
International Journal of Mathematics Trends and Technology                                                      Volume 66 Issue 10, 63-69, October 2020 

ISSN: 2231 – 5373 /doi:10.14445/22315373/IJMTT-V66I10P510                                                © 2020 Seventh Sense Research Group® 

         

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Direct Product of BP-Algebra 
Amelia Setiani

#1
, Sri Gemawati

#2
, Leli Deswita

#3 

#
Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau 

Bina Widya Campus, Pekanbaru 28293, Indonesia 
 

Abstract - In this paper, the notion of direct product of BP-algebra are introduced and some of related properties are 

investigated. Also, the notion of direct product of 0-commutative BP-algebra and BP-homomorphism are studied. Then, 

the notion of direct product in BP-algebra is expanded to finite family of BP-algebra and some of its properties are 

investigated. 
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I. INTRODUCTION 

A B-algebra was introduced by  Neggers and Kim [7] in 2002, which is a non-empty set X with a constant 0 and a 

binary operation “∗” denoted by (𝑋; ∗, 0), satisfying the following axioms: (𝐵1) 𝑥 ∗ 𝑥 = 0, (𝐵2) 𝑥 ∗ 0 = 𝑥, and (𝐵3) (𝑥 ∗

𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑧 ∗ (0 ∗ 𝑦)) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then, Ahn and Han [1] introduced the generalized of B-algebra called BP-

algebra, which is a non-empty set X with binary operations  ∗ and a constant 0, and satisfies the following axioms: (B1), 

(𝐵𝑃1) 𝑥 ∗ (𝑥 ∗ 𝑦) = 𝑦, (𝐵𝑃2) (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧) = 𝑥 ∗ 𝑦 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Ahn and Han [1] also provide the concept of 0-

commutative BP-algebra, which is a BP-algebra (X; *, 0) is said to be 0-commutative if satisfying 𝑥 ∗ (0 ∗ 𝑦) = 𝑦 ∗ (0 ∗
𝑥) for all 𝑥, 𝑦 ∈ 𝑋. The concept of homomorphism is also studied in abstract algebra. A map 𝜓 ∶ 𝐴 → 𝐵 is called a BP-

homomorphism if 𝜓(𝑥 ∗ 𝑦) = 𝜓(𝑥) ∗ 𝜓(𝑦) for all 𝑥, 𝑦 ∈ 𝐴, where A and B are two BP-algebras. The kernel of 𝜓 denoted 

by ker 𝜓 is defined to be the set {𝑥 ∈ 𝐴 ∶ 𝜓(𝑥) = 0𝐵}. A BP-homomorphism 𝜓 is called a BP-monomorphism, BP-

epimorphism, or BP-isomorphism if one-one , onto, or  a bijection, respectively. The concepts of B-algebra and BP-algebra 

have been discussed by researchers, for instance the concept of direct product. The notion of direct product was first 

discussed in group and some of properties are obtained, such as the direct product of the group is a group and the direct 

product of the abelian group is also an abelian group. Then, the notion of direct product of group is applied in other 

algebraic structures. Lingcong and Endam [6] discuss the notion of direct product of B-algebra, 0-commutative B-algebra 

and B-homomorphism. The results define direct product of B-algebra and some of related properties are obtained. One of 

them is the direct product of two B-algebras is also a B-algebra. Then, they extend the concept of direct product of B-

algebra to finite family B-algebra and some of related properties are investigated. Furthermore, Widianto et al. [9] 

discussed the concept of direct product in BG-algebra, 0-commutative BG-algebra and BG-homomorphism and some of 

related properties are investigated.  

The objective of this paper is to construct the concept of direct product of BP-algebras, and then investigate direct 

product of 0-commutative BP-algebras  and BP-homomorphism. Finally, we study direct product of finite family BP-

algebra and some related properties are explored. 

II. PRELIMINARIES 

In this section, we recall the notion of B-algebra and BP-algebra and review some properties which we will need in the 

next section. Some definitions and theories related to direct product of BP-algebra that have been discussed by several 

authors  [1, 5, 6, 7] will also be presented. 

 

Definition 2.1.  [7] A B-algebra is a non-empty set X with a constant 0 and a binary operation “ ∗ ” satisfying the following 

axioms: for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 

(B1) 𝑥 ∗ 𝑥 = 0, 
(B2) 𝑥 ∗ 0 = 𝑥, 
(B3) (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑧 ∗ (0 ∗ 𝑦)). 

  

Definition 2.2.  [5] A B-algebra (X ; ∗, 0) is said to be 0-commutative if x ∗ (0 ∗ y) = y ∗ (0 ∗ x), for any            x, y ∈ X. 

 

Example 1.  Let 𝐴 = {0, 𝑎, 𝑏} be a set with Cayley’s table as follows: 

Table 1: Cayley’s table for (A ; ∗, 0) 

* 0 a b 

0 0 b a 

a a 0 b 

b b a 0 
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From Table 1 we get the value of main diagonal is 0, such that A satisfies x ∗ x = 0, for all 𝑥 ∈ 𝐴      (B1 axiom). In the 

second column we see that for all 𝑥 ∈ 𝐴, then x ∗ 0 = x (B2 axiom) and it also satisfies              (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑧 ∗
(0 ∗ 𝑦)), for all 𝑥, 𝑦, 𝑧 ∈ 𝐴. Hence, (A ; ∗, 0) be a B-algebra. It easy to check (A ; ∗, 0) satisfies x ∗ (0 ∗ y) = y ∗ (0 ∗ x), for 

all  x, y ∈  A. Hence, A be a 0-commutative B-algebra. 

 

A non-empty subset S of B-algebra (X ; ∗, 0) is called a subalgebra of X  if 𝑥 ∗ 𝑦 ∈ 𝑆, for all 𝑥, 𝑦 ∈ 𝑆.  

Example 2. Let 𝐴 = {0, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒} be a set with Cayley’s table as follows: 

 

Table 2: Cayley's table for (X; ∗, 0) 

* 0 a b c d e 

0 0 b a c d e 

a a 0 b d e c 

b b a 0 e c d 

c c d e 0 b a 

d d e c a 0 b 

e e c d b a 0 

 

Then, (X ; ∗, 0) is a B-algebra and the set 𝑆 = {0, 𝑎, 𝑏}  is a subalgebra of X. 

 

Definition 2.4. [6] Let  𝑨 = (𝐴; ∗, 0𝐴) and 𝑩 = (𝐵; ∗, 0𝐵) be B-algebras. Define the direct product of 𝑨 and 𝑩 to be the 

structure 𝑨 × 𝑩 = (𝐴 × 𝐵; ⊛, (0𝐴, 0𝐵)), where 𝐴 × 𝐵 is the set {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and whose binary operation ⊛ is 

given by as (𝑎1, 𝑏1) ⊛ (𝑎2, 𝑏2) = (𝑎1 ∗ 𝑎2, 𝑏1 ∗ 𝑏2). 

 

Definisi 2.5.  [1] A BP-algebra is a non-empty set X with a constant 0 and a binary operation “ ∗ ” satisfying the following 

axioms: for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 

 (B1)    𝑥 ∗ 𝑥 = 0, 
(BP1)  𝑥 ∗ (𝑥 ∗ 𝑦) = 𝑦, 
(BP2) (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧) = 𝑥 ∗ 𝑦. 
 

Definisi 2.6. [1] A BP-algebra (𝑋; ∗, 0) is said to be a 0-commutative if 𝑥 ∗ (0 ∗ 𝑦) = 𝑦 ∗ (0 ∗ 𝑥) for any 𝑥, 𝑦 ∈ 𝑋. 

 

Example 4. Let 𝑋 = {0, 1, 2, 3} be a set with Cayley’s table as follows: 

 

Table 3: Cayley’s table for (𝑋; ∗, 0) 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

 

 Then, from Table 3 it can be shown that (X ; ∗, 0) is a BP-algebra. 

 

Theorem 2.7. [1] If (𝑋; ∗, 0) a BP-algebra, then for all 𝑥, 𝑦 ∈ 𝑋, 

(i) 0 ∗ (0 ∗ 𝑥) = 𝑥, 

(ii) 0 ∗ (𝑦 ∗ 𝑥) = 𝑥 ∗ 𝑦, 

(iii) 𝑥 ∗ 0 = 𝑥, 

(iv) If 𝑥 ∗ 𝑦 = 0 then 𝑥 ∗ 𝑦 = 𝑥, 

(v) If  0 ∗ 𝑥 = 0 ∗ 𝑦 then  𝑥 = 𝑦, 

(vi) 0 ∗ 𝑥 = 𝑦 then 0 ∗ 𝑦 = 𝑥, 

(vii) 0 ∗ 𝑥 = 𝑥 then 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥. 

Proof. The Theorem 2.7 has been proved in [1]. 
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Let (𝑋; ∗, 0) and (𝑌; ∗, 0) be two BP-algebras. A map 𝜓: 𝑋 → 𝑌 is called a BP-homomorphism if 𝜓(𝑎 ∗ 𝑏) =
𝜓(𝑎) ∗ 𝜓(𝑏) for any 𝑎, 𝑏 ∈ 𝑋. The kernel of 𝜓 denoted by ker 𝜓 is defined to be the set 𝑘𝑒𝑟 𝜓 = {𝑥 ∈ 𝑋: 𝜓(𝑥) = 0𝑌}. A 

BP-homomorphism ψ is called a BP-monomorphism, BP-epimorphism, or BP-isomorphism if one-one , onto, or a 

bijection function, respectively.  

 

III. DIRECT PRODUCT OF BP-ALGEBRA 
 

By using the same idea in Lincong and Endam's research in [6] we get the definition of direct product in BP-algebra 

and its properties are obtained. The concept can be extended to the finite famiy BP-algebra. Then, we have some of the 

related properties. 

 

Let  𝑨 = (𝐴; ∗, 0𝐴) and 𝑩 = (𝐵; ∗, 0𝐵) be BP-algebras. Define the direct product of 𝑨 and 𝑩 to be the structure 

𝑨 × 𝑩 = (𝐴 × 𝐵; ⊛, (0𝐴, 0𝐵)), where 𝐴 × 𝐵 is the set {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and whose binary operation ⊛ is given by 

as (𝑎1, 𝑏1) ⊛ (𝑎2, 𝑏2) = (𝑎1 ∗ 𝑎2, 𝑏1 ∗ 𝑏2). By definition of direct product of BP-algebra we obtain Theorem 3.1.  

 

Theorem 3.1. The direct product of  two BP-algebras is also a BP-algebra. 

Proof. Let 𝑷 = (𝑃; ∗, 0𝑃) and 𝑸 = (𝑄; ∗, 0𝑄) are two BP-algebras, then the direct product of P and Q is a structure 

𝑷 × 𝑸 = (𝑃 × 𝑄; ⊛, (0𝑃 , 0𝑄)) for all (𝑝
1

, 𝑞
1
) ∈ 𝑃 × 𝑄 we have 

(𝑝1, 𝑞1) ⊛ (𝑝1, 𝑞1) = (𝑝1 ∗ 𝑝1,  𝑞1 ∗ 𝑞1) = (0𝑃 , 0𝑄), 

then the axiom B1 is satisfied. For any (𝑝
1

, 𝑞
1

),  (𝑝
2

, 𝑞
2
)  ∈ 𝑃 × 𝑄 obtained 

(𝑝1, 𝑞1) ⊛ ((𝑝1, 𝑞1) ⊛  (𝑝2 , 𝑞2))      = (𝑝1, 𝑞1) ⊛ (𝑝1 ∗ 𝑝2, 𝑞1 ∗ 𝑞2) 

                                                                      = (𝑝1 ∗ (𝑝1 ∗ 𝑝2), 𝑞1 ∗ (𝑞1 ∗ 𝑞2)) 

                                           (𝑝
1

, 𝑞
1

) ⊛ ((𝑝
1

, 𝑞
1
) ⊛  (𝑝

2
, 𝑞

2
)) = (𝑝

2
, 𝑞

2
), 

then the axiom BP1 is satisfied. Then, for any (𝑝
1

, 𝑞
1

),  (𝑝
2

, 𝑞
2
),  (𝑝

3
, 𝑞

3
)  ∈ 𝑃 × 𝑄 we get 

((𝑝1, 𝑞1) ⊛  (𝑝3, 𝑞3)) ⊛ ((𝑝2, 𝑞2) ⊛  (𝑝3, 𝑞3)) = (𝑝1 ∗ 𝑝3, 𝑞1 ∗ 𝑞3) ⊛ (𝑝2 ∗ 𝑝3, 𝑞2 ∗ 𝑞3) 

                                                                                                  = ((𝑝1 ∗ 𝑝3) ∗ (𝑝2 ∗ 𝑝3), (𝑞1 ∗ 𝑞3) ∗ (𝑞2 ∗ 𝑞3)) 

                                                                                                = (𝑝1 ∗ 𝑝2, 𝑞1 ∗ 𝑞2) 

                    ((𝑝1, 𝑞1) ⊛  (𝑝3, 𝑞3)) ⊛ ((𝑝2, 𝑞2) ⊛  (𝑝3, 𝑞3))  = (𝑝1 , 𝑞1) ⊛  (𝑝2, 𝑞2), 
 

then the axiom BP2 is satisfied. Since 𝑷 × 𝑸 satisfies all axioms of BP-algebra, hence 𝑷 × 𝑸 is a BP-algebra.  

 

 The concept of direct product in BP-algebra is extended to finite family of BP-algebra. Let In = {1, 2, … , n} and 

let {𝑷𝒊 = (𝑃𝑖 ; ∗, 0𝑖) ∶ 𝑖 ∈ 𝐼𝑛} be a finite family of BP-algebra. Define the direct product of BP-algebras  𝑷𝟏, … , 𝑷𝒏 to be 

the structure 

∏ 𝑷𝒊

𝑛

𝑖=1

= ( ∏ 𝑃𝑖

𝑛

𝑖=1

; ⊛, (01, … , 0𝑛)), 

 

where 

∏ 𝑃𝑖

𝑛

𝑖=1

= 𝑃1 × … × 𝑃𝑛 = {(𝑝1, … , 𝑝𝑛) ∶  𝑝𝑖  ∈ 𝑃𝑖 , 𝑖 ∈ 𝐼𝑛}, 

 

and whose operation ⊛ is given by (𝑝1 , … , 𝑝𝑛) ⊛ (𝑞1, … , 𝑞𝑛) = (𝑝1 ∗ 𝑞1, … , 𝑝𝑛 ∗ 𝑞𝑛) for all 𝑝𝑖 , 𝑞𝑖 ∈ 𝑃𝑖 , 𝑖 ∈ 𝐼𝑛. 

Obviously, ⊛ is a binary operation on ∏ 𝑷𝒊
𝑛
𝑖=1 .  

 Now, we discuss some related properties of  direct product of finite family in BP-algebra. 

Corollary 3.2. If {𝑷𝒊 = (𝑃𝑖 ; ∗, 0𝑖) ∶ 𝑖 ∈ 𝐼𝑛} is a family BP-algebra, then ∏ 𝑷𝒊
𝑛
𝑖=1   is a BP-algebra. 

Proof. Let {𝑷𝒊 = (𝑃𝑖 ; ∗, 0𝑖) ∶ 𝑖 ∈ 𝐼𝑛} is a family BP-algebra. The direct product of 𝑷𝟏, … , 𝑷𝒏 to be a structure ∏ 𝑷𝒊
𝑛
𝑖=1 =

( ∏ 𝑃𝑖
𝑛
𝑖=1 ; ⊛, (01, … , 0𝑛)) for each (𝑝

1
, … , 𝑝

𝑛
) ∈ ∏ 𝑃𝑖

𝑛
𝑖=1   we have 

 

(𝑝
1

, … , 𝑝
𝑛
) ⊛ (𝑝

1
, … , 𝑝

𝑛
) = (𝑝

1
∗ 𝑝

1
, … , 𝑝

𝑛
∗ 𝑝

𝑛
) = (01, … , 0𝑛), 

 

then the axiom B1 is satiesfied. For each (𝑝
1

, … , 𝑝
𝑛
), (𝑞

1
, … , 𝑞

𝑛
) ∈ ∏ 𝑃𝑖

𝑛
𝑖=1   obtained 

(𝑝1, … , 𝑝𝑛) ⊛ ((𝑝1, … , 𝑝𝑛) ⊛ (𝑞1, … , 𝑞𝑛)) = (𝑝1, … , 𝑝𝑛) ⊛ (𝑝1 ∗ 𝑞1, … , 𝑝𝑛 ∗ 𝑞𝑛) 

                      = (𝑝1 ∗ (𝑝1 ∗ 𝑞1), … , 𝑝𝑛 ∗ (𝑝𝑛 ∗ 𝑞𝑛)) 
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(𝑝1, … , 𝑝𝑛) ⊛ ((𝑝1, … , 𝑝𝑛) ⊛ (𝑞1, … , 𝑞𝑛)) = (𝑞1, … , 𝑞𝑛), 
then the axiom B1 is fulfilled. For each (𝑝1, … , 𝑝𝑛), (𝑞1, … , 𝑞𝑛), (𝑟1, … , 𝑟𝑛) ∈ ∏ 𝑃𝑖

𝑛
𝑖=1  we get 

 

((𝑝1, … , 𝑝𝑛) ⊛ (𝑟1, … , 𝑟𝑛)) ⊛ ((𝑞1, … , 𝑞𝑛) ⊛ (𝑟1, … , 𝑟𝑛)) = (𝑝1 ∗ 𝑟1, … , 𝑝𝑛 ∗ 𝑟𝑛) ⊛ (𝑞1 ∗ 𝑟1, … , 𝑞𝑛 ∗ 𝑟𝑛) 

 = ((𝑝1 ∗ 𝑟1) ∗ (𝑞1 ∗ 𝑟1), … , (𝑝𝑛 ∗ 𝑟𝑛) ∗ (𝑞𝑛 ∗ 𝑟𝑛)) 
 = (𝑝1 ∗ 𝑞1, … , 𝑝𝑛 ∗ 𝑞𝑛) 

((𝑝1 , … , 𝑝𝑛) ⊛ (𝑟1, … , 𝑟𝑛)) ⊛ ((𝑞1, … , 𝑞𝑛) ⊛ (𝑟1, … , 𝑟𝑛)) = (𝑝1, … , 𝑝𝑛) ⊛  (𝑞1, … , 𝑞𝑛), 
 

then the axiom B1 is fulfilled. Since ∏ 𝑷𝒊
𝑛
𝑖=1  satisfies all BP-algebra axioms, such that  ∏ 𝑷𝒊

𝑛
𝑖=1  is a BP-algebra.  

Next, we get the properties of the direct product in the 0-commutative BP-algebra given in Theorem 3.3 and 

Corollary 3.4. 

Theorem 3.3.  Let 𝑷 = (𝑃; ∗, 0𝑃) and 𝑸 = (𝑄; ∗, 0𝑄) are two BP-algebras. Then each 𝑷 and 𝑸 is 0-commutative  if and 

only if 𝑷 × 𝑸 = (𝑃 × 𝑄; ⊛, (0𝑃, 0𝑄)) is 0-commutative . 

Proof. By Theorem 3.1 we have P × Q is a BP-algebra. Let (𝑝
1

, 𝑞
1

),  (𝑝
2

, 𝑞
2
)  ∈ 𝑃 × 𝑄, then 𝑝

1
, 𝑝

2
∈ 𝑃, 𝑞

1
, 𝑞

2
∈ 𝑄. 

Since 𝑷 and 𝑸 be 0-commutative BP-algebra, then 𝑝
1

∗ (0𝑃 ∗ 𝑝
2
) = 𝑝

2
∗ (0𝑃 ∗ 𝑝

1
) and 𝑞

1
∗ (0𝑄 ∗ 𝑞

2
) = 𝑞

2
∗

(0𝑄 ∗ 𝑞
1
), thus 

(𝑝
1

, 𝑞
1

) ⊛ ((0
𝑝

, 0𝑄)  ⊛ (𝑝
2

, 𝑞
2
) = (𝑝

1
, 𝑞

1
) ⊛ (0𝑃 ∗ 𝑝

2
, 0𝑄 ∗ 𝑞

2
) 

                                                               = (𝑝1 ∗ (0𝑃 ∗ 𝑝2), 𝑞1 ∗ (0𝑄 ∗ 𝑞2)) 

                                                               = (𝑝2 ∗ (0𝑃 ∗ 𝑝1), 𝑞2 ∗ (0𝑄 ∗ 𝑞1)) 

                                                           = (𝑝2, 𝑞2) ⊛ (0𝑃 ∗ 𝑝1, 0𝑄 ∗ 𝑞1) 

     (𝑝1, 𝑞1) ⊛ ((0𝑝, 0𝑄)  ⊛ (𝑝2, 𝑞2)  = (𝑝2, 𝑞2) ⊛ ((0𝑝, 0𝑄)  ⊛ (𝑝1, 𝑞1). 

Therefore, P × Q is 0-commutative. Conversely, let 𝑷 × 𝑸 = (𝑃 × 𝑄; ⊛, (0𝑃 , 0𝑄)) be 0-commutative. If  𝑝
1

, 𝑝
2

∈ 𝑃, 

𝑞
1
, 𝑞

2
∈ 𝑄, then (𝑝

1
, 𝑞

1
),  (𝑝

2
, 𝑞

2
)  ∈ 𝑃 × 𝑄 and 

(𝑝
1

, 𝑞
1
) ⊛ ((0

𝑝
, 0𝑄)  ⊛ (𝑝

2
, 𝑞

2
) = (𝑝

2
, 𝑞

2
) ⊛ ((0

𝑝
, 0𝑄)  ⊛ (𝑝

1
, 𝑞

1
). 

Thus, 

(𝑝
1

∗ (0𝑃 ∗ 𝑝
2
), 𝑞

1
∗ (0𝑄 ∗ 𝑞

2
)) = (𝑝

1
, 𝑞

1
) ⊛ (0𝑃 ∗ 𝑝

2
, 0𝑄 ∗ 𝑞

2
) 

                                                                = (𝑝1, 𝑞1) ⊛ ((0𝑝, 0𝑄)  ⊛ (𝑝2, 𝑞2) 

                                                                = (𝑝2, 𝑞2) ⊛ ((0𝑝, 0𝑄)  ⊛ (𝑝1 , 𝑞1) 

                                                          = (𝑝2, 𝑞2) ⊛ (0𝑃 ∗ 𝑝1, 0𝑄 ∗ 𝑞1) 

     (𝑝1 ∗ (0𝑃 ∗ 𝑝2), 𝑞1 ∗ (0𝑄 ∗ 𝑞2)) = (𝑝2 ∗ (0𝑃 ∗ 𝑝1), 𝑞2 ∗ (0𝑄 ∗ 𝑞1)). 

 

Then 𝑝
1

∗ (0𝑃 ∗ 𝑝
2
) = 𝑝

2
∗ (0𝑃 ∗ 𝑝

1
) and 𝑞

1
∗ (0𝑄 ∗ 𝑞

2
) = 𝑞

2
∗ (0𝑄 ∗ 𝑞

1
). It is show that each 𝑷 and 𝑸 is 0-

commutative. ∎  

Based on Theorem 3.3, the following 3.4 result is obtained. 

Corollary 3.4. Let {𝑷𝒊 = (𝑃𝑖 ; ∗, 0𝑖) ∶ 𝑖 ∈ 𝐼𝑛}  is a family BP-algebra. 𝑷𝒊 is 0-commutative if and only if ∏ 𝑷𝒊
𝑛
𝑖=1 =

( ∏ 𝑃𝑖
𝑛
𝑖=1 ; ⊛, (01, … , 0𝑛)) is 0-commutative. 

Proof.  From Corollary 3.2 we have ∏ 𝑷𝒊
𝑛
𝑖=1  is BP-algebra. Let (𝑝

1
, … , 𝑝

𝑛
), (𝑞

1
, … , 𝑞

𝑛
)  ∈ ∏ 𝑃𝑖

𝑛
𝑖=1 , then 𝑝

𝑖
, 𝑞

𝑖
∈ 𝑃𝑖.  

Since 𝑷𝒊 is 0-commutative BP-algebra, then 𝑝
𝑖

∗ (0𝑖 ∗ 𝑞
𝑖
) = 𝑞

𝑖
∗ (0𝑖 ∗ 𝑝

𝑖
) for each 𝑖 ∈ 𝐼𝑛, such that 

    (𝑝1, … , 𝑝𝑛) ⊛ ((01, … , 0𝑛)  ⊛ (𝑞1, … , 𝑞𝑛))  = (𝑝1 , … , 𝑝𝑛) ⊛ (01 ∗ 𝑞1, … , 0𝑛 ∗ 𝑞𝑛) 

                       = (𝑝1 ∗ (01 ∗ 𝑞1), … , 𝑝𝑛 ∗ (0𝑛 ∗ 𝑞𝑛)) 

                       = (𝑞1 ∗ (01 ∗ 𝑝1), … , 𝑞𝑛 ∗ (0𝑛 ∗ 𝑝𝑛)) 

                        = (𝑞1, … , 𝑞𝑛) ⊛ (01 ∗ 𝑝1, … , 0𝑛 ∗ 𝑝𝑛) 

   (𝑝1, … , 𝑝𝑛) ⊛ ((01, … , 0𝑛)  ⊛ (𝑞1, … , 𝑞𝑛))  = (𝑞1, … , 𝑞𝑛) ⊛ ((01, … , 0𝑛) ⊛ (𝑝1, … , 𝑝𝑛)). 
 

Thus, it is show that ∏ 𝑷𝒊
𝑛
𝑖=1  is 0-commutative. Conversely, let ∏ 𝑷𝒊

𝑛
𝑖=1  is 0-commutative. If 𝑝

𝑖
,  𝑞

𝑖
∈ 𝑃𝑖 for each  𝑖 ∈ 𝐼𝑛, 

then (𝑝
1

, … , 𝑝
𝑛

), (𝑞
1
, … , 𝑞

𝑛
)  ∈ ∏ 𝑃𝑖

𝑛
𝑖=1 , and 

(𝑝1, … , 𝑝𝑛) ⊛ ((01, … , 0𝑛)  ⊛ (𝑞1, … , 𝑞𝑛)) = (𝑞1, … , 𝑞𝑛) ⊛ ((01, … , 0𝑛) ⊛ (𝑝1, … , 𝑝𝑛)). 
Thus, obtained 

      (𝑝1 ∗ (01 ∗ 𝑞1), … , 𝑝𝑛 ∗ (0𝑛 ∗ 𝑞𝑛)) = (𝑝1, … , 𝑝𝑛) ⊛ (01 ∗ 𝑞1, … , 0𝑛 ∗ 𝑞𝑛) 

                                                     = (𝑝1, … , 𝑝𝑛) ⊛ ((01, … , 0𝑛)  ⊛ (𝑞1, … , 𝑞𝑛))                                    
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                 = (𝑞1, … , 𝑞𝑛) ⊛ ((01, … , 0𝑛) ⊛ (𝑝1, … , 𝑝𝑛)) 

     = (𝑞1, … , 𝑞𝑛) ⊛ (01 ∗ 𝑝1, … , 0𝑛 ∗ 𝑝𝑛) 

       (𝑝1 ∗ (01 ∗ 𝑞1), … , 𝑝𝑛 ∗ (0𝑛 ∗ 𝑞𝑛)) = (𝑞1 ∗ (01 ∗ 𝑝1), … , 𝑞𝑛 ∗ (0𝑛 ∗ 𝑝𝑛)). 
 

Then, it can be concluded that 𝑝
𝑖

∗ (0
𝑖

∗ 𝑞
𝑖
) = 𝑞

𝑖
∗ (0

𝑖
∗ 𝑝

𝑖
) for each 𝑖 ∈ 𝐼𝑛 So, it is proved that 𝑷𝒊 is 0-commutative. 

The direct product concept in BP-algebra can also be developed on BP-homomorphism and the following 

properties are obtained. 

Theorem 3.5.  Let 𝜓
1

: 𝑃1 → 𝑄
1
 and 𝜓

2
: 𝑃2 → 𝑄

2
 are two BP-homomorphisms. If 𝜓 is the map  𝜓: 𝑃1 × 𝑃2 → 𝑄1 × 𝑄2 

given by (𝑝1, 𝑝2) ⟼ (𝜓1(𝑝1), 𝜓2(𝑝2)) then 

(i) 𝜓 is a BP-homomorphism, 

(ii) 𝑘𝑒𝑟 𝜓 = 𝑘𝑒𝑟 𝜓1 × 𝑘𝑒𝑟 𝜓2, 

(iii) 𝜓(𝑃1 × 𝑃2) = 𝜓1(𝑃1) × 𝜓2(𝑃2). 

Proof.  

(i) Let 𝜓1: 𝑃1 → 𝑄1 and 𝜓
2

: 𝑃2 → 𝑄
2
 are two BP-homomorphisms and 𝜓: 𝑃1 × 𝑃2 → 𝑄1 × 𝑄2 given by (𝑝1, 𝑝2) ⟼

(𝜓1(𝑝1), 𝜓2(𝑝2)).  If (𝑝1, 𝑝2), (𝑟1, 𝑟2) ∈ 𝑃1 × 𝑃2, then 

𝜓((𝑝1 , 𝑝2) ⊛ (𝑟1, 𝑟2)) = 𝜓(𝑝1 ∗ 𝑟1, 𝑝2 ∗ 𝑟2) 

= (𝜓1(𝑝1 ∗ 𝑟1), 𝜓2(𝑝2 ∗ 𝑟2)) 

= (𝜓1(𝑝1) ∗ 𝜓1(𝑟1), 𝜓2(𝑝2) ∗ 𝜓2(𝑟2)) 

= (𝜓1(𝑝1), 𝜓2(𝑝2)) ⊛ (𝜓1(𝑟1), 𝜓2(𝑟2)) 

𝜓((𝑝1 , 𝑝2) ⊛ (𝑟1, 𝑟2)) = 𝜓(𝑝1, 𝑝2) ⊛ 𝜓(𝑟1, 𝑟2). 
  

Thus, it is show that 𝜓 is a BP-homomorphism. The converse this theorem to be true in general.  

 

(ii) Let (𝑝
1

, 𝑝
2
) ∈ 𝑘𝑒𝑟 𝜓,  then 

𝜓(𝑝1, 𝑝2)                = (01, 02) 

(𝜓1(𝑝1), 𝜓2(𝑝2)) = (01, 02). 
 

This statement shows that 𝜓1(𝑝1) = 01 and 𝜓2(𝑝2) = 02, then 𝑝
1

∈ 𝑘𝑒𝑟 𝜓
1
 and 𝑝

2
∈ 𝑘𝑒𝑟 𝜓

2
, such that (𝑝1, 𝑝2) ∈

𝑘𝑒𝑟 𝜓1 × 𝑘𝑒𝑟 𝜓2.  Therefore, it is proved that 𝑘𝑒𝑟 𝜓 = 𝑘𝑒𝑟 𝜓1 × 𝑘𝑒𝑟 𝜓2.  
 

(iii) Let (𝑟1, 𝑟2) ∈ 𝜓(𝑃1 × 𝑃2), then there exist  (𝑝1, 𝑝2) ∈ 𝑃1 × 𝑃2, such that 

(𝑟1, 𝑟2) = 𝜓(𝑝1, 𝑝2) = (𝜓1(𝑝1), 𝜓2(𝑝2)). 

There is 𝑝
1

∈ 𝑃1 so that 𝑟1 = 𝜓1(𝑝1) ∈ 𝜓(𝑃1 ) and there is 𝑝
2

∈ 𝑃2 , such that 𝑟2 = 𝜓2(𝑝2) ∈ 𝜓(𝑃2 ), then   (𝑟1, 𝑟2) ∈

𝜓
1
(𝑃1) × 𝜓

2
(𝑃2). Therefore, it is proved that 𝜓(𝑃1 × 𝑃2) = 𝜓1(𝑃1) × 𝜓2(𝑃2).  

 

 Based on Theorem 3.5 the following result is obtained. 

Corollary 3.6. Let  {𝜓𝑖: 𝑃𝑖 → 𝑄𝑖 ∶ 𝑖 ∈ 𝐼𝑛} is a family BP-homomorphism. If 𝜓 is a map ∏ 𝑃𝑖 →𝑛
𝑖=1 ∏ 𝑄

𝑖
𝑛
𝑖=1  given by 

(𝑝1, … , 𝑝𝑛) ⟼ (𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)), then 
(i) 𝜓 is a BP-homomorphism, 

(ii) 𝑘𝑒𝑟 𝜓 = ∏ 𝑘𝑒𝑟 𝜓𝑖
𝑛
𝑖=1 , 

(iii) 𝜓(∏ 𝑃𝑖
𝑛
𝑖=1 ) = ∏ 𝜓𝑖(𝑃𝑖)𝑛

𝑖=1 . 

 

Proof.  

(i) Let 𝜓
𝑖
: 𝑃𝑖 → 𝑄

𝑖
∶ 𝑖 ∈ 𝐼𝑛} is a family BP-homomorfism and ∏ 𝑃𝑖 →𝑛

𝑖=1 ∏ 𝑄
𝑖

𝑛
𝑖=1  given by (𝑝1, … , 𝑝𝑛) ⟼

(𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)).  If (𝑝
1
, … , 𝑝

𝑛
), (𝑟

1
, … , 𝑟𝑛)  ∈ ∏ 𝑃𝑖

𝑛
𝑖=1 , then 

𝜓((𝑝1, … , 𝑝𝑛) ⊛ (𝑟1, … , 𝑟𝑛))  = 𝜓(𝑝1 ∗ 𝑟1, … , 𝑝𝑛 ∗ 𝑟𝑛) 

= (𝜓1(𝑝1 ∗ 𝑟1), … , 𝜓𝑛(𝑝𝑛 ∗ 𝑟𝑛)) 

= (𝜓1(𝑝1) ∗ 𝜓1(𝑟1), … , 𝜓𝑛(𝑝𝑛) ∗ 𝜓𝑛(𝑟𝑛)) 

= (𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)) ⊛ (𝜓1(𝑟1), … , 𝜓𝑛(𝑟𝑛)) 

𝜓((𝑝1, … , 𝑝𝑛) ⊛ (𝑟1, … , 𝑟𝑛))  = 𝜓(𝑝1, … , 𝑝𝑛) ⊛ 𝜓(𝑟1, … , 𝑟𝑛). 
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Hence, 𝜓 is a BP-homomorphism. ∎ 

The converse of Corollary 3.6 need to be true in general.  

(ii) Let (𝑝
1
, … , 𝑝

𝑛
) ∈ 𝑘𝑒𝑟 𝜓,  then  

𝜓(𝑝1, … , 𝑝𝑛)                = (01, … , 0𝑛) 

(𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)) = (01, … , 0𝑛). 
 

This shows that 𝜓𝑖(𝑝𝑖) = 0𝑖  each 𝑖 ∈ 𝐼𝑛, then 𝑝
𝑖

∈ 𝑘𝑒𝑟 𝜓
𝑖
 each 𝑖 ∈ 𝐼𝑛, then (𝑝

1
, … , 𝑝

𝑛
) ∈ 𝑘𝑒𝑟 ∏ 𝑘𝑒𝑟 𝜓

𝑖
𝑛
𝑖=1 . 

Therefore, it is proved that  𝑘𝑒𝑟 𝜓 = ∏ 𝑘𝑒𝑟 𝜓𝑖
𝑛
𝑖=1 . ∎  

 

(iii) Let (𝑟1, … , 𝑟𝑛) ∈ 𝜓(∏ 𝑃𝑖
𝑛
𝑖=1 ),  then there is (𝑝1 , … , 𝑝𝑛) ∈ ∏ 𝑃𝑖

𝑛
𝑖=1  so that  

(𝑟1, … , 𝑟𝑛) = 𝜓(𝑝1, … , 𝑝𝑛) = (𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)). 
 

There is 𝑝
𝑖

∈ 𝑃𝑖 so that 𝑟𝑖 = 𝜓(𝑝𝑖) ∈ 𝜓(𝑃𝑖  ) each 𝑖 ∈ 𝐼𝑛, then (𝑟1, … , 𝑟𝑛) ∈ ∏ 𝜓𝑖(𝑃𝑖)
𝑛
𝑖=1 . Therefore, it is proved that   

𝜓(∏ 𝑃𝑖
𝑛
𝑖=1 ) = ∏ 𝜓𝑖(𝑃𝑖)

𝑛
𝑖=1 . ∎ 

 

Theorem 3.7.  Let 𝜓
1

: 𝑃1 → 𝑄
1
, 𝜓

2
: 𝑃2 → 𝑄

2
, and 𝜓: 𝑃1 × 𝑃2 → 𝑄1 × 𝑄2 by (𝑝1 , 𝑝2) ⟼ (𝜓1(𝑝1), 𝜓2(𝑝2)), then  

(i) 𝜓 is a BP-monomorphisms if and only if  𝜓
1
 and 𝜓

2
 are BP-monomorphisms, 

(ii) 𝜓 is a BP-epimorphism if and only if  𝜓
1
 and 𝜓

2
 are BP-epimorphisms. 

Proof.  

(i) Let 𝜓 is a BP-monomorphism. If 𝜓
1
(𝑝

1
) = 𝜓

1
(𝑟1) for each 𝑝

1
, 𝑟1 ∈ 𝑃1 and 𝜓2(𝑝2) = 𝜓2(𝑟2) for each 𝑝

2
, 𝑟2 ∈

𝑃2, then 

𝜓(𝑝1, 𝑝2)  = (𝜓1(𝑝1), 𝜓2(𝑝2)) 

= (𝜓1(𝑟1), 𝜓2(𝑟2)) 

𝜓(𝑝1, 𝑝2)  = 𝜓(𝑟1, 𝑟2), 
 

Since 𝜓 is a BP-monomorphism, then 𝜓 is one-one function, such that (𝑝
1

, 𝑝
2
) = (𝑟1, 𝑟2) implies 𝑝

1
= 𝑟1 and 

𝑝
2

= 𝑟2. Thus, it is proved that 𝜓
1
 and 𝜓

2
 are one-one functions, such that 𝜓

1
 and 𝜓

2
 are BP-monomorphisms. 

Conversely, let 𝜓
1
 and 𝜓

2
 is BP-monomorphisms. If 𝜓(𝑝1 , 𝑝2) = 𝜓(𝑟1, 𝑟2) for each (𝑝

1
, 𝑝

2
), (𝑟1, 𝑟2) ∈ 𝑃1 ×

𝑃2 , then 

(𝜓1(𝑝1), 𝜓2(𝑝2)) = 𝜓(𝑝1, 𝑝2) 

= 𝜓(𝑟1, 𝑟2) 

           (𝜓1(𝑝1), 𝜓2(𝑝2))    = (𝜓1(𝑟1), 𝜓2(𝑟2)), 
 

Since 𝜓
1
 and 𝜓

2
 is BP-monomorphisms, then 𝜓

1
 and 𝜓

2
 are one-one functions, such that 𝑝

1
= 𝑟1 and 𝑝

2
= 𝑟2 

yields (𝑝
1

, 𝑝
2
) = (𝑟1, 𝑟2). Thus, it is proved that 𝜓 is a one-one function, such that 𝜓 is a BP-monomorphism.  

 

(ii) Let 𝜓 is a BP-epimorphism. Let  𝑞
1

∈ 𝑄
1
 and 𝑞

2
∈ 𝑄

2
, then (𝑞

1
, 𝑞

2
) ∈ 𝑄

1
× 𝑄

2
. Since 𝜓 is a function onto, then 

there is (𝑝
1

, 𝑝
2
) ∈ 𝑃1 × 𝑃2 that (𝑞1, 𝑞2) = 𝜓(𝑝1, 𝑝2) = (𝜓1(𝑝1), 𝜓2(𝑝2)), which results 𝑞

1
= 𝜓

1
(𝑝

1
) and 

𝑞
2

= 𝜓
2
(𝑝

2
). Thus, it is proved that 𝜓

1
 and 𝜓

2
 are functions onto such that 𝜓

1
 and 𝜓

2
 are BP-epimorphisms. 

Conversely, Let 𝜓
1
 and 𝜓

2
 are BP-epimorphisms. Let (𝑞1, 𝑞2) ∈ 𝑄1 × 𝑄2 then 𝑞

1
∈ 𝑄

1
 and 𝑞

2
∈ 𝑄

2
. Since 𝜓

1
 

and 𝜓
2
 is a onto function, then there are  𝑝

1
∈ 𝑃1 and 𝑝

2
∈ 𝑃2 so that 𝑞1 = 𝜓1(𝑝1) and 𝑞2 = 𝜓2(𝑝2) which 

results (𝑞1, 𝑞2) = (𝜓1(𝑝1), 𝜓2(𝑝2)) = 𝜓(𝑝1 , 𝑝2). Therefore, it shows that 𝜓 is a onto function, its mean 𝜓 is also 

a BP-epimorphism. ∎ 

 Based on Theorem 3.7, the following corollary 3.8 result is obtained. 

Corollary 3.8. Let 𝜓
𝑖
: 𝑃𝑖 → 𝑄

𝑖
∶ 𝑖 ∈ 𝐼𝑛 and 𝜓: ∏ 𝑃𝑖 →𝑛

𝑖=1 ∏ 𝑄𝑖
𝑛
𝑖=1  by (𝑝1, … , 𝑝𝑛) ⟼ (𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)),  then 

(i) 𝜓 is a BP-monomorphism if and only if  𝜓
𝑖
 is a BP-monomorphism, 
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(ii) 𝜓 is a  BP-epimorphism if and only if  𝜓
𝑖
 is a BP-epimorphism. 

Proof.  

(i) Let 𝜓 is a BP-monomorphism. If  𝜓
𝑖
(𝑝

𝑖
) = 𝜓

𝑖
(𝑟𝑖) for each 𝑝

𝑖
, 𝑟𝑖 ∈ 𝑃𝑖, 𝑖 ∈ 𝐼𝑛,  then 

𝜓(𝑝1, … , 𝑝𝑛)  = (𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)) 

= (𝜓1(𝑟1), … , 𝜓𝑛(𝑟𝑛)) 

𝜓(𝑝1, … , 𝑝𝑛)  = 𝜓(𝑟1, … , 𝑟𝑛). 

Since 𝜓 is BP-monomorphism, then 𝜓
1
 and 𝜓

2
 is a one-one function, such that (𝑝1, … , 𝑝𝑛) = (𝑟1, … , 𝑟𝑛) yields 

𝑝
𝑖

= 𝑟𝑖 for each  𝑖 ∈ 𝐼𝑛 .  Thus it is proved that ψ is a one-one function, such that 𝜓
𝑖
 is a BP-monomorphism. 

Coversely, Let 𝜓
𝑖
 is a BP-monomorphism. If 𝜓(𝑝1, … , 𝑝𝑛) = 𝜓(𝑟1, … , 𝑟𝑛) for each (𝑝1, … , 𝑝𝑛), (𝑟1, … , 𝑟𝑛) ∈

∏ 𝑃𝑖
𝑛
𝑖=1 , then 

 

(𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛))  = 𝜓(𝑝1, … , 𝑝𝑛) 

= 𝜓(𝑟1, … , 𝑟𝑛) 

(𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)) = (𝜓1(𝑟1), … , 𝜓𝑛(𝑟𝑛)). 
 

Since 𝜓
𝑖
 is a BP-monomorphism, then 𝜓

𝑖
 is one-one function, such that 𝑝

𝑖
= 𝑟𝑖 for each  𝑖 ∈ 𝐼𝑛 which results 

(𝑝1, … , 𝑝𝑛) = (𝑟1, … , 𝑟𝑛). Thus, it is proved that 𝜓 is a one-one function. Hence, 𝜓
𝑖
 is a BP-monomorphism. ∎ 

 

(ii)  Let 𝜓 is a BP-epimorphism and let  𝑞
𝑖

∈ 𝑄
𝑖
 for each ∈ 𝐼𝑛, then (𝑞1, … , 𝑞𝑛) ∈ ∏ 𝑄𝑖

𝑛
𝑖=1 . Since 𝜓 is a onto function, 

then (𝑝1, … , 𝑝𝑛) ∈ ∏ 𝑃𝑖
𝑛
𝑖=1  each 𝑝

𝑖
∈ 𝑃𝑖 each  𝑖 ∈ 𝐼𝑛 , so (𝑞1, … , 𝑞𝑛) = 𝜓(𝑝1, … , 𝑝𝑛) = (𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)), 

resulting in 𝑞
𝑖

= 𝜓
𝑖
 (𝑝

𝑖
) each  𝑖 ∈ 𝐼𝑛 . Thus, it is proven that 𝜓

𝑖
 is a onto function, such that 𝜓  is a BP-

epimorphism. Conversely, let 𝜓
𝑖
 for each 𝑖 ∈ 𝐼𝑛 be a BP-epimorphism and (𝑞1, … , 𝑞𝑛) ∈ ∏ 𝑄𝑖

𝑛
𝑖=1 , then 𝑞

𝑖
∈ 𝑄

𝑖
 for 

each 𝑖 ∈ 𝐼𝑛 . Since 𝜓
𝑖
 is a function onto, then there is  𝑝

𝑖
∈ 𝑃𝑖 for each 𝑖 ∈ 𝐼𝑛 , then 𝑞

𝑖
= 𝜓

𝑖
 (𝑝

𝑖
) for each   𝑖 ∈ 𝐼𝑛 

implies (𝑞1, … , 𝑞𝑛) = (𝜓1(𝑝1), … , 𝜓𝑛(𝑝𝑛)) = 𝜓(𝑝1, … , 𝑝𝑛). Therefore, it is proved that ψ is a onto function. 

Hence, ψ is also a BP-epimorphism. ∎ 

 

IV. CONCLUSION 

In this paper, the notion of direct product of  BP-algebra is equivalent to B-algebra. We obtain some of their properties 

being similar. Then, the notion of the direct product of BP-algebra applied to finite family BP-algebra, finite family 0-

commutative BP-algebra, and finite family BP-homomorphism. 
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