Riemmanian curvature tensor with respect to Quarter symmetric non metric ξ-connection respectively.

Equation (6.1) gives

$$
\begin{align*}
0= & \widetilde{K}(\xi, U) \widetilde{R}(X, Y) Z-\widetilde{R}(\widetilde{K}(\xi, U) X, Y) Z \\
& -\widetilde{R}(X, \widetilde{K}(\xi, U) Y) Z-\widetilde{R}(X, Y) \widetilde{K}(\xi, U) Z \tag{6.2}
\end{align*}
$$

Replacing Z by ξ in (6.2), we get

$$
\begin{align*}
0= & \widetilde{K}(\xi, U) \widetilde{R}(X, Y) \xi-\widetilde{R}(\widetilde{K}(\xi, U) X, Y) \xi \\
& -\widetilde{R}(X, \widetilde{K}(\xi, U) Y) \xi-\widetilde{R}(X, Y) \widetilde{K}(\xi, U) \xi \tag{6.3}
\end{align*}
$$

using (3.7) in (6.3), we get

$$
\begin{equation*}
0=\psi \widetilde{R}(X, Y) Q U-\widetilde{R}(X, Y) U \tag{6.4}
\end{equation*}
$$

taking inner product of (6.4) with a vector field W we get

$$
\begin{equation*}
0=\psi g(\widetilde{R}(X, Y) Q U, W)-g(\widetilde{R}(X, Y) U, W) \tag{6.5}
\end{equation*}
$$

Let $\left\{e_{i}\right\}(1 \leq i \leq n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $X=W=e_{i}$ and taking summation over $i(1 \leq i \leq n)$ and using (3.3) in (6.5), we get

$$
\begin{align*}
\psi S^{2}(Y, U)= & (1+\psi) \psi S(Y, \phi U)-(\psi-1) S(Y, U) \\
& +g(Y, U)-n(n-2) \eta(Y) \eta(U)-(1+\psi) \omega(Y, U) \tag{6.6}
\end{align*}
$$

where $\omega(Y, U)=g(Y, \phi U)$.
Hence we have the following theorem:
Theorem 6.1 If the condition $\widetilde{K}(\xi, U) \circ \widetilde{R}(X, Y) Z=0$ holds in an n-dimensional LPSasakian manifold M, then equation (6.6) is satisfied in M.

7 RICCI SOLITON ON LP-SASAKIAN MANIFOLD WITH RESPECT TO QUARTER SYMMETRIC NON METRIC $\xi-$ CONNECTION $\widetilde{\nabla}$

Let (g, W, λ) be a Ricci soliton on an n-dimensional LP-Sasakian manifold M with respect to quarter symmetric non metric ξ-connection satisfying

$$
\begin{equation*}
\widetilde{L}_{W} g(Y, Z)+2 \widetilde{S}(Y, Z)+2 \lambda g(Y, Z)=0 \tag{7.1}
\end{equation*}
$$

for all $Y, Z, W \in \chi(M)$, where \widetilde{L}_{W} denotes the Lie derivative operator with respect to $\widetilde{\nabla}$ along the vector field W

Using (3.2) in (6.1) we get,

$$
\begin{align*}
& \widetilde{L}_{W} g(Y, Z)+2 \widetilde{S}(Y, Z)+2 \lambda g(Y, Z) \\
= & g\left(\widetilde{\nabla}_{Y} W, Z\right)+g\left(\widetilde{\nabla}_{Z} W, Y\right)+2 \widetilde{S}(Y, Z)+2 \lambda g(Y, Z) \\
= & L_{W} g(Y, Z)+2 S(Y, Z)+2 \lambda g(Y, Z) \\
& +2 g(Y, \phi Z) \eta(W)-g(\phi Y, \phi W) \eta(Z)-g(\phi Z, \phi W) \eta(Y) \\
& +2 g(Y, Z)+2 n \eta(Y) \eta(Z)-2(1+\psi) g(Y, \phi Z) \tag{7.2}
\end{align*}
$$

Thus we have the following theorem:
Theorem 7.1 A Ricci soliton (g, W, λ) on an n-dimensional LP-Sasakian manifold M, with respect to Quarter symmetric non metric ξ-connection is invariant if and only if

$$
\begin{align*}
2 g(Y, \phi Z) \eta(W)= & g(\phi Y, \phi W) \eta(Z)+g(\phi Z, \phi W) \eta(Y)-2 g(Y, Z) \\
& -2 n \eta(Y) \eta(Z)+2(1+\psi) g(Y, \phi Z) \tag{7.3}
\end{align*}
$$

for arbitrary vector fields Y, Z, W of M
Now considering the Ricci soliton (g, ξ, λ), (7.1) gives

$$
\begin{align*}
0 & =\widetilde{L}_{\xi} g(Y, Z)+2 \widetilde{S}(Y, Z)+2 \lambda g(Y, Z) \\
& =g\left(\widetilde{\nabla}_{Y} \xi, Z\right)+g\left(\widetilde{\nabla}_{Z} \xi, Y\right)+2 \widetilde{S}(Y, Z)+2 \lambda g(Y, Z) \\
& =\widetilde{S}(Y, Z)+\lambda g(Y, Z) \tag{7.4}
\end{align*}
$$

Using (1.1),(3.2) in (7.4)

$$
S(Y, Z)=-(1+2 \lambda) g(Y, Z)-n \eta(Y) \eta(Z)+(1+\psi) \omega(Y, Z)
$$

for all $Y, Z \in \chi(M)$, where $\omega(Y, Z)=g(Y, \phi Z)$
Thus we have the following theorem:
Theorem 7.2 An n-dimensional LP-Sasakian manifold M with quarter symmetric non metric ξ-connection is a generalized η-Einstein manifold under the Ricci soliton (g, ξ, λ)

Now putting $Z=\xi$ in (7.4), we get $\lambda=0$ for $\eta(Y) \neq 0$
Corollary 7.1: A Ricci soliton (g, ξ, λ) on an n-dimensional LP-Sasakian manifold M, with respect to quarter symmetric non metric ξ-connection is always steady for non horizontal vector fields.

CONCLUSION

In this paper we have investigated that a Conharmonically flat,quasi Conharmonically flat LP-Sasakian manifolds with respect to quarter symmetric non metric ξ-connection are generalized η - Einstein manifolds. Also, we find that a LP-Sasakian manifold is ξ-Conharmonically flat with respect to quarter symmetric non metric ξ-connection iff it is so with respect to Levi-Civita connection. Moreover, we investigated that a Ricci soliton (g, ξ, λ) on LP-Sasakian manifold with respect to quarter symmetric non metric ξ-connection is always steady for non horizontal vector fields.

ACKNOWLEDGEMENT

The authors would like to thank the referee for their valuable suggestions to improve the paper.

References

[1] S.K. Chaubey and R.H. Ojha., On semi-symmetric non-metric and quarter-symmetric metric connections. Tensor N. S. 70 (2008), no.(2), 202-213.
[2] S.K. Chaubey and U.C. De., Lorentzian para-sasakian manifolds admitting a new type of Quarter Symmetric non metric ξ-connection ,International Electronic Journal of Geometry Vol 12, No-2 (2019), 250-259.
[3] Krishnendu De and U.C. De., Conharmonic curvature tensor on Kenmotsu manifolds ,Bulletin of the Transilvania University of Braşov •Vol 6(55), No. 1-2013, Series-III, pg 9-22.
[4] S.A Demirbag, H.B. Yilmaz, S.A. Uysal and F.O. Zengin., On quasi Einstein manifolds admitting a Ricci quarter-symmetric metric connection. Bull. of Math. Anal. and Appl. 3 (2011), no. 4, 84-91.
[5] M.K. Dwivedi and Kim Jeong-Sik., On Conharmonic Curvature Tensor in K-contact and Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. (2)34(1) (2011), 171-180.
[6] S. Golab., On semi symmetric and quarter symmetric linear connections. Tensor N.S.29(1975), 249-254.
[7] R.S. Hamilton.,The Ricci Flow on surfaces ,Math.and General Relativity(Santa Cruz,CA,1986), American Math.Soc.Contemp.math.71(1988), 232-262.
[8] Y. Ishii., Conharmonic transformations, Tensor (N.S.) 7(1957), 73-80.
[9] K. Matsumoto., On Lorentzian paracontact manifolds, Bull. of Yamagata Univ.Nat. Sci. 12 (1989), 151-156.
[10] I. Mihai and R. Rosca., On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publi. (1992), 155-169.
[11] H.G. Nagaraja and C.R. Premalatha., Ricci solitons in Kenmotsu manifolds, J. of Mathemati-cal Analysis.3(2) (2012) 18-24.
[12] V.V. Reddy, R. Sharma and S. Sivaramkrishan., Space times through Hawking-Ellis constru-ction with a back ground Riemannian metric, Class Quant. Grav. 24 (2007) 33393345.
[13] R. Sharma., Certain results on K-contact and (k, μ)-contact manifolds, J. of Geometry. 89 (2008), 138-147.
[14] S.A. Siddiqui and Z. Ashan., Conharmonic curvature tensor and space time of General relativity,Differential Geometry - Dynamical Systems, Vol.12, 2010, pp. 213-220.
[15] S. Sular., C. Ozgur and U.C. De., Quarter-symmetric metric connection in a Kenmotsu manifold. SUT Journal of Mathematics 44 (2008), 297-306.
[16] M.M. Tripathi., Ricci solitons in contact metric manifold, ArXiv: 0801. 4222vl [math. D. G.], 2008.

