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Abstract- An in-depth view of the reducibility properties of
second order linear O.D.E’s also offers a unique setting to draw
up links between representations of the admitted symmetry group
SL(3,R). These links are exposed in this article, with further
elements of symmetry methods for differential equations and ab-
stract group algebra also elucidated.
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1 Introduction

The foremost matter to be rued from the onset is the need for knowledge of
at least one explicit solution to the generic Ordinary Differential Equation
(O.D.E) in view here, which is

y′′(x) + a1(x)y′(x) + a0(x)y = 0 (1),

to explicitly determine almost all admitted symmetries. This is again the
only deterrent encountered in harnessing benefits of Sophus Lie’s reducibility
theorem of (1) to the form [

..
z(t) = 0] as referenced in [1]. To be able to

realize the proof of Sophus Lie’s theorem, we engage the tool of the Kummer-
Liouville transform, which is the most general point transform that preserves
order and linearity of second order linear O.D.E’s [4]. The Kummer-Liouville
transform is given by

y = v(x)z , dt = u(x)dx (KL); u, v ∈ C2(I), uv 6= 0 ∀x ∈ I
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which rearranges (1) to be of the form

..
z(t) + b1(t)

.
z(t) + b0(t)z = 0 (2); b1(t) ∈ C1(J) , b0(t) ∈ C(J)

where I and J are compact sub-intervals of the real number line with non-
empty interiors. The functions u and v are respectively recognized as the
kernel and multiplier of the Kummer-Liouville transform.

Consider that equation (1) is well-posed and let λ be a non-trivial solution
to this generic equation. It has been shown in [1] that a Kummer-Liouville
(KL) kernel of [u = |λ−2exp(−

∫
a1dx)|] would lead to reduction to the nor-

mal form [
..
z(t) = 0] after a double point transform of (1), regardless of choice

of the KL multiplier. As an improvement on this development, the addition-
al choice of multiplier [v = λ] in the first KL transform leads to the desired
result [

..
z(t) = 0] after a single point transform. This transform to the most

simplified second order autonomous O.D.E form shall constitute the crux
of the subsequent ‘Results’ section of this article. As a noteworthy remark,
any kernel to be useful for reduction to an autonomous form of (1) is the
reciprocal of some solution to the third order linear O.D.E:

A′′′(x) + 4p.A′(x) + 2p′(x)A = 0 ,

whereby [p(x) = a0 − 1
2
a′1(x) − a21] is identified as the semi-invariant of (1).

In other words, p(x) is the expression obtained as the coefficient of y∗ in the
conversion of (1) to its normal form [y′′∗(x)+p(x)y∗ = 0] via the KL transform
functional specifications:

u(x) ≡ 1 ; v(x) = exp

(
−1

2

∫
a1(x)dx

)
; z = y∗ .

The above salient remark is clearly suggested in the explicit initial compu-
tation of infinitesimal symmetries admitted by (1) in the article [1].

2 Results

As a brief background review, it is important to observe that (1) admits
a Lie symmetry group of dimension eight. The criteria for admittance of a
symmetry group by any given O.D.E are given succinctly in the prolongation
theorem stated in Olver ([3], p.100). Let y1 and y2 be linearly independent
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solutions to equation (1). As given below, observe the eight linearly inde-
pendent one-parameter infinitesimal symmetries admitted by (1) from ([2],
p.53), also derived explicitly in the same order in [1].

v1 = y ∂
∂y

v2 = y1
∂
∂y

v3 = y2
∂
∂y

v4 = exp[
∫
a1dx](y1y

∂
∂x

+ y′1y
2 ∂
∂y

)

v5 = exp[
∫
a1dx](y2y

∂
∂x

+ y′2y
2 ∂
∂y

)

v6 = exp[
∫
a1dx](y21

∂
∂x

+ y1y
′
1y

∂
∂y

)

v7 = exp[
∫
a1dx](2y1y2

∂
∂x

+ (y′1y2 + y1y
′
2)y

∂
∂y

)

v8 = exp[
∫
a1dx](y22

∂
∂x

+ y2y
′
2y

∂
∂y

)

Under constraints b1 = b0 = 0 achieved with the identified single KL
transform to [

..
z(t) = 0] in focus, then we see in [1] that (1) is expressible in

the following form with the aid of the relevant KL kernel (u) and multiplier
(v) as identified previously:

y′′ + y′

a1(x)︷ ︸︸ ︷(
−2v′

v
− u′

u

)
+y

a0(x)︷ ︸︸ ︷(
2(v′)2

v2
− v′′

v
+
v′u′

vu

)
= 0 (3).

Upon computing the infinitesimal symmetries of (3) in this realized sce-
nario, we have the following results.

χ1 =
1

u

∂

∂x
+
v′

uv
y
∂

∂y
χ2 = v

∂

∂y

χ3 = χ1

∫
udx χ4 = χ2

∫
udx

χ5 =
y

v
χ1 χ6 =

y

v
χ2

χ7 =

(∫
udx

)2

χ1 +

(
y

v

∫
udx

)
χ2 χ8 =

(
y

v

∫
udx

)
χ1 +

(y
v

)2
χ2.

We ought to recall quite importantly from Berkovich in [4] that the first
infinitesimal symmetry (χ1) listed in the above set of one-parameter sym-
metries admitted by (3) is the symmetry invariably required for conversion
to an autonomous form. The precise correspondence between the explicitly
above stated representations of Hydon and Berkovich is immediately verified
by way of the functional substitutions:

u = y−21 exp

(
−
∫
a1dx

)
, v = y1 and

∫
udx =

y2
y1
.
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The final functional substitution for
∫
udx given above may be justified

by way of the fundamental theorem of calculus. Observe that:

d

dx

[
y2
y1

]
=
y′2y1 − y′1y2

y21
=
W (x)

y21
=
exp(−

∫
a1dx)

y21
= u ,

whereby W (x) denotes the Wronskian of (1). With these functional sub-
stitutions, we are able to realize easily that: χ1 = v6, χ2 = v2, χ3 =
1
2
(v7 − v1), χ4 = v3, χ5 = v4, χ6 = v1, χ7 = v8, χ8 = v5.

Finally, with functional substitutions t =

∫
udx and z =

y

v
in the case

in focus, we determine the vector field representations:

∂

∂x
= u

∂

∂t
− v′z

v

∂

∂z
and

∂

∂y
=

1

v

∂

∂z
.

Making these substitutions in Berkovich’s symmetry representation (χ1−χ8)
then turns out to yield:

χ1 =
∂

∂t
χ2 =

∂

∂z

χ3 = t
∂

∂t
χ4 = t

∂

∂z

χ5 = z
∂

∂t
χ6 = z

∂

∂z

χ7 = t2
∂

∂t
+ tz

∂

∂z
χ8 = tz

∂

∂t
+ z2

∂

∂z
.

These are the generators of the projective special linear group PSL(3,R)
as identified explicitly in ([5], p.31). We reckon that the projective spe-
cial linear group PSL(3,R) and projective general linear group PGL(3,R)
coincide, due to the existence of a unique real third root of unity. The im-
mediate correspondence between the three aforementioned representations
of the same Lie group as determined respectively by Hydon, Berkovich and
Stephani was made possible by identification of the requisite KL transform
kernel and multiplier to be used for realization of Sophus Lie’s reducibility
theorem in focus here.

4

ssrg 5
Text Box
Uchechukwu Opara et al. / IJMTT, 66(10), 70-75, 2020

ssrg 5
Text Box
73



3 Discussion

The projective special linear group PSL(3,R) is identified as the quotient
group of the special linear group SL(3,R) by its center, so that

PSL(3,R) = SL(3,R)/ZSL(3,R) .

Since the center of SL(3,R) is

ZSL(3,R) = {λI3 : λ3 = 1} ,

then we see that PSL(3,R) is isomorphic to SL(3,R) because the center
ZSL(3,R) is a singleton set comprising the identity matrix alone.

As a noteworthy conclusive remark, we re-emphasize the necessity of the
infinitesimal symmetry χ1 in transformation of (1) to any autonomous form.
In the new KL coordinate system (t, z) here, χ1 is merely the translation
∂
∂t

. To interprete this computational observation in literal terms, a linear
O.D.E is autonomous if and only if it is invariant under the translation of its
independent variable from the origin.
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