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Causal relationship k
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Abstract — Aim: A detailed and sophisticated analysis of causal relationships and chains of causation in medicine, life and other
sciences by logically consistent statistical methods is still not generally accepted.
Methods: In this publication, a hypothetico-deductive scientific method has been used to approach to the solution of view basic problems
of causality.
Results: A method how to determine an exact probability of a single event has been derived. The causal relationship k has been established
mathematically while relying on the axiom +1 = +1.
Conclusion: Experimental and non-experimental data can be analysed for causal relationships.
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I. INTRODUCTION

The history of the denialism of causality in Philosophy, Mathematics, Statistics, Physics et cetera is very long. We
only recall David Hume’s (1711-1776) account of causation and his inappropriate reduction of the cause-effect
relationship to a simple habitual connection in human thinking or Immanuel Kant’s (1724-1804) initiated trial
to consider causality as nothing more but a ‘a priori’given category [70] in human reasoning and other similar
attempts too. It is worth noting in this context that especially Karl Pearson (1857 - 1936) himself has been engaged
in a long lasting and never-ending crusade against the principle of causality too. “Pearson categorically denies the
need for an independent concept of causal relation beyond correlation ... he exterminated causation from statistics
before it had a chance to take root ”[see 78, p. 340] At the beginning of the 20th century notable proponents of
conditionalism like the German anatomist and pathologist David Paul von Hansemann [47] (1858 - 1920) and
the biologist and physiologist Max Richard Constantin Verworn [101] (1863 - 1921) started a new attack [68]
on the principle of causality. In his essay “Kausale und konditionale Weltanschauung”Verworn [101] presented
“an exposition of ‘conditionism’as contrasted with ‘causalism,’[99] while ignoring cause and effect relationships
completely. “Das Ding ist also identisch mit der Gesamtheit seiner Bedingungen.”[101] However, Verworn’s
goal to exterminate causality completely out of science was hindered by the further development of research.
The history of futile attempts to refute the principle of causality culminated in a publication by the German
born physicist Werner Karl Heisenberg (1901 - 1976). Heisenberg put forward a logically inconsistent [6]–[8],
completely unnecessary and confusing uncertainty principle [50] which opened the door to wishful thinking
and logical fallacies in physics and in science as such. Heisenberg’s unjustified reasoning ended in an act of a
manifestly unfounded conclusion: “Weil alle Experimente den Gesetzen der Quantenmechanik und damit der
Gleichung (1) unterworfen sind, so wird durch die Quantenmechanik die Ungültigkeit des Kausalgesetzes
definitiv festgestellt.”[50] while ‘Gleichung (1)’denotes Heisenberg’s uncertainty principle. Einstein’s himself, a
major contributor to quantum theory and in the same respect a major critic of quantum theory, disliked Heisenberg’s
uncertainty principle fundamentally while Einstein’s opponents used Heisenberg’s Uncertainty Principle against
Einstein. After the End of the German Nazi initiated Second World War with unimaginable brutality and high
human losses and a death toll due to an industrially organised mass killing of people by the German Nazis which did
not exist in this way before, Werner Heisenberg visited Einstein in Princeton (New Jersey, USA) in October 1954
[75]. Einstein [23] agreed to meet Heisenberg only for a very short period of time but their encounter lasted longer.
However, there where not only a number of differences between Einstein and Heisenberg, these two physicists did
not really loved each other. “Einstein remarked that the inventor of the uncertainty principle was a ‘big Nazi’... ”[75]
Albert Einstein (1879 - 1955) took again the opportunity to refuse to endorse Heisenberg’s uncertainty principle
as a fundamental law of nature and rightly too. Meanwhile, Heisenberg’s uncertainty principle is refuted [6]–[8]
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for several times but still not exterminated completely out of physics and out of science as such. In contrast to
such extreme anti-causal positions as advocated by Heisenberg and the Copenhagen interpretation of quantum
mechancis, the search for a (mathematical) solution of the issue of causal inferences is as old as human mankind
itself (“i. e. Aristotle’s Doctrine of the Four Causes”) [53] even if there is still little to go on. It is appropriate
to specify especially the position of D’Holbach [58]. D’Holbach (1723-1789) himself linked cause and effect
or causality as such to changes. “Une cause, est un être qui e met un autre en mouvement, ou qui produit
quelque changement en lui. L’effet est le changement qu’un corps produit dans un autre ...”[58] D’Holbach
infers in the following: “De l’action et de la réaction continuelle de tous les êtres que la nature renferme, il
résulte une suite de causes et d’effets ..”[58] With more or less meaningless or none progress on the matter in
hand even in the best possible conditions, it is not surprising that authors are suggesting more and more different
approaches and models for causal inference. Indeed, the hope is justified that logically consistent statistical methods
of causal inference can help scientist to achieve so much with so little. One of the methods of causal inference in
Bio-sciences are based on the known Henle [52] (1809–1885) - Koch [64] (1843–1910) postulates [33] which are
applied especially for the identification of a causative agent of an (infectious) disease. However, the pathogenesis
of most chronic diseases is more or less very complex and potentially involves the interaction of several factors.
In practice, from the ‘pure culture’ requirement of the Henle-Koch postulates insurmountable difficulties may
emerge. In light of subsequent developments (PCR methodology, immune antibodies et cetera) it is appropriate to
review the full validity of the Henle-Koch postulates in our days. In 1965, Sir Austin Bradford Hill [57] published
nine criteria (the ‘Bradford Hill Criteria ’) in order to determine whether observed epidemiologic associations are
causal. Somewhat worrying, is at least the fact that, Hill’s “... fourth characteristic is the temporal relationship of
the association ” and so-to-speak just a reformulation of the ‘post hoc ergo propter hoc’[3], [108] logical fallacy
through the back-door and much more then this. It is questionable whether association as such can be treated as
being identical with causation. Unfortunately, due to several reasons, it seems therefore rather problematic to rely
on Bradford Hill Criteria carelessly. Meanwhile, several other and competing mathematical or statistical approaches
for causal inference have been discussed [3]–[5], [9]–[11], [27], [35], [39], [54]–[56], [67], [78], [91], [95], [111]
or even established [3]–[5], [9]–[11]. Nevertheless, the question is still not answered, is it possible at all to establish
a cause effect relationship between two factors while applying only certain statistical [93] methods?

II. MATERIAL AND METHODS

A. Definitions
Reaching a generally valid consensus on the definition of the numbers +0 and +1 appears to be difficult. These

numbers are of fundamental importance in classical logic, probability theory and so forth. The definition of the basic
numbers +1 and +0 in terms of Euler’s identity and physical ‘constants ’offer us the possibility to test classical logic
or mathematical theorems et cetera by reproduceable physical experiments too. In particular, it is very remarkable
that Leibniz [71] himself published in 1703 the first self-consistent binary number system [20], [21] representing
all numeric values while using typically +0 (zero) and +1 (one).

2.1.1 The number +0

Definition 1 (The number +0). Let c denote the speed of light in vacuum [36], [97], [102], [103], let ε0 denote
the electric constant and let µ0 the magnetic constant. Let i denote the imaginary number [28]. The number +0 is
defined as the expression

+0≡+1−1≡+1+ i2 ≡+1+ eiπ ≡+
(
c2× ε0×µ0

)
+ eiπ (1)

while ‘= ’or ≡ denotes the equals sign [86] or equality sign [87] used to indicate equality and ‘- ’[77], [106]
denotes minus signs used to represent the operations of subtraction and the notions of negative as well and ‘+

’denotes the plus [86] signs used to represent the operations of addition and the notions of positive as well.

Remark 1. Roger Cotes (1682 – 1716) [34] or Leonhard Euler’s (1707 – 1783) identity [40] is regarded as one
of the most beautiful equations [107]. In this context, it is provisionally presumed, that Euler’s identity [40] is
logically sound and correct.

2.1.2 The number +1

Definition 2 (The number +1). Again, let c denote the speed of light in vacuum [36], [97], [102], [103], let ε0
denote the electric constant and let µ0 the magnetic constant. Let i denote the imaginary number [28]. The number
+1 is defined as the expression

+1≡+1+0≡+1−0≡−i2 ≡−eiπ ≡+
(
c2× ε0×µ0

)
(2)
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while again ‘= ’or ≡ may denote the equals sign [86] or equality sign [87] used to indicate equality and ‘- ’[77],
[106] denotes minus signs used to represent the operations of subtraction and the notions of negative as well and

‘+ ’denotes the plus [86] signs used to represent the operations of addition and the notions of positive as well.

2.1.3 The n-th moment expectation value of U

Definition 3 (The n-th moment expectation value of U). Let RUt denote an event at a certain (period of) time
or Bernoulli trial t [100]. Let p(RUt) represent the probability of an event at a given Bernoulli trial t. Let E(RUt

n)
denote the n-th moment expectation value [61], [105] of RUt . Let E(RUt

1) denote the first moment expectation
value of RUt . Let E(RUt

2) denote the second moment expectation value of RUt . In general, the n-th moment
expectation value of RUt is defined as

E (RU t
n)≡

RU t
1×RU t

1×RU t
1× . . .︸ ︷︷ ︸

(n−times)

× p(RU t)

≡ (RU t
n)× p(RU t)

(3)

Furthermore, it is

E (RU t
n)m ≡

RU t
1×RU t

1×RU t
1× . . .︸ ︷︷ ︸

(n−times)

m× p(RU t)
m

≡ (RU t
n)m× p(RU t)

m

(4)

The first moment expectation value of RUt follows as

E
(

RU t
1)≡

 RU t
1︸︷︷︸

(one−times)

× p(RU t)

≡
(

RU t
1)× p(RU t)

≡ (RU t)× p(RU t)

(5)

The second moment expectation value of RUt follows as

E
(

RU t
2)≡

RU t
1×RU t

1︸ ︷︷ ︸
(two−times)

× p(RU t)

≡
(

RU t
2)× p(RU t)

(6)

2.1.4 The n-th moment expectation value of anti U

Definition 4 (The n-th moment expectation value of anti U). Let p(RUt) represent the probability of a single
event RUt at a given Bernoulli trial t. Let (1-p(RUt)) represent the probability that a single event RUt will not occur,
will not exist at a given Bernoulli trial t. Let E(RUt

n) denote the n-th moment expectation value [61], [105] of anti
RUt . Let E(RUt

1) denote the first moment expectation value of anti RUt . Let E(RUt
2) denote the second moment

expectation value of anti RUt . In general, the n-th moment expectation value of anti RUt is defined as

E (RU t
n)≡

RU t
1× RU t

1× RU t
1× . . .︸ ︷︷ ︸

(n−times)

× (1− p(RU t))

≡ (RU t
n)× (1− p(RU t))

(7)
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The first moment expectation value of anti RUt follows as

E
(

RU t
1)≡

 RU t
1︸︷︷︸

(one−times)

× (1− p(RU t))

≡
(

RU t
1)× (1− p(RU t))

≡ (RU t)× (1− p(RU t))

(8)

The second moment expectation value of anti RUt follows as

E
(

RU t
2)≡

RU t
1×RU t

1︸ ︷︷ ︸
(two−times)

× (1− p(RU t))

≡
(

RU t
2)× (1− p(RU t))

(9)

2.1.5 The n-th moment expectation value of U and W

Definition 5 (The n-th moment expectation value of U and W). Let p(RUt, RWt) represent the joint probability
of an occurring of the events RUt and RWt at the same (period of time or) Bernoulli trial t. Let E(RUt

n, RWt
n) denote

the n-th moment expectation value of RUt and RWt . Let E(RUt
1) denote the first moment expectation value of RUt .

In general, the n-th moment expectation value of RUt and RWt is defined as

E (RU t
n,RW t

n)≡

(RU t
1× RW t

1)× (RU t
1× RW t

1)× . . .︸ ︷︷ ︸
(n−times)

× p(RU t ,RW t)

≡ (RU t
n× RW t

n)× p(RU t ,RW t)

(10)

The first moment expectation value of RUt and RWt follows as

E
(

RU t
1,RW t

1)≡
RU t

1×RW t
1︸ ︷︷ ︸

(one−times)

× p(RU t ,RW t)

≡
(

RU t
1×RW t

1)× p(RU t ,RW t)

≡ (RU t ×RW t)× p(RU t ,RW t)

(11)

2.1.6 The probability of a single event

Definition 6 (The probability of a single event). In consideration of the definitions before, again let p(RUt)
represent the probability of a single event RUt at Bernoulli trial t. Let Ψ(RU t) represent the wavefunction, a
probability amplitude [30] of an event or of finding an event inside a set at a given (period of ) time / Bernoulli trial
[100] t. Let Ψ* (RU t) denote the complex conjugate of the wave-function. In general, it is

p(RU t)≡
E(RU t)

RU t

≡ E (RU t)
2

E (RU t2)

≡ p(RU t)
2× (RU t)

2

p(RU t)× (RU t)2

≡Ψ(RU t)×Ψ
*(RU t)

(12)

2.1.7 Wave function

Definition 7 (Wave function). Taking into account especially the definitions before and the relationship that
p(RU t)≡Ψ(RU t)×Ψ*(RU t), some other relationships can be derived too. Recall again that p(RUt) represent the
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probability of a certain single event at the Bernoulli trial t, Ψ(RU t) represent the wave function, a probability
amplitude [30] of an event at a given (period of ) time / Bernoulli trial t and Ψ* (RU t) is the complex conjugate of
the wave-function of RUt. Let f (RU t) denote any kind of a mathematical function which describes the behaviour of

RUt while the same mathematical function satisfies the need that
f (RU t)

f (RU t)
≡+1. In general, it is

Ψ(RU t)≡
1

Ψ*(RU t)
× p(RU t)

≡ p(RU t)

Ψ*(RU t× f (RU t))
× f (RU t)

≡ p(RU t)

Ψ*(RU t)× f (RU t)︸ ︷︷ ︸
Z

× f (RU t)

≡ Z× f (RU t)

≡ 1
Ψ*(RU t)

× E(RU t)

RU t

≡ 1
Ψ*(RU t)× RU t

×E(RU t)

(13)

Under conditions where o ut and o ut are described by a wave-function, the superposition principle, first stated by
Daniel Bernoulli (1700 – 1782) in 1753 ( “Later (1753), Daniel Bernoulli formulated the principle of superposi-
tion ...”[see 72, p. 2]) demands that Ψ(o ut)+Ψ(o ut)≡Ψ(o ut + o ut)≡Ψ(RU t) while the normalisation condition
is necessary to be ensured.

2.1.8 The complex conjugate

Definition 8 (The complex conjugate). The conjugate of a complex number denoted as con jugate(a(RU t)+(i×b(RU t))),
where i2≡ -1 is the imaginary [28], is defined as

con jugate(a(RU t)+(i×b(RU t)))≡ (a(RU t)− (i×b(RU t))) (14)

It is known that any complex number multiplied by its complex conjugate is a real number. It is

(a(RU t)+(i×b(RU t)))× (a(RU t)− (i×b(RU t)))≡
(
a(RU t)

2)− (i2×b(RU t)
2)

≡
(
a(RU t)

2)+ (b(RU t)
2) (15)

2.1.9 The variance

Definition 9 (The variance). Sir Ronald Aylmer Fisher (1890 – 1962), an English statistician, “the single most
important figure in 20th century statistics”[37] coined the term variance as follows: “It is therefore desirable in
analysing the causes of variability to deal with the square of the standard deviation as the measure of variability.
We shall term this quantity the Variance ... ”[see 41, p. 399] Again, let p(RUt) represent the probability of a single
event RUt at a given point in space-time or Bernoulli trial t. Let E(RUt) denote again the expectation value of RUt.
The expectation value of RUt is defined as

E (RU t)≡ p(RU t)× (RU t)≡Ψ(RU t)× RU t×Ψ
*(RU t) (16)

The expectation value of the other of RUt, of the complementary of RUt, of the opposite of RUt, of the anti RUt,
denoted by RUt, is defined as

E (RU t)≡ (1− p(RU t))× (RU t) (17)

In this context, E(RUt
2) is the expectation value of the second moment of RUt . The expectation value of RUt

2 is
defined as

E
(

RU t
2)≡ p(RU t)×

(
RU t

2)≡ p(RU t)× (RU t× RU t) (18)
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Let σ (RUt) denote the standard deviation of RUt. Let σ (RUt)2 denote the variance of RUt. In general, the variance
[see 66, p. 42] is defined as

σ(RU t)
2 ≡ σ (RU t)×σ (RU t)

≡ E (RU t−E (RU t))
2

≡ E
(

RU t
2)− (E (RU t))

2

≡
(

RU t
2× p(RU t)

)
− (p(RU t)× RU t)

2

≡
(

RU t
2)× (p(RU t)− p(RU t)

2)
≡
(

RU t
2)× (p(RU t)× (1− p(RU t)))

≡ RU t× (p(RU t)× RU t× (1− p(RU t)))

≡ E (RU t)× RU t× (1− p(RU t))

≡ E (RU t)×E (RU t)

(19)

From equation 19 follows that

p(RU t)× (1− p(RU t))≡
σ(RU t)

2

RU t2

≡
E
(

RU t
2
)

RU t2
− (E (RU t))

2

RU t2

≡ E (RU t)×E (RU t)

RU t× RU t

≡ p(RU t)− p(RU t)
2

(20)

and equally (Eq. 19) that

RU t ≡
σ(RU t)

2
√

p(RU t)× (1− p(RU t))
(21)

and that

RW t ≡
σ(RW t)

2
√

p(RW t)× (1− p(RW t))
(22)

2.1.10 The Chi square goodness of fit test of variance

Definition 10 (The χ̃2 goodness of fit test of variance).

In order to determine the population variance, denoted as σ(RU t)0
2, it is appropriate to examine the entire

population. However, often it is sufficient too, to obtain the population variance based on a representative data
sample. Thus far, it is possible to determine whether the variance of a variable obtained from a data sample, denoted
as σ(RU t)

2, has the same size as the known population variance of the same variable. The χ̃2 goodness of fit test
of a variance with degree of freedom (d. f.) of d. f. = 1 is defined as

χ̃
2

Calculated
(
σ(RU t)

2 | σ(RU t)0
2)≡ (σ(RU t)

2−σ(RU t)0
2
)

2

σ(RU t)0
2 +(

σ(RU t)0
2−σ(RU t)0

2
)

2

σ(RU t)0
2

≡
(
σ(RU t)

2−σ(RU t)0
2
)

2

σ(RU t)0
2 +0

(23)

and is not identical with the chi-square test for variance which is a non-parametric statistical procedure. In this
context, Yate’s [110] continuity correction has not been used.
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2.1.11 The n-th moment co-variance

Definition 11 (The n-th moment co-variance). Let p(RUt, RWt) represent the joint probability of RUt and RWt
at the same (period of time) Bernoulli trial t. Let E(RUt

n, RWt
n) denote the n-th moment expectation value of

RUt and RWt . Let E(RUt
n) denote the n-th moment expectation value of RUt . Let E(RWt

n) denote the n-th moment
expectation value of RWt . Let σ (RUt, RWt) denote the co-variance between RUt and RWt. In general, the n-th
moment co-variance between RUt and RWt is defined as

σ (RU t
n,RW t

n)≡ (RU t
n× RW t

n)× (p(RU t ,RW t)− (p(RU t)× p(RW t)))

≡ ((RU t
n× RW t

n× p(RU t ,RW t))− ((RU t
n× RW t

n)× p(RU t)× p(RW t)))

≡ E (RU t
n,RW t

n)− (RU t
n× p(RU t))× (RW t

n× p(RW t))

≡ E (RU t
n,RW t

n)− (E (RU t
n)×E (RW t

n))

(24)

From equation 24 follows that

σ (RU t ,RW t)≡ (RU t × RW t)× (p(RU t ,RW t)− (p(RU t)× p(RW t)))

≡ ((RU t × RW t × p(RU t ,RW t))− ((RU t × RW t)× p(RU t)× p(RW t)))

≡ E (RU t × RW t)− (RU t × p(RU t))× (RW t × p(RW t))

≡ E (RU t × RW t)− (E (RU t)×E (RW t))

(25)

Equation 25 demands that

RU t × RW t ≡
σ (RU t ,RW t)

(p(RU t ,RW t)− (p(RU t)× p(RW t)))
(26)

2.1.12 Two by two table of Bernoulli random variables

Definition 12 (Two by two table of Bernoulli random variables).

Karl Pearson was the first to introduce the notion of a two by two or contingency[82] table in 1904. A contingency
table is still an appropriate theoretical model too for studying the relationships between two Bernoulli[24] (i. e.
+0/+1) distributed random variables existing or occurring at the same Bernoulli trial [100] (period of time) t. In
this context, let a Bernoulli distributed random variable Ut denote a risk factor, a condition or a cause et cetera
and occur or exist with the probability p(Ut) at the Bernoulli trial [100] (period of time) t. Let E( Ut) denote the
expectation value of Ut. In the case of +0/+1 distributed Bernoulli random variables it is

E (U t)≡U t× p(U t)

≡ p(at)+ p(bt)

≡ (+0+1)× p(U t)

≡ p(U t)

(27)

Let a Bernoulli distributed random variable Wt denote an outcome, a conditioned event or an effect and occur or
exist et cetera with the probability p(Wt) at the Bernoulli trial (period of time) t. Let E( Wt) denote the expectation
value of Wt. It is

E (W t)≡W t× p(W t)

≡ p(at)+ p(ct)

≡ (+0+1)× p(W t)

≡ p(W t)

(28)

Let p(at)= p(Ut ∩Wt) denote the joint probability distribution of Ut and Wt at the same Bernoulli trial (period
of time) t. In general it is

E (at)≡ E (U t∩W t)

≡ (U t×W t)× p(U t∩W t)

≡ p(U t∩W t)

≡ p(at)

(29)

82
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Let p(bt)= p(Ut ∩ ¬Wt) denote the joint probability distribution of Ut and not Wt at the same Bernoulli trial
(period of time) t. In general it is

E (bt)≡ E (U t∩¬W t)

≡ (U t×¬W t)× p(U t∩¬W t)

≡ p(U t∩¬W t)

≡ p(bt)

(30)

Let p(ct)= p(¬ Ut ∩Wt) denote the joint probability distribution of not Ut and Wt at the same Bernoulli trial
(period of time) t. In general it is

E (ct)≡ E (¬U t∩W t)

≡ (¬U t×W t)× p(¬U t∩W t)

≡ p(¬U t∩W t)

≡ p(ct)

(31)

Let p(dt)= p(¬Ut ∩ ¬Wt) denote the joint probability distribution of not Ut and not Wt at the same Bernoulli
trial (period of time) t. In general it is

E (dt)≡ E (¬U t∩¬W t)

≡ (¬U t×¬W t)× p(¬U t∩¬W t)

≡ p(¬U t∩¬W t)

≡ p(dt)

(32)

In general, it is
p(at)+ p(bt)+ p(ct)+ p(dt)≡+1 (33)

Table 1 provides an overview of the definitions above.

Conditioned Wt
TRUE FALSE

Condition TRUE p(at) p(bt) p(Ut)
Ut FALSE p(ct) p(dt) p(Ut)

p(Wt) p(Wt) +1

Tabelle 1: The two by two table of Bernoulli random variables

2.1.13 Two by two table of Binomial random variables

Definition 13 (Two by two table of Binomial random variables).

Under conditions where the probability of an event, an outcome, a success et cetera is constant from Bernoulli
trial to Bernoulli trial t, it is

A = N×E (U t)

≡ N× (U t× p(U t))

≡ N× (p(U t)+ p(W t))

≡ N× p(U t)

(34)

and

B = N×E (W t)

≡ N× (W t× p(W t))

≡ N× (p(U t)+ p(ct))

≡ N× p(W t)

(35)
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where N denotes the population size. Furthermore, it is

a≡ N× (E (U t))≡ N× (p(U t)) (36)

and
b≡ N× (E (W t))≡ N× (p(W t)) (37)

and
c≡ N× (E (ct))≡ N× (p(ct)) (38)

and
d ≡ N× (E (dt))≡ N× (p(dt)) (39)

and
a+b+ c+d ≡ A+A≡ B+B≡ N (40)

Table 2 provides an overview of a two by two table of Binomial random variables.

Conditioned Wt
TRUE FALSE

Condition TRUE a b A
Ut FALSE c d A

B B N

Tabelle 2: The two by two table of Binomial random variables

2.1.14 Index Of Unfairness

Definition 14 (Index Of Unfairness).

The quality of collected may depend upon several factors. Therefore, it is appropriate to quantify possible
collection or extraction bias due to the method used. The index of unfairness (IOU) is defined [see 17] as

p(IOU)≡ Absolute
((

A+B
N

)
−1
)

≡ Absolute
((

A+B
N

)
−1
) (41)

2.1.15 Index Of Independence

Definition 15 (Index Of Independence).

bias due to collection methods and other factors cannot be excluded completely. The index of independence
(IOI) is of use in this context and defined [see 16] as

p(IOI)≡ Absolute
((

A+B
N

)
−1
)

≡ Absolute
((

A+B
N

)
−1
) (42)

2.1.16 Placebo controlled analysis

Lemma 1 (Placebo controlled analysis.). A well-conducted sample analysis with an appropriate approach is of
general importance. A placebo determined sample is a sample designed not to have a certain event. Placebo-
controlled samples analysis are of great value for standard investigations of different relationships. A sample
experimental group (A) which contains an event ( allocated blindly, randomly et cetera) (verum group) can be
compared to another control group (A) which is missing especially such a certain event (placebo group). In order
to obtain optimal, reproducible results, many times investigators ensure that A≡ A. Under these circumstances, it
is given that

p(IOU)≡ p(IOI) (43)
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Direct proof. Sometimes, sample analysis are grounded on the demand that

A≡ A (44)

Adding B, it is
A+B≡ A+B (45)

Dividing by N, we obtain
A+B

N
≡ A+B

N
(46)

Rearranging, it is
A+B

N
−1≡ A+B

N
−1 (47)

Taking the absolute, it is

Absolute
((

A+B
N

)
−1
)
≡ Absolute

((
A+B

N

)
−1
)

(48)

and finally
p(IOU)≡ p(IOI) (49)

Quod erat demonstrandum.

sample size calculation is an important part of conducting an appropriate analysis. However, sample studies
grounded on p(IOU)≡ p(IOI) need not produce automatically scientifically validated knowledge and systematic
bias is not excluded completely.

2.1.17 Independence

Definition 16 (Independence).

Historically, logic and probability theory which by time derived from the former are two of the main pillars in the
modern study of human reasoning. At first sight, combining logic and probability theory in the same mathematical
framework, as done in this publication, might look a little bit strange because probability theory deals more or less
with uncertainties whereas logic as such is concerned with absolutely certain inferences or truths. In this context,
it is important to note that we will steer clear of the scientific debate over the exact nature and the meaning of
probability. However, it is possible to treat the probability of an event as the truth value of probability theory.
Thus far and in contrast to Fuzzy logic and other trials of non-classical logic, such an approach opens the strategic
possibility to develop a logically consistent multi-valued logic. In this context, the concept of independence is of
fundamental [65] importance in (natural) sciences as such and as old as human mankind itself. The first documented
mathematical approach to the concept of independence can be ascribed preliminary to the French mathematician
and equally a friend of Isaac Newton (1642 - 1726, the Julian calendar), Abraham de Moivre (1667 – 1754).
Abraham de Moivre demands the following: “ Two Events are independent, when they have no connexion one
with the other, and that the happening of one neither forwards nor obstructs the happening of the other. Two
Events are dependent, when they are connected together as that the Probability of either’s happening is altered
by the happening of the other . . . therefore, those two Events being independent, the Probability of their both

happening will be
1

13
× 1

13
≡ 1

169
”[see 74, p. 6/7]. The tremendous improvement of the concept of independence

is undoubtedly due to the contributions of many scientists. Andrei Nikolajewitsch Kolmogorow (1903-1987), a
Russian mathematician and one of the most important mathematicians of the 20th century mathematics, elaborates
on the meaning of concept of independence too. “The concept of mutual independence of two or more experiments
holds, in a certain sense, a central position in the theory of probability . . . In consequence, one of the most important
problems in the philosophy of the natural sciences is . . . to make precise the premises which would make it possible
to regard any given real events as independent.”[see 66, p. 8/9]. In fact, it is insightful to recall Einstein’s theoretical
approach to the concept of independence before the mind’s eye. “Ohne die Annahme einer . . . Unabhängigkeit
der . . . Dinge voneinander . . . wäre physikalisches Denken . . . nicht möglich.”[38]. In other words, the existence
or the occurrence of an event Ut at the Bernoulli trial t need not but can be independent of the existence or of the
occurrence of another event Wt at the same Bernoulli trial t. Mathematically, independence [65], [74] in terms of
probability theory is defined at the same (period of) time t (i. e. Bernoulli trial t) as

p(U t∩W t)≡ p(U t)× p(W t) (50)
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In a narrower sense, the conditio sine qua non relationship concerns itself at the end only with the case whether
the presence of an event Ut (condition) enables or guarantees the presence of another event Wt (conditioned). As
a result of these thoughts, another question worth asking concerns the relationship between the independence
of an event Ut (a condition) and another event Wt (conditioned) and the necessary condition relationship. To
be confronted with the danger of bias and equally with the burden of inappropriate conclusions drawn, another
fundamental question at this stage is whether is it possible that an event Ut (a condition) is a necessary condition
of event Wt (conditioned) even under circumstances where the event Ut (a condition) (a necessary condition) is
independent of an event Wt (conditioned)? This question is already answered more or less to the negative [15]. An
event Ut which is a necessary condition of another event Wt is equally an event without which another event (Wt)
could not be, could not occur and implies as such already a kind of a dependence. Thus far, data which provide
evidence of a significant conditio sine qua non relationship between two events like Ut and Wt and equally
support the hypothesis that Ut and Wt are independent of each other are more or less self-contradictory
and of very restricted or of none value for further analysis. In fact, if the opposite view would be taken as
plausible, contradictions are more or less inescapable.

2.1.18 Dependence

Definition 17 (Dependence).

The dependence of events [see 3, p. 57-61] is defined as

p

U t∩W t∩Ct∩ . . .︸ ︷︷ ︸
n

≡
n

√
p(U t)× p(W t)× p(Ct)× . . .︸ ︷︷ ︸

n

(51)

2.1.19 Exclusion relationship

Definition 18 (Exclusion relationship [EXCL]).

Mathematically, the exclusion (EXCL) relationship, denoted by p(Ut |Wt) in terms of probability theory, is
defined as

p(U t |W t)≡ p(bt)+ p(ct)+ p(dt)

≡ N× (p(bt)+ p(ct)+ p(dt))

N

≡ b+ c+d
N

≡ 1− (p(U t∩W t)≡ 0)
≡ 1− (p(at)≡ 0)
≡ (p(U t→¬W t))∩ (p(W t→¬U t))

≡+1

(52)

Conjunction, disjunction, and negation are one of the simplest logical operators. To some extent, exclusion is
determined by the negation of a conjunction and can be expressed equivalently in terms of a conditio per quam
relationship (definition 32) as p(U t |W t) ≡ (p(U t→¬W t))∩ (p(W t→¬U t)) ≡ +1. In spoken English, if Ut
then ¬ Wt and equally vice versa. If Wt then ¬ Ut . Table 3 demonstrates the theoretical distribution of an
exclusion relationship in terms of a sufficient condition as if Ut then ¬Wt.

Tabelle 3: Exclusion and sufficient condition I.

Conditioned Wt
NO YES

Condition Ut YES 1 0 Ut
NO 1 1 Ut

Wt Wt 1

Table 4 demonstrates the theoretical distribution of an exclusion relationship in terms of a sufficient condition
as if Wt then ¬ Ut.
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Tabelle 4: Exclusion and sufficient condition I.

Conditioned Ut
NO YES

Condition Wt YES 1 0 Wt
NO 1 1 Wt

Ut Ut 1

Furthermore, consider, for example, that the two events being a male human being (Ut = TRUE) and equally
being a pregnant human being (Wt = TRUE) are excluding each other at the same Bernoulli trial t. Even if
such a relationship is investigated inside a sample, the definition of the exclusion relationship need to hold true
at every single event. Mathematically, let p(at) ≡ p((Ut = TRUE) ∩ (Wt = TRUE)) denote the joint probability
distribution function of an event Ut and an event Wt. One determining feature of an exclusion relationship is the
fact that p(at) ≡ p((Ut = TRUE) ∩ (Wt = TRUE)) ≡ 0. In other words, in case of an exclusion relationship it is not
possible to observe an event Ut and at the same (period of) time or Bernoulli trial t an event Wt. Table 5 provide
us with an overview of this example and equally one possible theoretical distribution of an exclusion relationship.
Examinations of the protective effects and long-term benefits of commonly used statin therapy in both primary and
secondary prevention of cardiovascular disease should be able to provide clear evidence of an exclusion relationship
between statin therapy and death due to any (including cardiovascular) cause [18].

Conditioned (pregnant) Wt
TRUE FALSE

Condition (male) TRUE +0 p(bt) p(Ut)
Ut FALSE p(ct) p(dt) p(Ut)

p(Wt) p(Wt) +1

Tabelle 5: Ut excludes Wt and vice versa.

2.1.20 The goodness of fit test of an exclusion relationship

Definition 19 (The χ̃2 goodness of fit test of an exclusion relationship).

Under some well known circumstances, testing hypothesis about an exclusion relationship p(Ut |Wt) is possible
by the chi-square distribution (also chi-squared or χ̃2-distribution) too. The χ̃2 goodness of fit test of an exclusion
relationship [12], [13] with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated ((U t |W t) | A)≡
(b− (a+b))2

A
+

((c+d)−A)2

A

≡ a2

A
+0

≡ a2

A

(53)

or equally as

χ̃
2

Calculated ((U t |W t) | B)≡
(c− (a+ c))2

B
+

((b+d)−B)2

B

≡ a2

B
+0

≡ a2

B

(54)
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and can be compared with a theoretical chi-square value at a certain level of significance α . The χ̃2-distribution
equals zero when the observed values are equal to the expected/theoretical values of an exclusion relation-
ship/distribution p(Ut |Wt), in which case the null hypothesis to be accepted. Yate’s [110] continuity correction has
not been used under these circumstances.

2.1.21 The left-tailed p Value of an exclusion relationship

Definition 20 (The left-tailed p Value of an exclusion relationship).

It is known that as a sample size, N, increases, a sampling distribution of a special test statistic approaches
the normal distribution (central limit theorem). Under these circumstances, the left-tailed (lt) p Value [19] of an
exclusion relationship can be calculated as follows.

pValuelt (U t |W t)≡ 1− e−(1−p(U t|W t))

≡ 1− e−(a/N)
(55)

A low p-value may provide some evidence of statistical significance. Table 6 demonstrates another example of the
distribution of an exclusion relationship.

Tabelle 6: Exclusion relationship.

Conditioned Wt
YES NO

Condition Ut YES 0 1 1
NO 1 1 2

1 2 3

2.1.22 Either or conditions

Definition 21 (Either Ut or Wt conditions [NEQV]).

Mathematically, an either Ut or Wt condition relationship (NEQV), denoted by p(Ut >-< Wt) in terms of
probability theory, is defined as

p(U t >−<W t)≡ p(bt)+ p(ct)

≡ N× (p(bt)+ p(ct))

N

≡ b+ c
N

≡+1

(56)

2.1.23 The Chi-square goodness of fit test of an either or condition relationship

Definition 22 (The χ̃2 goodness of fit test of an either or condition relationship).

An either or condition relationship p(Ut >-< Wt) can be tested by the chi-square distribution (also chi-squared
or χ̃2-distribution) too. The χ̃2 goodness of fit test of an either or condition relationship [12], [13] with degree of
freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated ((U t >−<W t) | A)≡
(b− (a+b))2

A
+

c− ((c+d))2

A

≡ a2

A
+

d2

A

(57)
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or equally as

χ̃
2

Calculated ((U t >−<W t) | B)≡
(c− (a+ c))2

B
+

b− ((b+d))2

B

≡ a2

B
+

d2

B

(58)

Yate’s [110] continuity correction has not been used in this context.

2.1.24 The left-tailed p Value of an either or condition relationship

Definition 23 (The left-tailed p Value of an either or condition relationship).

The left-tailed (lt) p Value [19] of an either or condition relationship can be calculated as follows.

pValuelt (U t >−<W t)≡ 1− e−(1−p(U t>−<W t))

≡ 1− e−((a+d)/N)
(59)

In this context, a low p-value indicates again a statistical significance. Table 7 provides an illustration of the
theoretical distribution of an either Ut or Wt relationship.

Tabelle 7: Either Ut or Wt relationship.

Conditioned Wt
YES NO

Condition Ut YES 0 1 1
NO 1 0 1

1 1 2

2.1.25 Neither nor conditions

Definition 24 (Neither Ut nor Wt conditions [NOR]).

Mathematically, a neither Ut nor Wt condition relationship (NOR), denoted by p(Ut ↑Wt) in terms of probability
theory, is defined as

p(U t ↑W t)≡ p(dt)

≡ N× (p(dt))

N

≡ d
N

≡+1

(60)

2.1.26 The Chi square goodness of fit test of a neither nor condition relationship

Definition 25 (The χ̃2 goodness of fit test of a neither Ut nor Wt condition relationship).

A neither Ut nor Wt condition relationship p(Ut ↑Wt) can be tested by the chi-square distribution (also chi-
squared or χ̃2-distribution). The χ̃2 goodness of fit test of a neither Ut nor Wt condition relationship [12], [13] with
degree of freedom (d. f.) of d. f. = 1 may be calculated as

χ̃
2

Calculated ((U t ↑W t) | A)≡
(d− (c+d))2

A
+

((a+b)−A)2

A

≡ c2

A
+0

(61)
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or equally as

χ̃
2

Calculated ((U t ↑W t) | B)≡
(d− (b+d))2

B
+

((a+ c)−B)2

B

≡ b2

B
+0

(62)

Yate’s [110] continuity correction has not been used in this context.

2.1.27 The left-tailed p Value of a neither nor B condition relationship

Definition 26 (The left-tailed p Value of a neither Ut nor Wt condition relationship).

The left-tailed (lt) p Value [19] of a neither Ut nor Wt condition relationship can be calculated as follows.

pValuelt (U t ↑W t)≡ 1− e−(1−p(U t↑W t))

≡ 1− e−p(U t∪W t)

≡ 1− e−((a+b+c)/N)

(63)

where ∪ may denote disjunction or logical or. In this context, a low p-value indicates again a statistical significance.
Table 8 provides an illustration of the theoretical distribution of a neither Ut nor Wt relationship.

Tabelle 8: Neither Ut nor Wt relationship.

Conditioned Wt
YES NO

Condition Ut YES 0 0 0
NO 0 1 1

0 1 1

2.1.28 Necessary condition

Definition 27 (Necessary condition [Conditio sine qua non]).

Scientific knowledge and objective reality are deeply interrelated. As mentioned at the start of the article, the
specification of necessary conditions has traditionally been part of the philosopher’s investigations of different
phenomena. Behind the need of a detailed evidence it is justified to consider that philosophy as such has certainly
not a monopoly on the truth and other areas such as medicine as well as other sciences and technology may
transmit truths as well and may be of help to move beyond one’s selfenclosed unit. Seemingly the law’s concept
of causation justifies to say few words on this subject, to put some light on some questions. Are there any criteria
in law for deciding whether one action or an event Ut has caused another (generally harmful) event Wt? What
are these criteria? May causation in legal contexts differ from causation outside the law, for example, in science
or in our everyday life and to what extent? Under which circumstances is it justified to tolerate such differences
as may be found to exist? To understand just what is the law’s concept of causation it is useful to know how
the highest court of states are dealing with causation. In the case Hayes v. Michigan Central R. Co., 111 U.S.
228, the U.S. Supreme Court defined 1884 conditio sine qua non as follows: “... causa sine qua non – a cause
which, if it had not existed, the injury would not have taken place”. [62] The German Bundesgerichtshof für
Strafsachen stressed once again the importance of conditio sine qua non relationship in his decision by defining
the following: “Ursache eines strafrechtlich bedeutsamen Erfolges jede Bedingung, die nicht hinweggedacht
werden kann, ohne daß der Erfolg entfiele”[32] Another lawyer elaborated on the basic issue of identity and
difference between cause and condition. Von Bar was writing: “Die erste Voraussetzung, welche erforderlich ist,
damit eine Erscheinung als die Ursache einer anderen bezeichnet werden könne, ist, daß jene eine der Bedingungen
dieser sein. Würde die zweite Erscheinung auch dann eingetreten sein, wenn die erste nicht vorhanden war, so
ist sie in keinem Falle Bedingung und noch weniger Ursache. Wo immer ein Kausalzusammenhang behauptet
wird, da muß er wenigstens diese Probe aushalten . . . Jede Ursache ist nothwendig auch eine Bedingung eines
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Ereignisses; aber nicht jede Bedingung ist Ursache zu nennen.”[2] Von Bar’s position translated into English:
The first requirement, which is required, thus that something could be called as the cause of another, is that the
one has to be one of the conditions of the other. If the second something had occurred even if the first one did
not exist, so it is by no means a condition and still less a cause. Wherever a causal relationship is claimed, the
same must at least withstand this test. . . Every cause is necessarily also a condition of an event too; but not every
condition is cause too. Thus far, let us consider among other the following in order to specify necessary conditions
from another, probabilistic point of view. An event (i. e. Ut) which is a necessary condition of another event or
outcome (i.e. Wt) must be given, must be present for a conditioned, for an event or for an outcome Wt to occur. A
necessary condition (i. e. Ut) is a requirement which must be fulfilled at every single Bernoulli trial t, in order
for a conditioned or an outcome (i.e. Wt) to occur but it alone does not determine the occurrence of an event. In
other words, if a necessary condition (i. e. Ut) is given, an outcome (i.e. Wt) need not to occur. In contrast to a
necessary condition, a ‘sufficient’condition is the one condition which ‘guarantees’that an outcome will take place
or must occur for sure. Under which conditions we may infer about the unobserved and whether observations made
are able at all to justify predictions about potential observations which have not yet been made or even general
claims which my go even beyond the observed (the ‘problem of induction’) is not the issue of the discussion at
this point. Besides of the principal necessity meeting such a challenge, a necessary condition of an event can but
need not to be at the same Bernoulli trial t a sufficient condition for an event to occur. However, theoretically it
is possible that an event or an outcome is determined by many necessary conditions. Let us focus to some extent
on what this means or in other words how much importance can we attribute to such a special case. Example.
A human being cannot live without oxygen. A human being cannot live without water. A human being cannot
live without a brain. A human being cannot live without kidneys. A human being cannot live without ... et cetera.
Thus far, even if oxygen is given, if water is given, if a brain is given, without functioning kidney’s (or something
similar) a human being will not survive on the long run. This example is of use to reach the following conclusion.
Although it might seem somewhat paradoxical at first sight, even under circumstances where a condition or
an outcome depends on several different necessary conditions it is particularly important that every single
of these necessary conditions for itself must be given otherwise the conditioned (i.e. the outcome) will not
occur. Finally, mathematically, the necessary condition (SINE) relationship, denoted by p(Ut ←Wt) in terms of
probability theory, is defined as

p(U t←W t)≡ p(at)+ p(bt)+ p(dt)

≡ N× (p(at)+ p(bt)+ p(dt))

N

≡ a+b+d
N

≡+1

(64)

Table 9 provides an overview of the definition of the necessary condition.

Conditioned Wt
TRUE FALSE

Condition TRUE p(at) p(bt) p(Ut)
Ut FALSE +0 p(dt) p(Ut)

p(Wt) p(Wt) +1

Tabelle 9: Necessary condition.

2.1.29 The Chi-square goodness of fit test of a necessary condition relationship

Definition 28 (The χ̃2 goodness of fit test of a necessary condition relationship).

The data as obtained by investigations can vary extremely across studies as well as among and within individuals.
Some (experimental) studies may support a hypothesis of a conditio sine qua non relationship between two factors
while other may fail on the same matter. An appropriate study design is of essential importance for a successful
execution of research. However, each design has its own strengths and weaknesses, and the data achieved need not
to guarantee to arrive at correct conclusions. Besides of all, under some known circumstances, testing hypothesis
about the conditio sine qua non relationship p(Ut ←Wt) is possible by the chi-square distribution (also chi-squared
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or χ̃2-distribution), first described by the German statistician Friedrich Robert Helmert [51] and later rediscovered
by Karl Pearson [81] in the context of a goodness of fit test. The χ̃2 goodness of fit test of a conditio sine qua non
relationship [12], [13] with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated (U t←W t | B)≡
(a− (a+ c))2

B
+

((b+d)−B)2

B

≡ c2

B
+0

≡ c2

B

(65)

or equally as

χ̃
2

Calculated (U t←W t | A)≡
(d− (c+d))2

A
+

((a+b)−A)2

A

≡ c2

A
+0

≡ c2

A

(66)

and can be compared with a theoretical chi-square value at a certain level of significance α . It has not yet been
finally clarified whether the use of Yate’s [110] continuity correction is necessary at all.

2.1.30 The left-tailed p Value of the conditio sine qua non relationship

Definition 29 (The left-tailed p Value of the conditio sine qua non relationship).

The left-tailed (lt) p Value [19] of the conditio sine qua non relationship can be calculated as follows.

pValuelt (U t←W t)≡ 1− e−(1−p(U t←W t))

≡ 1− e−(c/N)
(67)

A low p-value indicates statistical significance.

From another point of view, table 10 provides an example of the theoretical distribution of a necessary condition
too.

Tabelle 10: Necessary condition.

Conditioned Wt
YES NO

Condition Ut YES 1 1 2
NO 0 1 1

1 2 3

2.1.31 The expected Chi-Square value of a cell

Definition 30 (The expected Chi-Square value of a cell).

Chi-square is a statistical test commonly used to compare observed data with data we would expect to obtain
according to a specific hypothesis. Historically, the chi-square distribution (also chi-squared or χ̃2-distribution),
first described by the German statistician Friedrich Robert Helmert [51] was rediscovered later by Karl Pearson

92
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[81] in the context of a χ̃2 goodness of fit test. One of the assumptions of the Chi-square test is not that the observed
value in each cell is greater than 5 but that the expected value in each cell is greater than 5. The expected Chi-Square
value of the cell a of the table 11 is calculated as follows:

E (a)≡ (A×B)
N

(68)

In other words, for each cell (i. e. a, b c, d), its row (A, A) marginal is multiplied by its column (B, B) marginal,
and that product is divided by the sample size (N).

Conditioned Wt
TRUE FALSE

Condition TRUE a b A
Ut FALSE c d A

B B N

Tabelle 11: Chi square and a 2x2 table

2.1.32 Fisher’s exact one sided right tailed test of a necessary condition relationship

Definition 31 (Fisher’s exact one sided right tailed test of a necessary condition relationship).

Under some circumstances, a certain sampling distribution of a test statistic (like necessary condition relation-
ship) is only approximately equal to the theoretical chi-squared distribution and a chi-squared goodness of fit test
[16], [17] might provide only approximate significance values. In point of fact, if the expected values calculated
are too low or below 5, Fisher’s Exact Test is an alternative to a chi-square test and it is more appropriate to consider
the use Fisher’s Exact test in place of chi-square test especially for 2×2 tables. Fisher’s exact test is used especially
when sample sizes are small, but the same is valid for all sample sizes. However, Fisher’s exact test can be used
even for tables that are larger than 2×2. Sir Ronald Aylmer Fisher (1890 – 1962) published an exact statistical
significance test (“Fisher’s exact test”) [42] for the analysis of contingency tables valid for all sample sizes.
The null hypothesis of Fisher’s Exact test is that the rows and the columns of the 2× 2 table are independent,
such that the probability of a subject being in a particular row is not influenced by being in a particular
column.
Table 12 may provide an overview of the foundation of Fisher’s Exact test.

Conditioned Wt
TRUE FALSE

Condition TRUE a b A
Ut FALSE c d A

B B N

Tabelle 12: Two by two table and Fisher’s exact test

Fisher’s exact test is a conservative test which is based on the hyper geometric distribution and not on the
calculation of probabilities from a distribution (as in t-tests or chi-square). The hyper geometric (HGD) probability
mass function is given by

pHGD (X = a)≡

((A
a

)
×
(N−A

B−a

)(N
B

) )

≡

((A
a

)
×
(A

c

)(N
B

) ) (69)

Fisher’s exact test can be used on more robust data sets too. Consider sampling a population of size N that has
B objects with O and B with O. Draw a sample of A objects and find a objects with O (see table 13).

Then there are (
N
A

)
(70)
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Sampling a population
O O

In Sample YES a b A
(Not In Sample) NO c d A

B B N

Tabelle 13: Two by two table and Fisher’s exact test II

possible samples. Of these, (
B
a

)
(71)

is the number of ways of choosing O in a sample of size B, while(
B
b

)
(72)

is the number of ways of choosing not-O or O in a sample of size

N−B = B (73)

Because these are independent, there are (
B
a

)
×
(

B
b

)
(74)

ways of choosing a Os and b not-Os.
Therefore, the probability of choosing a

Os≡
(B

a

)
×
(B

b

)(N
A

)
≡

B!
a!× c!

× B!
b!×d!

N!
A!×A!

≡ B!×B!×A!×A!
N!×a!×b!× c!×d!

(75)

which is Fisher’s exact test formula given usually. In order to calculate the significance of the observed data, i.e. the
total probability of observing data as extreme or more extreme if the null hypothesis true, we have to calculate the
P value of a one-tailed test.
The one sided right tailed (rt) P Value under conditions of the validity of the hyper-geometric [45], [61], [80]
distribution (HGD) is calculated according to the following formula [22], [90].

pValue(HGD)rt (X ≥ a)≡ 1−
a−1

∑
t=0

((A
t

)
×
(N−A

B−t

)(N
B

) )
(76)

2.1.33 Sufficient condition

Definition 32 (Sufficient condition [Conditio per quam]).

Mathematically, the sufficient condition (IMP) relationship, denoted by p(Ut →Wt) in terms of probability
theory, is defined as

p(U t→W t)≡ p(at)+ p(ct)+ p(dt)

N× (p(at)+ p(ct)+ p(dt))

N

≡ a+ c+d
N

≡+1

(77)
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Let us assume the relationship p(U t→W t) as proofed, secured and given. Let p(Ct) denote the probability of
another event Dt. The conditio per quam relationship is one of the many foundations of mathematical techniques
for an industrial mass-identifications of antidotes too. An event which can counteract the occurrence of another
event can be understood something as an anti-dot event. Under conditions where p(U t→W t)+ p(Dt)≡+1, event
Dt is an anti-dot of event Ut.

2.1.34 The Chi square goodness of fit test of a sufficient condition relationship

Definition 33 (The χ̃2 goodness of fit test of a sufficient condition relationship).

Under some well known circumstances, testing hypothesis about the conditio per quam relationship p(Ut →
Wt) is possible by the chi-square distribution (also chi-squared or χ̃2-distribution) too. The χ̃2 goodness of fit test
of a conditio per quam relationship [12], [13] with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated (U t→W t | A)≡
(a− (a+b))2

A
+

((c+d)−A)2

A

≡ b2

A
+0

≡ b2

A

(78)

or equally as

χ̃
2

Calculated (U t→W t | B)≡
(d− (b+d))2

B
+

((a+ c)−B)2

B

≡ b2

B
+0

≡ b2

B

(79)

and can be compared with a theoretical chi-square value at a certain level of significance α . The χ̃2-distribution
equals zero when the observed values are equal to the expected/theoretical values of the conditio per quam
relationship/distribution p(Ut →Wt), in which case the null hypothesis accepted. Yate’s [110] continuity correction
has not been used in this context.

2.1.35 The left-tailed p Value of the conditio per quam relationship

Definition 34 (The left-tailed p Value of the conditio per quam relationship).

The left-tailed (lt) p Value [19] of the conditio per quam relationship can be calculated as follows.

pValuelt (U t→W t)≡ 1− e−(1−p(U t→W t))

≡ 1− e−(b/N)
(80)

Again, a low p-value indicates a statistical significance.

Table 14 demonstrates the theoretical distribution of a sufficient condition.

Tabelle 14: Sufficient condition.

Conditioned Wt
YES NO

Condition Ut YES 1 0 1
NO 1 1 2

2 1 3
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2.1.36 Necessary and sufficient conditions

Definition 35 (Necessary and sufficient conditions [EQV]).

Mathematically, the necessary and sufficient condition (EQV) relationship, denoted by p(Ut ↔Wt) in terms of
probability theory, is defined as

p(U t↔W t)≡ p(at)+ p(dt)

≡ N× (p(at)+ p(dt))

N

≡ a+d
N

≡+1

(81)

2.1.37 The Chi square goodness of fit test of a necessary and sufficient condition relationship

Definition 36 (The χ̃2 goodness of fit test of a necessary and sufficient condition relationship).

Even the necessary and sufficient condition relationship p(Ut↔Wt) can be tested by the chi-square distribution
(also chi-squared or χ̃2-distribution) too. The χ̃2 goodness of fit test of a necessary and sufficient condition
relationship [12], [13] with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated (U t↔W t | A)≡
(a− (a+b))2

A
+

d− ((c+d))2

A

≡ b2

A
+

c2

A

(82)

or equally as

χ̃
2

Calculated (U t↔W t | B)≡
(a− (a+ c))2

B
+

d− ((b+d))2

B

≡ c2

B
+

b2

B

(83)

The calculated χ̃2 goodness of fit test of a necessary and sufficient condition relationship can be compared with
a theoretical chi-square value at a certain level of significance α . Under conditions where the observed values are
equal to the expected/theoretical values of a necessary and sufficient condition relationship/distribution p(Ut↔Wt),
the χ̃2-distribution equals zero. It is to be cleared whether Yate’s [110] continuity correction should be used at all.

2.1.38 The left-tailed p Value of a necessary and sufficient condition relationship

Definition 37 (The left-tailed p Value of a necessary and sufficient condition relationship).

The left-tailed (lt) p Value [19] of a necessary and sufficient condition relationship can be calculated as follows.

pValuelt (U t↔W t)≡ 1− e−(1−p(U t↔W t))

≡ 1− e−((b+c)/N)
(84)

In this context, a low p-value indicates again a statistical significance. Table 15 may provide an overview of the
theoretical distribution of a necessary and sufficient condition.
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Tabelle 15: Necessary and sufficient condition.

Conditioned Wt
YES NO

Condition Ut YES 1 0 1
NO 0 1 1

1 1 2

For the purposes at hand, as should be immediately apparent, it is obviously clear, straightforward, deeply
important and beyond any question that in analytic philosophy, accurate specifications of necessary and sufficient
conditions (NSC) play already a central and vital role while logical fallacies cannot be excluded in general. In
analytic philosophy, the concept of necessary and sufficient conditions is based on notions like an antecedent and
a consequent too whilst analytic philosophy is not ensuring permanently that an antecedent and a consequent
are given or treated at the same (period of) time t. Finally, some known and invalid inferential forms reasoning
may follow (affirming the consequent, denying the antecedent et cetera). In contrast to analytic philosophy,
the probability based concept of necessary and sufficient conditions is grounded on events occurring at the
same (period of) time t. Another important clarification regarding necessary and sufficient conditions is the
fact that NSC are equally converses of each other. In this case, there is a kind of strange mirroring as follows:
U t←W t ≡W t→U t. On this account, Ut being a sufficient condition of Wt is logically equivalent to Wt being
a necessary condition of Ut (and vice versa). However, this has no influence on the definition of necessary and
sufficient conditions. Necessary and sufficient conditions are defined as (U t↔W t)≡ (U t←W t)∩ (U t→W t) and
not as (U t↔W t)≡ (U t←W t)∩ (W t→U t) where ∩ denote conjugation. The account of necessary and sufficient
conditions just outlined is particularly different from the concept of logical conditions. It is, then, worth making the
obvious point that a causal relationship may posses many different features and a very serious and fundamental
question may arise: can an effectt as such occur without a causet? If we answer this question to the positive, we
must accept equally that events can occur without a cause or that a causeless effect may exist or that a causeless
change is possible in principle. In last consequence, such a scientific attitude ultimately demand us to abandon the
principle of causality in general. In contrast to such an anti causal position it is clear that the principle of causality
implies too that a causet is needed for an effectt to occur. A causet is a necessary condition of an effectt. In other
words, without a causet no effectt or a cause and a necessary condition are identical. However, it is inappropriate
to treat a necessary condition of an event (effectt) as being at the same (period of) time t a sufficient condition
for the same event (effectt) to occur. Such an attitude may end up at a causal fallacy. A necessary condition of
an event is a condition which must be present for another event (effectt) to occur. A necessary condition must
be given in order for event (effectt) to occur, but it alone does not provide sufficient cause for the occurrence of
the event (effectt). In contrast to a necessary condition, a sufficient condition is a condition that will produce the
event (effectt) to occur. Therefore and besides of the identity of a cause and a necessary condition, a cause as
such cannot be reduced only to a necessary condition, a cause at the same (period of) time t is equally different
from a necessary condition, both are logically not equivalent. The difference between a cause and a necessary
condition determines the fact, that a cause is equally much more than only a necessary condition. In contrast to a
necessary condition, an event as such, which is a causet of another event should ensure too that the other event
(effectt) need to occur. To bring it to the point, a cause is at the same (period of) time t a sufficient condition of an
effect too. In the light of these considerations, another determining part of a causal relationship is the relation if
causet then effectt. Therefore, let us notice again what is strangest about the fundamental relationship between a
cause and an effect. A causet at a certain (period of) time t is both, a necessary and sufficient condition of an effectt.
What is interesting, however, is that with all respect for such a clear scientific position, the same is not uncontested
and is not accepted without objection. Even if it almost seems impossible to bring forward an appropriate comment
to all anti causal authors who wrote on the relation between cause and effect it is nevertheless still required to
make at least few cautionary remarks on J. L. Mackie’s position. J. L. Mackie’s effectively anti causal position may
serve as an example and as a representative for the numerous others. J. L. Mackie’s theoretically very inappropriate
approach to the notion cause and effect can be found in his paper ‘Causes and Conditions’[see 73]. Completely in
line with David Hume’s (1711 - 1776) meanwhile outdated account to the relation of a cause and an effect, Mackie
writes: “. . . a cause is . . . an event which precedes the event of which it is the cause . . . ”[see 73, p. 245] In other
sense, we must accept a logical fallacy as the foundation of causation: a cause is temporally prior in time to an
effect. Based on his flawed approach to the nature of causation, Mackie is inventing enthusiastically a logical fallacy
abbreviated as INUS, a very special, artificial, logically inconsistent and unrealistic approach to the relationship
between a cause and an effect. “The so-called cause is . . . an insufficient but necessary part of a condition which
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is itself unnecessary but sufficient for the result [effect, author]. ”[see 73, p. 245] More or less, Mackie himself
reduces defectively a cause as such only to a sufficient condition. Mackie is trying to convince the reader that a
cause is not a necessary condition. In other words, an effect can occur without a cause. Mackie demands: “The
so-called cause is . . . a condition which is itself unnecessary . . . ”[see 73, p. 245] In contrast to a necessary condition,
following Mackie, a “. . . cause is . . . a condition which is . . . sufficient for the result [effect, author]. ”[see 73, p.
245]. However, this doesn’t necessarily mean that both are really to be equated according to Mackie. Besides of all,
Mackie is compelled to admit that a cause is at the end quite different from a sufficient condition too even if not
a necessary condition. In contrast to a pure sufficient condition, a cause is only “. . . an insufficient but necessary
part of a condition . . . ”[see 73, p. 245], whatever this may mean. Whether it is possible or not to decompose a
sufficient condition into single parts like a sufficient part and a non sufficient part or into a necessary part and into a
not necessary part like U t ≡ (su f f icient part t∪not su f f icient part t)∩ (necessary part t∪not necessary part t)
is not an issue which appears to be able to affect the nature of a sufficient condition. A sufficient condition is a
sufficient condition or it is not a sufficient condition independently of any single parts which may determine the
same. Unfortunately, this not the point where Mackie’s completely unrealistic and unnecessary narration ends.
Mackie tries to convince us that a “. . . cause is . . . a condition which is itself unnecessary . . . for the result [effect,
author]. ”[see 73, p. 245] Mackie imposes its own flawed understanding of the relation between cause and effect on
others so thoughtlessly, that even the toughest among the patient is hardly able to bear. According to Mackie, a
cause is not a necessary condition of an effect. To bring it to the extreme, according to Mackie, an effect can
occur without a cause! In last consequence, Mackie is giving up the principle of causality. Last but not least,
Mackie’s so-called INUS logical fallacy is an insufficient but necessary part of a failed, brutal theoretical attack on
the principle of causality which is itself unnecessary but sufficient for non-sense produced by the author himself. A
final assessment of the issue necessary and sufficient conditions and causation and of the need for further action to
be taken with regard to the recognition or the detection of causal relationships (from data) is the fundamental credo
that a necessary and sufficient condition relationship is able to recognise or to detect causal relationships (from
data). Table 16 provides an illustration of the theoretical distribution of a necessary and sufficient condition with
respect to the causal relationship.

Tabelle 16: Causal relationship.

Effect Wt
YES NO

Cause Ut YES 1 0 1
NO 0 1 1

1 1 2

Many times, studies or experiments may be the next best method of addressing questions about the causal
relationship between two factors like Ut and Wt. However, when performing real-word experiments or other
investigations, bias of different kind (subjective and objective factors) including logical fallacies need to be
considered in detail and the possibility to recognise the causal relationship between the two factors Ut and Wt while
relying only on the necessary and sufficient condition relationship may be very rarely the case. Therefore and
in general, it is necessary that the same study or different studies independently of each other provide significant
evidence of a necessary condition relationship between the factors factors like Ut and Wt and equally of a
sufficient condition relationship between the same factors Ut and Wt and of course, if possible, of a necessary
and sufficient condition relationship between factors Ut and Wt. At least for these reasons and in order to avoid
misconceptions about a causal relation between the factors Ut and Wt, we always require additional tools like the
causal relationship k to be able to recognise a causal relationship between factors like Ut and Wt from data.

2.1.39 Causal relationship k

Definition 38 (Causal relationship k).

Nonetheless, mathematically, the causal relationship [3]–[5], [9]–[11] between a cause Ut and an effect Wt,
denoted by k(Ut, Wt) in terms of probability theory, is defined at each single [96] Bernoulli trial t as
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k (U t,W t)≡
σ (U t,W t)

σ (U t)×σ (W t)

≡ p(U t∩W t)− p(U t)× p(W t)
2
√

(p(U t)× (1− p(U t)))× (p(W t)× (1− p(W t)))

(85)

where σ (Ut , Wt) denotes the co-variance between a cause Ut and an effect Wt at every single Bernoulli trial t,
σ (Ut) denotes the standard deviation of a cause Ut at the same single Bernoulli trial t, σ (Wt) denotes the standard
deviation of an effect Wt at same single Bernoulli trial t. Table 17 provides an overview of the definition of the
causal relationship k.

Effect Wt
TRUE FALSE

Cause TRUE p(Ut) p(Wt) p(Ut)
Ut FALSE p(ct) p(dt) p(At)

p(Wt) p(Bt) +1

Tabelle 17: the causal relationship k

2.1.40 Fisher’s exact test and the causal relationship k

Definition 39 (Fisher’s exact test and the causal relationship k).

Under some circumstances, the significance of a causal relationship k can be tested by Fisher’s exact statistical
significance test (“Fisher’s exact test”) [42] for the analysis of contingency tables too.
The null hypothesis of Fisher’s Exact test is that a cause and an effect as illustrated by the 2 × 2 table 18 are
independent.

Effect Wt
TRUE FALSE

Cause TRUE a b A
Ut FALSE c d A

B B N

Tabelle 18: Fisher’s exact test and causation

The observed data are determined by several factors one of which is the study design too. In order to evaluate
the significance of the observed data, i.e. the total probability of observing data as extreme or more extreme if the
null hypothesis true, it is necessary to calculate a P value i. e. of a one-tailed test.
The one sided right tailed (rt) P Value under conditions of the validity of the hyper-geometric [45], [61], [80]
distribution (HGD) is calculated according to the following formula [22], [90].

pValue(HGD)rt (X ≥ a)≡ 1−
a−1

∑
t=0

((A
t

)
×
(N−A

B−t

)(N
B

) )
(86)

The one sided left tailed (lt) P Value under conditions of the validity of the hyper-geometric [45], [61], [80]
distribution (HGD) is calculated according to the following formula.

pValue(HGD)lt (X ≤ a)≡
a

∑
t=0

((A
t

)
×
(N−A

B−t

)(N
B

) )
(87)

B. Axioms
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Axiom I. Lex identitatis

+1 =+1 (88)

Axiom II. Lex contradictionis

+0 =+1 (89)

Axiom III. Lex negationis

¬(0)×0 = 1 (90)

where ¬ denotes (logical [29] or natural) negation [1], [43], [48], [49], [59], [60], [63], [69], [76], [88], [94], [104].
In this context, there is some evidence that ¬(1)×1 = 0. In other words, it is (¬(1)×1)× (¬(0)×0) = 1

III. RESULTS

A. The correlation relationship

Theorem 1 (The correlation relationship). Let Y denote a quantity. let E(Y) denote the expectation value of Y. Let
X denote another quantity, let E(X) denote the expectation value of X. The correlation coefficient is based on a
quantity dominated, mechanical understanding of the relationship between two factors like X and Y.

Proof by modus ponens. If the premise
+1 =+1︸ ︷︷ ︸
(Premise)

(91)

is true, then the conclusion

ρ (Y,X)≡ E ((Y −E (Y ))× (X−E (X )))

E (Y −E (Y ))×E (X−E (X ))

≡ σ (Y,X)

σ (Y )×σ (X)
≡+1

(92)

is also true, the absence of any technical errors presupposed. The premise

+1≡+1 (93)

is true. Multiplying this premise (i. e. axiom) by Y, it is

Y ≡ Y (94)

Bravais [31] (1811-1863) - Pearson’s (1857-1936) “product-moment coefficient of correlation”([44], [79]) in contrast
to the causal relationship k ([3]–[5], [9]–[11]) is based on the demand that Y = X. Based on this fundamental
assumption, equation 92 can be rearranged as

Y ≡ X (95)

Equation 95 leads to
E (Y )≡ E (X ) (96)

Equation 95 demands too that
Y 2 ≡ X2 (97)

Equation 97 demands that
E
(
Y 2)≡ E

(
X2) (98)

Equation 95 can be rearranged as
Y −E (Y )≡ X−E (Y ) (99)

According to equation 96, equation 99 changes to

Y −E (Y )≡ X−E (X ) (100)

In other words, we must accept the equality of

E (Y −E (Y ))≡ E (X−E (X )) (101)
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By squaring equation 101, it is
E (Y −E (Y ))2 ≡ E (X−E (X ))2 (102)

or
E (Y −E (Y ))×E (Y −E (Y )) ≡ E (X−E (X ))×E (X−E (X )) (103)

Based on equation 101, equation 103 can be rearranged as

E (Y −E (Y ))×E (X−E (X )) ≡ E ((X−E (X ))× (X−E (X ))) (104)

Based on equation 95 and equation 96, equation 104 can be rearranged as

E (Y −E (Y ))×E (X−E (X )) ≡ E ((Y −E (Y ))× (X−E (X ))) (105)

Rearranging equation 105, Bravais [31] (1811-1863) - Pearson’s (1857-1936) “product-moment coefficient of
correlation”[44], [79] follows [see 89, p. 496] as

ρ (Y,X)≡ E ((Y −E (Y ))× (X−E (X )))

E (Y −E (Y ))×E (X−E (X ))

≡ σ (Y,X)

σ (Y )×σ (X)
≡+1

(106)

Quod erat demonstrandum.

Remark 2. In point of fact, it has always been this way, theories about the relationship between a cause and
an effect of different kind are and have been around us for a long time. In other words, the attention on causal
inference or the problem of causality in general is continuously growing. In this context, it is relatively easy to get
convinced that correlation and causation are not identical in order to draw reliable conclusions (from observational
data). Many times, mathematical examples or proofs are able to illustrate the truth of a statement. However and
conversely, one single counterexample, experiment et cetera is enough and posses the theoretical potential to
demonstrate the falsity of a theory, of a theorem et cetera. Meanwhile, there are more than enough counterexamples
which where able to provide evidence that causation is not identical with causation, correlation is not enough for
causal inference. But the question remains what makes the difference between causation and correlation?
Bravais [31] (1811-1863) - Pearson’s (1857-1936) “product-moment coefficient of correlation”[44], [79] is based
on the assumption that a quantity Y is equivalent to a quantity X. Only under these circumstance, it is possible
to derive product-moment coefficient of correlation in a technically correct way. However this implies to, that
the a product-moment coefficient of correlation is not identical with causation. The product-moment coefficient
of correlation demands us to accept a simple and mechanical relationship between two quantities which is not
identical with causation. Karl Pearson (1857-1936) himself “rejected causal thinking.”[see 26, p. 39]. Pearson’s
rather delicate skepticism about causation is difficult to understand. Pearson elaborates on cause and effect as
follows: “Beyond such discarded fundamentals . . . lies still another fetish amidst the inscrutable arcana of even
modern science, namely, the category of cause and effect.”[see 83, p. vi] Following Pearson, there is none scientific
value of the notion cause. “For science, cause, . . . , is meaningless ”[see 83, p. 128] Pearson directly and blantly
advocates correlation instead of causation. “It is this conception of correlation . . . which is the wider category by
which we have to replace the old idea of causation. ”[see 83, p. 157] Following Pearson, causation is not needed at
all. On the contrary, if Pearson is right, “. . . Association, as replacing Causation ”[see 83, p. 156] is all what is
needed in science.

B. The law of nature relationship g
From one point of view, determinism [84], [85] as such is deeply connected with the physical sciences. Planck

himself went so far to demand that ‘an event is then causally determined . . . if it can be predicted with certainty’.

“ein Ereignis dann kausal bedingt . . .
wenn es mit Sicherhaeit vorausgesagt werden kann ”[see 84, p. 6]

Many times, laws of nature [see 92] are mere descriptions of the way objective reality is. On the other account,
the same laws of nature are determined by the process of the self-organisation of objective reality too. The scientific
dispute between Regularists and the Necessitarians is very much in trouble because none of both provided anything
valuable to the problem whether there exist any eternal laws of nature or are the laws of nature itself only relative?
However it may be, sometimes, a clarification and mathematical analysis of the laws of nature or scientific laws or
natural laws can be described mathematically too.
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Theorem 2 (The law of nature relationship g). In this theorem, we are specifying the probability measure on the
sample space of an experiment as being equal to p = 1. In other words, it is for sure that an event occurred. Thus
far, let the sample space Yt denote the set of all possible outcomes of an experiment at a certain Bernoulli trial
t. Let yt denote a random variable, a real-valued function defined on a single element of the sample space Yt at
a Bernoulli trial t. In general, it is Y t ≡ {y1 t,y2 t, . . . ,yn t,}. Let E(yt) denote the expectation value of yt. Let the
sample space Xt denote the set of all possible outcomes of X at a certain Bernoulli trial t. Let xt denote a random
variable, a real-valued function defined on a single element of the sample space Xt at a Bernoulli trial t. In general,
it is X t ≡ {x1 t,x2 t, . . . ,xn t,}. Let E(yt) denote the expectation value of yt. Let f(xt) denote a mathematical function
which describes the behaviour of each element of a set Xt, let E(f( xt)) denote the expectation value of f(xt). The law
of nature relationship is based on a quantity dominated, mechanical understanding of the relationship between two
factors like yt and f( xt). Let g(yt, f(x xt)) denote the law of nature relationship, ‘der gesetzmäßige Zusammenhang’.
The law of nature relationship is defined as

g(yt, f (xt))≡
σ (yt, f (xt))

σ (yt)×σ ( f (xt))
≡+1 (107)

Proof by modus ponens. If the premise
+1 =+1︸ ︷︷ ︸
(Premise)

(108)

is true, then the conclusion

g(yt, f (xt))≡
E ((yt−E (yt))× ( f (xt)−E ( f (xt) )))

E (yt−E (yt))×E ( f (xt)−E ( f (xt) ))

≡ σ (yt, f (xt))

σ (yt)×σ ( f (xt))
≡+1

(109)

is also true, the absence of any technical errors presupposed. The premise

+1≡+1 (110)

is true. Multiplying this premise (i. e. axiom) by yt, it is

yt ≡ yt (111)

The law of nature relationship g(yt, f(xt)) is based on the demand that an outcome, denoted as yt is determined
exactly by f(xt) at every run of an experiment, at every Bernoulli trial t. In other words, it is yt = f (xt). Based on
this fundamental assumption, equation 109 can be rearranged as

yt ≡ f (xt) (112)

Equation 112 leads to
E (yt)≡ E ( f (xt) ) (113)

Equation 112 demands too that
yt

2 ≡ f (xt)
2 (114)

Equation 114 demands that
E
(
yt

2)≡ E
(

f (xt)
2) (115)

Equation 112 can be rearranged as
yt−E (yt)≡ f (xt)−E (yt) (116)

According to equation 113, equation 116 changes to

yt−E (yt)≡ f (xt)−E ( f (xt) ) (117)

In other words, we must accept the equality of

E (yt−E (yt))≡ E ( f (xt)−E ( f (xt) )) (118)

By squaring equation 118, it is

E (yt−E (yt))
2 ≡ E ( f (xt)−E ( f (xt) ))

2 (119)
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or
E (yt−E (yt))

2 ≡ E ( f (xt)−E ( f (xt) ))×E ( f (xt)−E ( f (xt) )) (120)

or
E (yt−E (yt))×E (yt−E (yt))≡ E ( f (xt)−E ( f (xt) ))×E ( f (xt)−E ( f (xt) )) (121)

Based on equation 118, equation 121 can be rearranged as

E (yt−E (yt))×E ( f (xt)−E ( f (xt) )) ≡ E (( f (xt)−E ( f (xt) ))× ( f (xt)−E ( f (xt) ))) (122)

Based on equation 112 and equation 113, equation 122 can be rearranged as

E (yt−E (yt))×E ( f (xt)−E ( f (xt) )) ≡ E ((yt−E (yt))× ( f (xt)−E ( f (xt) ))) (123)

Rearranging equation 123, the law of nature relationship g(yt, f(x xt)) follows [see 89, p. 496] as

g(yt, f (xt))≡
E ((yt−E (yt))× ( f (xt)−E ( f (xt) )))

E (yt−E (yt))×E ( f (xt)−E ( f (xt) ))

≡ σ (yt, f (xt))

σ (yt)×σ ( f (xt))
≡+1

(124)

Quod erat demonstrandum.

Remark 3. A paradigmatic shift is necessary to be undertaken in moving away from inconsistent and unnecessary
theories of causation based on the structural equation modelling or counterfactual claims et cetera in order to
provide a coherent mathematical foundation for the analysis of cause and effect relationships. The earliest attempt
to formulate a kind of a structural equation modelling, a multivariate statistical analysis technique of causation was
made in the 1920’s by Sewall Wright [see 109, p. 557] However, it is important to point out that Wright derived the
structural equation modelling from the coefficient of correlation. Wright is writing: “The present paper is an attempt
to present a method of measuring the direct influence along each separate path in such a system and thus of finding
the degree to which variation of a given effect is determined by each particular cause. The method depends on the
combination of knowledge of the degrees of correlation among the variables in a system with such knowledge as
may be possessed of the causal relations ”[see 109, p. 557]. Wright himself points out that “The method depends
on the . . . correlation among the variables . . . ”[see 109, p. 557]. In contrast to Pearl’s do(X=x) operator [see
78, p. 204], the law of nature relationship g(yt, f (xt)) provides a logically consistent mathematical alternative to
the structure equation modelling proposed analysis of dependencies between endogenous and exogenous variables.
Even if multiplied by N=the sample size, the relationship need not to change. We obtain

g(yt, f (xt))≡
N×N×σ (yt, f (xt))

N×σ (yt)×N×σ ( f (xt))
≡+1 (125)

C. Something and its own other

Theorem 3 (Something and its own other). Let RUt denote something, a random variable as seen from the point of
view of a stationary observer R, a quantum mechanical entity et cetera existing independently and outside of human
mind and consciousness. Let the probability of RUt be p(RU t), let the n-th moment expectation value of RUt be

E (RU t
n)≡ p(RU t)× (RU t

n) (126)

Let the n-th moment expectation value of the other of RUt,of ‘the local hidden variable’of RUt, of the complementary
of RUt, of the opposite of RUt of the anti RUt be

E (RU t
n)≡ (1− p(RU t))× (RU t

n) (127)

In general, it is
RU t

n ≡ E (RU t
n)+E (RU t

n) (128)
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Proof by modus ponens. If the premise
+1 =+1︸ ︷︷ ︸
(Premise)

(129)

is true, then the conclusion
RU t

n ≡ E (RU t
n)+E (RU t

n) (130)

is also true, the absence of any technical errors presupposed. The premise

+1≡+1 (131)

is true. Multiplying this premise (i. e. axiom) by RUt
n it is

RU t
n ≡ RU t

n (132)

Equation 132 can be rearranged as
RU t

n ≡ (+1)×RU t
n (133)

too or as
RU t

n ≡ (1+0)×RU t
n (134)

and equally as
RU t

n ≡ (1+ p(RU t)− p(RU t))×RU t
n (135)

or as
RU t

n ≡ (p(RU t)+(1− p(RU t)))×RU t
n (136)

too. Equation 136 simplifies as

RU t
n ≡ (p(RU t)×RU t

n)+((1− p(RU t))×RU t
n) (137)

Equation 137 simplifies further according to the definition given (see equation 3 ) as

RU t
n ≡ E (RU t

n)+((1− p(RU t))×RU t
n) (138)

However, equation 138 itself simplifies again according to the definition given (see equation 7) as

RU t
n ≡ E (RU t

n)+E (RU t
n) (139)

In other words, even inside a set n, RUt
n is determined by itself (E RUt

n) and and the other of itself (E( RUt
n)) with

the consequence that our conclusion is true.
Quod erat demonstrandum.

D. The inner contradiction

Theorem 4 (The inner contradiction). In general, it is

σ(RU t)
2 ≡ E (RU t)×E (RU t) (140)

Proof by modus ponens. If the premise
+1 =+1︸ ︷︷ ︸
(Premise)

(141)

is true, then the conclusion

σ(RU t)
2 ≡ E (RU t)×E (RU t) (142)

is also true, the absence of any technical errors presupposed. The premise

+1≡+1 (143)

is true. Multiplying this premise (i. e. axiom) by RUt

RU t ≡ RU t (144)
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According to theorem 3, equation 139 it is RU t ≡ E (RU t)+E (RU t). Equation 144 changes to

RU t ≡ E (RU t)+E (RU t) (145)

Rearranging equation 145, it is
RU t−E (RU t)≡ E (RU t) (146)

Taking the expectation value, it is [see 66, p. 42]

E (RU t−E (RU t))≡ σ(RU t)≡ E (E (RU t)) (147)

Squaring equation 147, it is

σ(RU t)
2 ≡ E (RU t−E (RU t))

2 ≡ E (E (RU t))
2 (148)

According to Kolmogroff [see 66, p. 42], it is easy to calculate that σ(RU t)
2 ≡ σ (RU t)×σ (RU t)≡ E

(
RU t

2
)
−

(E (RU t))
2. In general, we obtain

σ(RU t)
2 ≡ E

(
RU t

2)− (E (RU t))
2 ≡ E (E (RU t))

2 (149)

However, equation 149 can be simplified further. The expectation value of RUt is defined (see equation 16) as
E (RU t)≡ p(RU t)× (RU t). The expectation value of RUt

2 is defined (see equation 18) as E
(

RU t
2
)
≡ p(RU t)×(

RU t
2
)
≡ p(RU t)× (RU t×RU t). Equation 149 changes to

σ(RU t)
2 ≡ (p(RU t)× (RU t×RU t))− (p(RU t)× (RU t))

2

≡ E (E (RU t))
2

(150)

and equally to

σ(RU t)
2 ≡

(
p(RU t)×

(
RU t

2))− (p(RU t)
2× (RU t)

2)
≡ E (E (RU t))

2
(151)

Equation 151 can be simplified as

σ(RU t)
2 ≡

(
RU t

2)× (p(RU t)− p(RU t)
2)

≡ E (E (RU t))
2

(152)

or as

σ(RU t)
2 ≡

(
RU t

2)× (p(RU t)× (1− p(RU t)))

≡ E (E (RU t))
2

(153)

We rearrange equation 153 further. It is

σ(RU t)
2 ≡ RU t× (p(RU t)×RU t× (1− p(RU t)))

≡ E (E (RU t))
2

(154)

Equation 154 simplifies (see definition 9, equation 17) as

σ(RU t)
2 ≡ (RU t× p(RU t))×E (RU t)

≡ E (E (RU t))
2

(155)

Furthermore, equation 155 simplifies (see definition 9, equation 16) as

σ(RU t)
2 ≡ E (RU t)×E (RU t)

≡ E (E (RU t))
2

(156)

At the end, it is
σ(RU t)

2 ≡ E (RU t)×E (RU t) (157)

In other words, our conclusion is true.
Quod erat demonstrandum.
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Remark 4. The variance is determined by the relationship between something and its own other as σ(RU t)
2 ≡

E (RU t)×E (RU t) and appears to be equally a measure of the inner contradiction between something and its own
other too. The greater the variance, the greater the inner contradiction between something and its own other,
between the rich and the non-rich, between the healthy and the non-healthy, between the local and the non-local et

cetera. The expectation value of the anti RUt, denoted as RUt, of sets follows as E (RU t)≡
σ(RU t)

2

E (RU t)
.

E. The probability of single events

Theorem 5 (The probability of single events). The complex conjugate is of use to find the probability of a single
event. A wave-function which defines the probability amplitude may be determined as a complex function like
Ψ(RU t)≡ (a(RU t)+(i×b(RU t))) while the complex conjugate of the wave-function is determined as Ψ* (RU t)≡
(a(RU t)− (i×b(RU t))) The probability of a single event is defined in terms of the complex conjugate as

Ψ(RU t)×Ψ
* (RU t)≡ p(RU t)

≡ (a(RU t)+(i×b(RU t)))× (a(RU t)− (i×b(RU t)))

≡
(
a(RU t)

2)− (i2×b(RU t)
2)

≡
(
a(RU t)

2)+ (b(RU t)
2)

(158)

Proof by modus ponens. If the premise
+1 =+1︸ ︷︷ ︸
(Premise)

(159)

is true, then the conclusion

Ψ(RU t)×Ψ
* (RU t)≡

(
a(RU t)

2)+ (b(RU t)
2) (160)

is also true, the absence of any technical errors presupposed. The premise

+1≡+1 (161)

is true. Multiplying this premise (i. e. axiom) byΨ(RU t)×Ψ* (RU t) it is

Ψ(RU t)×Ψ
* (RU t)≡Ψ(RU t)×Ψ

* (RU t) (162)

The wave-function is determined as a complex function like Ψ(RU t)≡ (a(RU t)+(i×b(RU t))) while the com-
plex conjugate of the wave-function is determined as Ψ* (RU t) ≡ (a(RU t)− (i×b(RU t))). Substituting these
relationships into equation 162 we obtain

Ψ(RU t)×Ψ
* (RU t) ≡ (a(RU t)+(i×b(RU t))) × (a(RU t)− (i×b(RU t))) (163)

or

Ψ(RU t)×Ψ
* (RU t)≡ p(RU t)

≡
(
a(RU t)

2)− (i2×b(RU t)
2)

≡
(
a(RU t)

2)+ (b(RU t)
2) (164)

Quod erat demonstrandum.

F. Anti Chebyshev - The Chebyshev equality

Theorem 6 (Anti Chebyshev - The Chebyshev equality). The Pafnuty Lvovich Chebyshev’s (1821 – 1894) inequality
(also called the Irénée-Jules Bienaymé [25] (1796 – 1878) – Chebyshev inequality) was proved by Chebyshev [98]
in 1867 and later by his student Andrey Markov (1856–1922) in his 1884 Ph.D. thesis. Chebyshev’s inequality [see
66, p. 42] is defined as

p
(
| RU t−E (RU t) |≥ 2

√
E (RU t2)

)
≤ σ(RU t)

2

E (RU t2)
(165)

However, Chebyshev’s inequality [see 66, p. 42] in this form provides only an approximate value of the exact
probability of a single event. The exact value of the probability of a single event (Chebyshev’s equality) is given
by

p(RU t)≡ 1− σ(RU t)
2

E (RU t2)
(166)
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Proof by modus ponens. If the premise
+1 =+1︸ ︷︷ ︸
(Premise)

(167)

is true, then the conclusion

p(RU t)≡ 1− σ(RU t)
2

E (RU t2)
(168)

is also true, the absence of any technical errors presupposed. The premise

+1≡+1 (169)

is true. Multiplying this premise (i. e. axiom) by the variance σ (RUt)2

σ (RU t)
2 ≡ σ (RU t)

2 (170)

Equation 170 can be rearranged (see definition 9, equation 19) as

E
(

RU t
2)− (E (RU t))

2 ≡ σ (RU t)
2 (171)

or as
E
(

RU t
2)≡ (E (RU t))

2 +σ (RU t)
2 (172)

The normalised form of the variance follows as

(E (RU t))
2

E (RU t2)
+

σ (RU t)
2

E (RU t2)
≡+1 (173)

Rearranging equation 173, it is
(E (RU t))

2

E (RU t2)
≡ 1− σ (RU t)

2

E (RU t2)
(174)

Equation 174 simplifies (see definition 7, equation 12) as

p(RU t)≡ 1− σ (RU t)
2

E (RU t2)
(175)

Quod erat demonstrandum.

G. The causal relationship k

Theorem 7 (Causal relationship k). Thus far, let p(RUt) represent the probability from the point of view of a
stationary observer R of a certain cause RUt, i. e. a random variable or a quantum mechanical observable or a
cluster inside a set, at a certain Bernoulli trial t. Let E(RUt

2) denote the expectation value of the cause RUt
2. Let

E(RUt) denote the expectation value of the cause RUt. Let σ (RUt) denote the standard deviation of the cause RUt.
Let σ (RUt)2 denote the variance of the cause RCt. Let p(RWt) represent the probability from the point of view of
a stationary observer R of its own effect RWt, i. e. a random variable or a quantum mechanical observable or a
cluster inside a set, at a certain Bernoulli trial t. Let E(RWt

2) denote the expectation value of the effect RWt
2. Let

E(RWt) denote the expectation value of the effect RWt. Let σ (RWt) denote the standard deviation of the effect RWt.
Let σ (RWt)2 denote the variance of the effect RWt. Let σ (RUt, RWt) denote the co-variance of cause RUt and effect
RWt. The causal relationship, denoted as k (RU t,RW t), inside a sets can be calculated as

k (RU t,RW t)≡
σ (RU t,RW t)

2√
σ (RU t)2×σ (RW t)2

≡ σ (RU t,RW t)

σ (RU t)×σ (RW t)

≡ (RU t× RW t)× (p(RU t,RW t)− (p(RU t)× p(RW t)))
2√
((RU t2)× (p(RU t)× (1− p(RU t)))× (RW t2)× (p(RW t)× (1− p(RW t))))

≡ (RU t× RW t)× (p(RU t,RW t)− (p(RU t)× p(RW t)))

(RU t× RW t)×
2√
((p(RU t)× (1− p(RU t)))× (p(RW t)× (1− p(RW t))))

≡ (p(RU t,RW t)− (p(RU t)× p(RW t)))
2√
((p(RU t)× (1− p(RU t)))× (p(RW t)× (1− p(RW t))))

(176)
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Proof by modus ponens. If the premise
+1 =+1︸ ︷︷ ︸
(Premise)

(177)

is true, then the conclusion

k (RU t ,RW t)≡
σ (RU t ,RW t)

σ(RU t)×σ(RW t)
(178)

is also true, the absence of any technical errors presupposed. The premise

+1≡+1 (179)

is true. Multiplying this premise (i. e. axiom) by (RU t×RW t) it is

(RU t×RW t)≡ (RU t×RW t) (180)

According to equation 21 it is

RU t ≡
σ(RU t)

2
√

p(RU t)× (1− p(RU t))
(181)

Equation 180 changes to

(RU t×RW t)≡

(
σ(RU t)

2
√

p(RU t)× (1− p(RU t))

)
×RW t (182)

According to equation 22 it is

RW t ≡
σ(RW t)

2
√

p(RW t)× (1− p(RW t))
(183)

Equation 182 changes to

(RU t×RW t)≡

(
σ(RU t)

2
√

p(RU t)× (1− p(RU t))

)
×

(
σ(RW t)

2
√

p(RW t)× (1− p(RW t))

)
(184)

According to definition 11, equation 26, it is

RU t ×RW t ≡
σ (RU t ,RW t)

(p(RU t ,RW t)− (p(RU t)× p(RW t)))
(185)

Simplifying equation 184 it is(
σ (RU t ,RW t)

(p(RU t ,RW t)− (p(RU t)× p(RW t)))

)
≡

(
σ(RU t)

2
√

p(RU t)× (1− p(RU t))

)
×

(
σ(RW t)

2
√

p(RW t)× (1− p(RW t))

)
(186)

Further rearrangement of equation 186 yields the causal relationship between the cause RUt and the effect RWt,
denoted as k (RU t ,RW t), as

k (RU t ,RW t)≡
σ (RU t ,RW t)

σ(RU t)×σ(RW t)

≡ (p(RU t ,RW t)− (p(RU t)× p(RW t)))
2
√

p(RU t)× (1− p(RU t))× p(RW t)× (1− p(RW t))

(187)

Quod erat demonstrandum.

IV. DISCUSSION
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In point of fact, it has always been this way, various amounts of data of different kind are and have been around
us for a long time. However, the nature of inquiry of data by information technologies has changed dramatically
and equally the extent to which torrents are captured inexpensively. It is therefore no wonder that an explosion
of the amount of data is becoming more and more a challenge than a sound of opportunity knocking. However,
data collected are especially of use for testing scientific human-generated hypotheses and other questions too. To
exploit the data flood and too address key questions related to data science need many more than before than
the strategy one man, one (statistical) method is not appropriate enough. There is a drift towards a data-driven
decision-making and discovery and human knowledge itself is becoming increasingly data-intensive. Therefore,
looking for insights into data demands simple to use and logically consistent mathematical tools and methods. The
causal relationship k as proofed and derived by theorem 7 is one among the many statistical methods which
is of use to analyse data for a cause effect relationship. Nonetheless, a well-informed, reasonably observant and
circumspect reader might be inclined to believe to recognise the trace of Bravais [31] (1811-1863) - Pearson’s
(1857-1936) “product - moment coefficient of correlation”[44], [79] inside the causal relationship k [3]–[5], [9]–[11].
Whereby, it is vital and of very great importance to bear the fundamental differences between Bravais - Pearson’s
product-moment coefficient of correlation and the causal relationship k in mind. Historically, according to
Pearson himself it is necessary to consider that “The fundamental theorems of correlation were for the first time
and almost exhaustively discussed by B r a v a i s (‘Analyse mathematique sur les probabilities des erreurs de
situation d’un point.’ Memoires par divers Savans, T. IX., Paris, 1846, pp. 255-332) nearly half a century ago.”[79]
In this context, neither is it epistemologically justified to elaborate once again on the issue causation [26] versus
correlation, both are not identical [93] nor does it make any sense to insist on the fact that “Pearson’s philosophy
discouraged him from looking too far behind phenomena.”[46]. Whereas it is essential to consider that the causal
relationship k, in contrast to Pearson’s product-moment coefficient of correlation [79] or to Pearson’s phi coefficient
[82], is defined, derived and valid at every single Bernoulli trial t. Indeed, this might be a very small difference.
However, a small difference can make a big impact. In this special context and in any case, this small difference
makes [14] the difference.

In particular, causal relationship k can help us to resolve the contradiction that has arisen between the quantity
of data available and the quality of human knowledge generated. Otherwise, the march into contradictions and
conflicts, made possible by enormous new sources of data, will sweep through human lives with no area that is
going to be untouched.

V. CONCLUSION

Experimental and non-experimental data can be analysed for causal relationships too.
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[3] I. Barukčić, Die Kausalität, 1. Aufl. Hamburg: Wiss.-Verl., Jan. 1989, ISBN: 3-9802216-0-1.

[4] ——, Die Kausalität, 2., völlig überarb. Aufl. Wilhelmshaven: Scientia, Jan. 1997, ISBN: 3-9802216-4-4.

[5] ——, Causality: New statistical methods. Norderstedt, Germany: Books on Demand GmbH, Jan. 2005,
ISBN: 978-3-8334-3645-1.

[6] ——, „Anti Heisenberg-Refutation Of Heisenberg’s Uncertainty Relation,“ in American Institute of Physics
- Conference Proceedings, Bd. 1327, Växjö, (Sweden), Jan. 2011, S. 322–325. DOI: 10.1063/1.
3567453. Adresse: https://aip.scitation.org/doi/abs/10.1063/1.3567453.

[7] ——, „Anti Heisenberg – Refutation of Heisenberg’s Uncertainty Principle,“ International Journal of
Applied Physics and Mathematics, Jg. 4, Nr. 4, S. 244–250, 2014. DOI: 10.7763/IJAPM.2014.V4.
292.

[8] ——, „Anti Heisenberg—The End of Heisenberg’s Uncertainty Principle,“ Journal of Applied Mathematics
and Physics, Jg. 04, Nr. 05, S. 881–887, 2016, ISSN: 2327-4352. DOI: 10.4236/jamp.2016.45096.

109

https://doi.org/10.2307/2020959
https://doi.org/10.2307/2020959
https://www.pdcnet.org/pdc/bvdb.nsf/purchase?openform&fp=jphil&id=jphil_1952_0049_0026_0797_0815
https://www.pdcnet.org/pdc/bvdb.nsf/purchase?openform&fp=jphil&id=jphil_1952_0049_0026_0797_0815
https://doi.org/10.1063/1.3567453
https://doi.org/10.1063/1.3567453
https://aip.scitation.org/doi/abs/10.1063/1.3567453
https://doi.org/10.7763/IJAPM.2014.V4.292
https://doi.org/10.7763/IJAPM.2014.V4.292
https://doi.org/10.4236/jamp.2016.45096
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