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Venus is our sister planet which is less explored because of its atmosphere. It is unique in

the sense of its rotation. It rotates in opposite direction. Its brightness as natural objects comes

as second after Moon in the night sky. Indian space research organization (ISRO) has planned

to send Shukrayan-I in 2023 to explore the surface and atmosphere of Venus. In this paper

Venus-satellite and sun are considered in the mathematical model of "circular restricted three

body problem".Since Venus is very near to the Sun so it is important to study the radiation

pressure and its effect on the halo orbit through more accurate and modern technique. Here

the continuation method up to fourth order approximation (recently introduced) have been

used to analyze halo orbits around L-points i.e. L1 and L2.
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I. Introduction
Indian Space Research Organization (ISRO) has proposed to send an orbiter named Shukrayann-1 in year 2023.

The aim of this interplanetary satellite is to study the atmosphere and surface of Venus. Slingsloting is a very good

method which is used in designing the trajectories of an interplanetary mission, basically for outer planets viz Saturn,

Jupiter, Uranus and beyond. This method requires very high energy which makes the spacecraft too fast and increases

the probability of collision. That’s the reason this method is used for outer planets and its applications are limited [1].

Lo [2] introduced a new design which needs very low energy. In his paper halo orbits were used as transfer station

and according to him it is possible because it is weakly stable. Koon et.al[3, 4] have proposed a very good method of

transferring the satellite from halo orbit to halo orbit. In his work L1 and L2 equilibrium points were used for the said

purposes. Dynamics and geometry of the neighbourhood of collinear points of the centre manifold was explained by

Gomez [5] and Jorba [6]. Romagnoli[7] tested the performance and verified the applicability of LGPS (Lunar Global

positioning system) around all sides of Moon.Also they investigated the Lissajous trajectories around L1 and L2. Eapen
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and Sharma [8] investigated the effect of photo gravitation on the halo orbits around L1 of Mars in CRTBP ("Circular

Restricted Three body Problem"). Findings of their work are (1) Radiation pressure is directly proportional to the

trajectories of halo orbits and (2) when time period increases radiation pressure sends the trajectories of the halo orbits

towards the Sun. Here it is aimed is to study the effect of photo gravitation on the halo orbit around L1 and L2 through

fourth order approximation of continuation method.

This paper is organized as follows : In Section II, we have described the configuration of the Venus-Sun and satellite

in the "restricted three body problem" with zero eccentricity. In perturbation theory, we need to approximate the periodic

solutions uniformly which can remove secular terms. For this, we have used a continuation method of fourth order for

the computation of halo orbits which are described in Section III. In Section IV we describe the results and discussion

followed with conclusion of the paper in Section V.

II. Configuration of Venus-Sun and satellite model and Equations of Motion
It is assumed that the interplanetary satellite with infinitesimal mass is moving around the centre of mass of Sun

and Venus on circular trajectories. This model is known as "spatial circular restricted three body problem" (SCR3BP).

This model consist five Lagrangian points in the "synodic reference frame". At L1 and L2 points the orbital period of

spacecraft is same as the orbital period of venus. There exist one abstract equilateral triangle having vertices the Sun, the

Venus and L4 and similarly another equilateral triangle with L5 , Sun and venus as a vertices. L1, L2 and L3 lies on the

same line which passes through The Sun and Venus.Here these three collinear points are unstable. Since these collinear

points are weakly unstable so we can use it in "low energy space mission". The three dimensional periodic trajectories

around these collinear points is called Halo orbits. Motion near collinear Lagrangian points are very complex but it is

possible to send our spacecraft from the halo orbits of Earth-Sun system to the halo orbits of Venus-Sun system because

of its positional and dynamical importance. Let µ = m2
m1+m2

is the mass parameter and q = 1 − Fp

Fg
[9] as the mass

Sun

Venus

C

X

Z

Y

S(x,y,z)

r1

r2

Fig. 1 Geometrical view of the model.

radiation factor accounts the effect of radiation force in the system. Here the assumption of unit of length is considered
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in such a way that the constant separation of two masses is unity. The model of the problem under consideration is given

in Fig.(1). The equation of motion for the considered model is written as [8, 10, 11]

Üx − 2 Ûy =
∂U
∂x

, (1)

Üy + 2 Ûx =
∂U
∂y

, (2)

Üz =
∂U
∂z
, (3)

U =
(x2 + y2)

2
+
(1 − µ)q

r1
+
µ

r2
, (4)

where,

r1 =

√
(x + µ)2 + y2 + z2

r2 =

√
(x + µ − 1)2 + y2 + z2. (5)

III. Continuation method for the halo orbits
Continuation method is an important technique for "uniformly approximating periodic solutions" which remove

secular terms comes in the use of perturbation theory to weakly nonlinear problems with finite oscillatory solutions

[12].Periodic solution and its convergent series approximation can be obtained through periodicity of the results and

expansion theorem . Here nonlinear terms alter the frequency of the linearized system [4]. By the help of successive

approximations of continuation method periodic solutions upto third order was obtained by Richardson [13]. Motion

about the halo orbit of L1 , L2 can be studied by the above method but for better insight we need to find the periodic

solution up to fourth order. Tiwary and Kushwah [14] computed the halo orbit by translating the origin at the equilibrium

point along with the combined effect of photogravitational impact of the Sun and the Earth’s oblateness . We have

considered only the radiation effect of the Sun excluding the effect of oblateness, as it is known that in the case of the

Sun-Mercury system Mishra and Jha [15] the radiation factors is more dominant.

X = x + µ ± γ − 1, Y = y, Z = z, (6)

3
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Using Equation (6) in (1 − 3) we have

γ( ÜX − 2 ÛY ) = ∂Ω

∂X
, (7)

γ( ÜY + 2 ÛX) = ∂Ω

∂Y
, (8)

γ ÜZ =
∂Ω

∂Z
, (9)

Ω =
X2 + Y2

2
+
(1 − µ)q

R1
+

µ

R2
(10)

and R1 , R2 can be written as

R1 =

√
(Xγ + 1 ∓ γ)2 + (Yγ)2 + (Zγ)2,

R2 =

√
(Xγ ∓ γ)2 + (Yγ)2 + (Zγ)2.

By the expansion of non-linear terms of equation 10, as in [16] it reduces to

Ω = γ
(X2 + Y2)

2
+

1
γ2

{
(1 − µ)qγ

1 − γ + µ

}
+

X
γ2

{
−(1 − µ)qγ

2

(1 − γ)2

}
+
(2X2 − Y2 − Z2)

2γ2

{
(1 − µ)qγ3

(1 − γ)3

}
+

1
γ2

{ ∞∑
m>3

Cmρ
mPm

(
X
ρ

)}
. (11)

Thus, through algebraic manipulation, equations of motion reduces in the following form

ÜX − 2 ÛY − (1 + 2C2)X =
∂

∂X

∞∑
m>3

Cmρ
mPm

(
X
ρ

)
, (12)

ÜY + 2 ÛX + (C2 − 1)Y = ∂

∂Y

∞∑
m>3

Cmρ
mPm

(
X
ρ

)
, (13)

ÜZ + C2Z =
∂

∂Z

∞∑
m>3

Cmρ
mPm

(
X
ρ

)
. (14)

where,
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Cm =
1
γ3

{
(−1)mq(1 − µ)γm+1

(1 ∓ γ)m+1 + (±1)m (µ)
}
, (15)

where m = 0, 1, 2, 3, ....Neglecting all portions except linear terms of the solution of equations 12-14, we have

X(t) = A11eαt + A22e−αt + A33cos λt

+ A44sin λt, (16)

Y (t) = −κ1 A11eαt + κ1 A22e−αt

− κ2 A33sin λt + κ2 A44cos λt, (17)

Z(t) = A55cos
√

C2t + A66sin
√

C2t, (18)

where A11, A22, A33, A44, A55, and A66 are arbitrary constants whereas

α =

√√√
−(2 − C2) +

√
9C2

2 − 8C2

2
,

λ =

√√√
(2 − C2) +

√
9C2

2 − 8C2

2
,

κ1 =
(2C2 + 1) − α2

2α
,

κ2 =
(2C2 + 1) + λ2

2λ
.

Here roots are real equal and of opposite signs it means the critical points will be a saddle points. By taking A11 = A22 = 0

and

A33 = −AX cos φ, A44 = AX sin φ,

A55 = AZ sinψ, and A66 = AZ cosψ,

we will have the solutions as [4]

X(t) = −AX cos(λt + φ),

Y (t) = κAX sin(λt + φ), (19)

Z(t) = AZ sin(
√

C2t + ψ),

5
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Where AX , AZ are the amplitudes .λ and C2 are the frequencies.ψ .λ and C2 are the out plane phase and In plane phase

is φ. These out and in plane phases are responsible for halo orbits. To obtain a halo orbits we have to equate these two

frequencies by introducing a frequency correct relation ∆ = λ2 −C2. However, we compute the orbits up to fourth order

approximation with radiation pressure. For removing the secular terms in the successive approximation we use two

variables ω and τ where τ = ωt.Now equations of motion can be written in terms of new independent variable τ as

given in [14]

ω2X ′′ − 2nωY ′ − (n2 + 2C2)X =
3
2

C3(2X2

− Y2 − Z2) + 2C4(2X2 − 3Y2 − 3Z2)X + 5
8

C5[
8X2{X2 − 3(Y2 + Z2)} + 3(Y2 + Z2)2

]
, (20)

ω2Y ′′ + 2nωX ′ + (C2 − n2)Y = −3C3XY

− 3
2

C4(4X2 − Y2 − Z2)Y − 5
2

C5XY (4X2

− 3Y2 − 3Z2), (21)

ω2Z ′′ + λ2Z = −3C3X Z − 3
2

C4(4X2 − Y2 − Z2)Z

− 5
2

C5X Z(4X2 − 3Y2 − 3Z2) + ∆Z . (22)

here,∆ = λ2 − C2, which is very small and is used for the frequency correction to get the halo orbit. Now we need

to use the perturbation technique of Lindstedt-Poincaré. This technique will provide an approximate solution of the

given problem in the neighbourhood of the critical point. Here the higher order terms of the equations of motion are

considered to produce a series expansion of the solution of the equations of motion which have higher accuracy.Thus

the solutions for equations (20), (21), and (22) in the form of perturbation,will be

X(τ) = εX1(τ) + ε2X2(τ) + ε3X3(τ) + ε4X4(τ) + . . . , (23)

Y (τ) = εY1(τ) + ε2Y2(τ) + ε3Y3(τ) + ε4Y4(τ) + . . . , (24)

Z(τ) = εZ1(τ) + ε2Z2(τ) + ε3Z3(τ) + ε4Z4(τ) + . . . , (25)

and

ω = 1 + εω1 + ε
2ω2 + ε

3ω3 + ε
4ω4 + . . . . (26)

Using this substitution in equation (20), (21), and (22) and equating the terms of O(ε), O(ε2), O(ε3), and O(ε4) to

obtain the 1st , 2nd, 3rd, and 4th order equations, respectively as [14, 16] with some modifications. We solve our model

considering radiation pressure only whereas [14] considered radiation pressure and oblateness both.

6
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Finally, we combine all the solutions considering the mapping as AX 7−→ AX

ε and AZ 7−→ AZ

ε to remove ε from all

the solutions of equations upto fourth order approximations. Combining all solutions components wise in (23), (24),

and (25), we get the final solution, for the expression of coefficients we refer [14, 16].

X(τ) = (ρ20 + ρ31 + ρ40) − AX cos τ1 + (ρ21 + ζ ρ22

+ρ41) cos 2τ1 cos 3τ1 + ρ42 cos 4τ1, (27)

Y (τ) = (κAX + σ32) sin τ1 + (σ21 + σ41 + ζσ22) sin 2τ1

+σ31 sin 3τ1 + σ42 sin 4τ1, (28)

Z(τ) = (−1)
p−1

2 AZ cos τ1 + (−1)
p−1

2 (κ21 cos τ1 + κ22

+κ32 cos 3τ1) + κ40 + κ41 cos 2τ1

+κ42 cos 4τ1. (29)

IV. Results and Discussion
In the Earth-Sun and satellite system halo orbits have been drawn by the third order approximation method. It can

be seen in [4] and [16]. Here we investigate the halo orbits of the Venus-Sun and satellite system through fourth order

continuation method using (27), (28), and (29) equations. Here amplitudes, AX = 200000km and AZ = 110000km are

taken. Time period of halo orbits around L1 at q = 1 is 47.94 days which can be seen in (Fig.2) in black color. The time

period for halo orbit around L2 is 42.80 days as shown in Fig.3. The other orbits with blue to red colors shows the

3D-halo orbits, when q = 0.99, 0.98, 0.97, 0.96 and 0.95 respectively. The red color orbit in both the Figs.2 and 3

shows when q = 0.95.

The variation of some parameters and time period with radiation factor q for the motion around L1 and L2 are given

in Tables 1 and 2 respectively. It is clearly visible that radiation pressure is directly proportional to the time period

of the orbits around L1 but inversely proportional to the time period around L2 . The effect on the halo orbit due to

radiation pressure of the Sun are clearly visible in Fig.2-3, that the orbits are shifting towards the Sun position. Also

Fig.(2-3) indicates that the eccentricity of orbit increases around L1 with increase in radiation factor whereas in case of

orbits around L2 it decreases.

V. Conclusion
Here system of Venus-Sun and satellite have been studied analytically and numerically for getting the halo orbits of

satellite. Further the radiation pressure and its effect on these orbits have been studied on the line shown by [14]. The
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result shows that radiation pressure is directly proportional to eccentricity and the time period of the orbits around L1

but it is inversely proportional in case of L2. Also due to the effect of radiation pressure the halo orbits shifting towards

the Sun.
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Fig. 2 Halo orbit around L1
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Fig. 3 Halo orbit around L2
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