Relation between Lah matrix and

k-Fibonacci Matrix

Irda Melina Zet ${ }^{\# 1}$, Sri Gemawati ${ }^{\# 2}$, Kartini Kartini ${ }^{\# 3}$
\# Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau
Bina Widya Campus, Pekanbaru 28293, Indonesia

Abstract

The Lah matrix is represented by L_{n}, is a matrix where each entry is Lah number. Lah number is count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. k-Fibonacci matrix, $F_{n}(k)$ is a matrix which all the entries are k-Fibonacci numbers. k-Fibonacci numbers are consist of the first term being 0 , the second term being 1 and the next term depends on a natural number k. In this paper, a new matrix is defined namely A_{n} where it is not commutative to multiplicity of two matrices, so that another matrix B_{n} is defined such that $A_{n} \neq B_{n}$. The result is two forms of factorization from those matrices. In addition, the properties of the relation of Lah matrix and k Fibonacci matrix is yielded as well.

Keywords - Lah numbers, Lah matrix, k-Fibonacci numbers, k-Fibonacci matrix.

I. INTRODUCTION

Guo and Qi [5] stated that Lah numbers were introduced in 1955 and discovered by Ivo. Lah numbers are count the number of ways a set of n elements can be partitioned into k non-empty linearly ordered subsets. Lah numbers [9] is denoted by $L(n, k)$ for every n, k are elements of integers with initial value $L(0,0)=1$. Lah numbers can also be presented in Lah matrix where all the entries are Lah numbers and denoted by L_{n} [9].

Reference [1] discussed about Stirling matrix and Lah matrix with the inverses and yields some interesting properties. Reference [5] gives six proofs of Lah numbers identity property by using Lah numbers generator function, ChuVandermonde addition formula, inverse formula, Gauss hypergeometric series, and first kind Stirling numbers generator function. In [9] discussed Lah numbers and Lindstorm theorem by giving a combinatorial interpretation from Lah numbers through planar network resulting in some properties. Moreover, k-Fibonacci numbers were introduced by Falcon [2] and denoted by $F_{n, k}$ where n, k are elements of integers. The k-Fibonacci numbers can be represented into k-Fibonacci matrix where all entries are k-Fibonacci numbers. It is denoted by $F_{n}(k)$. Reference [8] talks about the relation of k-Fibonacci sequence and its generalization. Wahyuni et al. [13] introduces some identities of k-Fibonacci sequence modulo ring. Reference [2] discusses the relation between k-Fibonacci matrix and Pascal matrix where two new matrices are yielded. [10] also talks about the relation of Bell polynomial matrix and k-Fibonacci matrix such that two new matrices as form of factorization of Bell polynomial matrix.

This article discusses Lah matrix and k-Fibonacci matrix, invers of k-Fibonacci matrix which is used to find new matrices, and relationship of Lah matrix and k-Fibonacci matrix. The second section of this article discusses about Lah matrix and k-Fibonacci matrix. The third section contains the main result which is the relationship of Lah matrix and k Fibonacci matrix. Conclusion is given in the last section.

II. LAH MATRIX AND K-FIBONACCI MATRIX

In this section, we recall the notions of Lah and k-Fibonacci matrices and review some properties which we will need in the next section. Some definitions and theories related to Lah and k-Fibonacci matrices that have been discussed by several authors will also be presented.

Lah numbers are defined by Guo and Qi [5] as follows.
Definition 2.1. Lah numbers, $L(n, k)$ are defined as

$$
L(n, k)=\binom{n-1}{k-1} \frac{n!}{k!} .
$$

for n, k are natural numbers.
It can be concluded that
If $k=1$ then $L(n, 1)=n!$.
If $k=n$ then $L(n, n)=1$.
If $n<k$ then $L(n, k)=0$.
If $k=0$ then $L(n, 0)=0$.

Martinjak [9] gives recursive formula for Lah numbers:

$$
L(n+1, k)=L(n, k-1)+(n+k) L(n, k) .
$$

where n, k are integers and $n \geq k$ with intial value $L(0,0)=1$.
Lah matrix is a lower triangle matrix with every entry is Lah number. Definition of Lah matrix according to Martinjak [9] is given below.

Definition 2.2. Let $L(i, j)$ be Lah numbers. The $n \times n$ Lah matrix is denoted by $L_{n}=\left[l_{i, j}\right]$ where $i, j=1,2, \ldots, n$ and defined as

$$
l_{i, j}=\left\{\begin{array}{cc}
L(i, j) & \text { if } \quad i \geq j \\
0, & \text { otherwise }
\end{array}\right.
$$

The general form of Lah matrix is

$$
L_{n}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
l_{2,1} & 1 & 0 & 0 & 0 & 0 \\
l_{3,1} & l_{3,2} & 1 & 0 & 0 & 0 \\
l_{4,1} & l_{4,2} & l_{4,3} & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 \\
l_{n, 1} & l_{n, n-1} & l_{n, n-2} & l_{n, n-3} & \cdots & 1
\end{array}\right] .
$$

From the general form above, it can be seen that the main diagonal is 1 and the determinant (det) of L_{n} is obtained from the multiplication of the diagonal entries and so $\operatorname{det}\left(L_{n}\right)=1$. Since $\operatorname{det}\left(L_{n}\right) \neq 0$ then L_{n} has inverse. Engbers et al. [1] defines matrix inverse of Lah matrix as follows.

Definition 2.3. Let $L(i, j)$ be Lah numbers and $L_{n}=\left[l_{i, j}\right]$ be $n \times n$ Lah matrix. The inverse of Lah matrix is $L_{n}^{-1}=$ $\left[(-1)^{i-j} l_{i, j}\right]$ where $i, j=1,2, \ldots, n$.

The following is the general form of Lah matrix:

$$
L_{n}^{-1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-l_{2,1} & 1 & 0 & 0 & 0 & 0 \\
l_{3,1} & -l_{3,2} & 1 & 0 & 0 & 0 \\
-l_{4,1} & l_{4,2} & -l_{4,3} & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 \\
l_{n, 1} & -l_{n, n-1} & l_{n, n-2} & -l_{n, n-3} & \cdots & 1
\end{array}\right] .
$$

The notion of k-Fibonacci numbers defined by Falcon [3] is given below.
Definition 2.4. For any integer number $k \geq 1$, the $k^{\text {th }}$ Fibonacci sequence, say $\left\{F_{k, n}\right\}_{n \in N}$ is defined recurrently by $F_{k, 0}=0, F_{k, 1}=1$, dan $F_{k, n+1}=k F_{k, n}+F_{k, n-1}$ for any $n \geq 1$.

The k-Fibonacci numbers can also be represented in a lower triangular matrix where each entry is k-Fibonacci number. This definition is given in [2].

Definition 2.5. Let $F_{k, n}$ be $n^{\text {th }} k$-Fibonacci number, the $n \times n k$-Fibonacci matrix as the unipotent lower triangular matrix $F_{n}(k)=\left[f_{i, j}\right]_{i, j=1, \ldots, n}$ defined with entries. That is

$$
f_{i, j}(k)=\left\{\begin{array}{lr}
F_{k, i-j+1} & \text { if } i \geq j \\
0, & \text { otherwise } i<j
\end{array}\right.
$$

Generally, k-Fibonacci matrix is written in this form

$$
F_{n}(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
F_{k, 2} & 1 & 0 & 0 & 0 & 0 \\
F_{k, 3} & F_{k, 2} & 1 & 0 & 0 & 0 \\
F_{k, 4} & F_{k, 3} & F_{k, 2} & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 \\
F_{k, n} & F_{k, n-1} & F_{k, n-2} & F_{k, n-3} & \cdots & 1
\end{array}\right] .
$$

From the above general formula of k-Fibonacci matrix it can be seen that the main diagonal is 1 and determinant (det) is yielded from the multiplication of the entries of the diagonal and so that $\operatorname{det}\left(F_{n}(k)\right)=1$. Since $\left.\operatorname{det} F_{n}(k)\right) \neq 0, F_{n}(k)$ is has inverse. Falcon [2] defines the inverse matrix of the k-Fibonacci matrix as follows.

Definition 2.6. Let $F_{n}^{-1}(k)$ be inverse matrix of the k-Fibonacci matrix, the $n \times n$ inverse k-Fibonacci matrix as lower triangular matrix $F_{n}^{-1}(k)=\left[f_{i, j}^{\prime}(k)\right]_{i, j=1, \ldots, n}$ where

$$
f_{i, j}^{\prime}(k)=\left\{\begin{array}{rc}
1 & \text { if } j=i \\
-k & \text { if } j=i-1 \\
-1 & \text { if } j=i-2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Since $F_{n}(k)$ has inverse, then $F_{n}(k) F_{n}^{-1}(k)=I_{n}=F_{n}^{-1}(k) F_{n}(k)$. Therefore k-Fibonacci $F_{n}(k)$ is an invertible matrix. Generally k-Fibonacci matrix can be written by

$$
F_{n}^{-1}(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-k & 1 & 0 & 0 & 0 & 0 \\
-1 & -k & 1 & 0 & 0 & 0 \\
0 & -1 & -k & 1 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & 0 & -1 & -k & 1
\end{array}\right] .
$$

From the general form above, it can be concluded that each entry of the inverse of the k-Fibonacci matrix is $1,-k,-1$, and 0 . In other words, the entry of $F_{n}^{-1}(k)$ for any n is fixed.

III. RELATION BETWEEN LAH MATRIX AND K-FIBONACCI MATRIX

Relationship of Lah matrix and k-Fibonacci matrix is obtained from multiplication of two matrices, which is multiplication of inverse of k-Fibonacci matrix and Lah matrix and the other way around. It starts from multiplying 2×2 matrices, follows by 3×3 and eventually a new matrix is obtained. To construct the general form of the new matrix, the properties of this new matrix should be investigated. Therefore, a larger size of matrices are needed. To make the calculation easier, software Maple 13 is used. In the first factorization, a new matrix A_{n}, for any n integer, is obtained from multiplying inverse of k-Fibonacci matrix and Lah matrix. In the second factorization, a new matrix B_{n} is yielded from multiplying Lah matrix and k-Fibonacci inverse matrix.

A. First Factorization of Lah matrix and k-Fibonacci Matrix

To get the relationship of Lah matrix and k-Fibonacci matrix, multiply two 2×2 matrices which are inverse of k Fibonacci matrix $F_{2}^{-1}(k)$ and L_{2} Lah matrix and obtain

$$
F_{2}^{-1}(k) L_{2}=\left[\begin{array}{cc}
1 & 0 \\
-k & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
2-k & 1
\end{array}\right]=A_{2}
$$

For $n=3$, by multiplying inverse of k-Fibonacci $F_{3}^{-1}(k)$ matrix and Lah matrix L_{3} it is obtained

$$
F_{3}^{-1}(k) L_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-k & 1 & 0 \\
-1 & -k & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
6 & 6 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2-k & 1 & 0 \\
5-2 k & 6-k & 1
\end{array}\right]=A_{3}
$$

Then, for $n>3$, multiplication of inverse of k-Fibonacci matrix and Lah matrix is done by Maple 13. By investigating each entry of A_{4} for $i=j$ entry the entries of the diagonal is 1 and for $i>j$ the following construction is given :
i. In the first row, $a_{1,1}=1, a_{1, j}=0$ for $j \geq 2$.
ii. In the second row, $a_{2,1}=2-k, a_{2,2}=1, a_{2, j}=0$ for $j \geq 3$.
iii. In the third row $a_{3,1}=5-2 k, a_{3,2}=6-k, a_{3,3}=1, a_{3, j}=0$ for $j \geq 3$.
iv. $\quad a_{i, j}=1$ for any $i=j$ and for $i<j, a_{i, j}=0$.

The entry of A_{4} matrix is listed in the following Table 3.1
By investigating the entries of A_{4} for $i \geq j$, the value of entries of A_{4} can be derived as listed in the table below.

Table 3.1: Elements of A_{n}

Entries of A_{n}	Value of the entries of A_{n}
$a_{1,1}$	$(1) l_{1,1}=L(1,1)$
$a_{2,2}$	$(1) l_{2,2}=L(2,2)$
$a_{3,3}$	$(1) l_{3,3}=L(3,3)$
$a_{4,4}$	$(1) l_{4,4}=L(4,4)$
$a_{2,1}$	$(1) l_{2,1}+(-k) l_{1,1}=L(2,1)-k L(1,1)$
$a_{3,2}$	$(1) l_{3,2}+(-k) l_{2,2}=L(3,2)-k L(2,2)$
$a_{4,3}$	$(1) l_{4,3}+(-k) l_{3,3}=L(4,3)-k L(3,3)$
$a_{3,1}$	$(1) l_{3,1}+(-k) l_{2,1}+(-1) l_{1,1}=L(3,1)-k L(2,1)-L(1,1)$
$a_{4,2}$	$(1) l_{4,2}+(-k) l_{3,2}+(-1) l_{2,2}=L(4,2)-k L(3,2)-L(2,2)$
$a_{4,1}$	$(1) l_{4,1}+(-k) l_{3,1}+(-1) l_{2,1}+(0)(1) l_{1,1}=L(4,1)-k L(3,1)-L(2,1)$
\vdots	\vdots
$a_{i, j}$	$L(i, j)-k L(i-1, j)-L(i-2, j)$

Hence, multiplication of inverse of k-Fibonacci matrix and Lah matrix yields a new matrix A_{n} and the definition generally is given as follows.
Definition 3.1. For every natural number n, it is defined an $(n+1) \times(n+1)$ matrix $A_{n}=\left[a_{i, j}\right]$ with $i, j=0,1,2, \ldots, n$ as follows

$$
a_{i, j}=L(i, j)-k L(i-1, j)-L(i-2, j) .
$$

From the definition above, $a_{i, j}=1$ for every $i=j, a_{i, j}=0$ when $i<j$. For every $i>j$, apply $a_{i, j}=L(i, j)-$ $k L(i-1, j)-L(i-2, j)$.

From definitions of Lah matrix, k-Fibonacci matrix, and A_{n} matrix, the following theorem is derived.
Theorem 3.2. Lah matrix defined in Definition 2.2 can be defined as multiplication of k-Fibonacci $F_{n}(k)$ defined in Definition 2.5 with A_{n} and given as $L_{n}=F_{n}(k) A_{n}$.

Proof. Since k-Fibonacci matrix $F_{n}(k)$ has inverse, it will be proven that

$$
A_{n}=F_{n}^{-1}(k) L_{n} .
$$

Suppose $F_{n}^{-1}(k)$ is inverse of k-Fibonacci matrix so that the main diagonal is $1 . L_{n}$ is Lah matrix and so the main diagonal is also 1 . Multiplication of $F_{n}^{-1}(k)$ with L_{n} yields a new matrix with main diagonal 1 . If $i=j$ then $a_{i, j}=1$ and if $i<j$ then $a_{i, j}=0$, and for every $i>2$ then

$$
\begin{aligned}
a_{i, j} & =f_{i, i}^{\prime}(k) l_{i, j}+f_{i, i-1}^{\prime}(k) l_{i-1, j}+f_{i, i-2}^{\prime}(k) l_{i-2, j}+f_{i, i-3}^{\prime}(k) l_{i-3, j}+\cdots+f_{i, n}^{\prime}(k) l_{n, j}, \\
& =\sum_{r=1}^{n} f_{i, r}^{\prime}(k) l_{r, j} .
\end{aligned}
$$

It can be concluded that $F_{n}^{-1}(k) L_{n}=A_{n}$. Hence $L_{n}=F_{n}(k) A_{n}$.
Theorem 3.2 gives the relation of Lah numbers and k-Fibonacci numbers defined in Theorem 3.3.
Theorem 3.3. Suppose $L(i, j)$ is Lah number defined in Definition 2.1 and $F_{k, n}$ is the k-Fibonacci numbers defined in Definition 2.5. Then for $i \geq j+2$,

$$
L(i, j)=F_{k, i-j+1}+\left(j^{2}+j-k\right) F_{k, i-j}+\sum_{r=j+2}^{i}(L(r, j)-k L(r-1, j)-L(r-2, j)) F_{k, i-r+1}
$$

For $i<j+2$ it is obtained that $L(i, j)=F_{k, i-j+1}+\left(j^{2}+j-k\right) F_{k, i-j}$ and for $i<j$ then $L(i, j)=0$ for i to be natural numbers.

Proof.

From Definition 3.2

$$
\begin{aligned}
a_{j, j}= & L(j, j)=1 \\
a_{j+1, j}= & L(j+1, j)-k L(j, j)-L(j-1, j) \\
& =j(j+1)-k(1)-0 \\
& =j^{2}+j-k
\end{aligned}
$$

for $r \geq j+2$
$a_{t, j}=L(r, j)-k L(r-1, j)-L(r-2, j)$.
Definition 2.5 and Theorem 3.2 gives the following

$$
\begin{aligned}
L(i, j) & =l_{i, j} \\
= & \sum_{r=j}^{i} f_{i, r}(k) a_{r, j} \\
= & \sum_{r=j}^{i} F_{k, i-r+1} a_{r, j} \\
= & F_{k, i-j+1} a_{j, j}+F_{k, i-(j+1)+1} a_{j+1, j}+\sum_{r=j+2}^{i} F_{k, i-r+1} a_{r, j} \\
= & F_{k, i-j+1}+F_{k, i-j}\left(j^{2}+j-k\right)+\sum_{r=j+2}^{i} F_{k, i-r+1}(L(r, j)-k L(r-1, j)-L(r-2, j)) \\
L(i, j) & =F_{k, i-j+1}+\left(j^{2}+j-k\right) F_{k, i-j}+\sum_{r=j+2}^{i}(L(r, j)-k L(r-1, j)-L(r-2, j)) F_{k, i-r+1} .
\end{aligned}
$$

B. Second Factorization for Lah matrix and k-Fibonacci Matrix

To find the relation of Lah matrix and k-Fibonacci matrix from second factorization, multiplication of two matrices is needed. It is done by multiplying Lah matrix L_{n} and $F_{n}^{-1}(k)$ inverse of k-Fibonacci matrix and eventually yielding a new matrix called B_{n}. It starts from multiplying 2×2 matrices such that the following is obtained.

$$
L_{2} F_{2}^{-1}(k)=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-k & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
2-k & 1
\end{array}\right]=B_{2}
$$

Then proceed with multiplication of 3×3 matrices to get

$$
L_{3} F_{3}^{-1}(k)=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
6 & 6 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-k & 1 & 0 \\
-1 & -k & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2-k & 1 & 0 \\
5-6 k & 6-k & 1
\end{array}\right]=B_{3} .
$$

Then, for $n>3$ is done by Maple 13 to get the general form. By observing each entry of B_{4} it can be seen that for $i=j$ the entry in the main diagonal is 1 and for $i>j$ a simple construction is obtained as follows:
i. In the first row $b_{1,1}=1, b_{1, j}=0$ for $j \geq 2$.
ii. In the second row $b_{2,1}=2-k, b_{2,2}=1, b_{2, j}=0$ for $j \geq 3$.
iii. In the third row $b_{3,1}=5-6 k, b_{3,2}=6-k, b_{3,3}=1, b_{3, j}=0$ for $j \geq 3$.
iv. The entry is $b_{i, j}=1$ for every $i=j$ and for $i<j$ the entry is $b_{i, j}=0$.

By observing entries of B_{4} for $i \geq j$, all entries of B_{4} is listed in the following Table 3.2

Table 3.2: Elements of B_{n}

Entries B_{n}	The value of entries of B_{n}
$b_{1,1}$	$(1) l_{1,1}=L(1,1)$
$b_{2,2}$	$(1) l_{2,2}=L(2,2)$
$b_{3,3}$	$(1) l_{3,3}=L(3,3)$
$b_{4,4}$	$(1) l_{4,4}=L(4,4)$
$b_{2,1}$	$(1) l_{2,1}+(-k) l_{2,2}=L(2,1)-k L(2,2)$
$b_{3,2}$	$(1) l_{3,2}+(-k) l_{3,3}=L(3,2)-k L(3,3)$
$b_{4,3}$	$(1) l_{4,3}+(-k) l_{4,4}=L(4,3)-k L(4,4)$
$b_{3,1}$	$(1) l_{3,1}+(-k) l_{3,2}+(-1) l_{3,3}=L(3,1)-k L(3,2)-L(3,3)$
$b_{4,2}$	$(1) l_{4,2}+(-k) l_{4,3}+(-1) l_{4,4}=L(4,2)-k L(4,3)-L(4,4)$
$b_{4,1}$	$(1) l_{4,1}+(-k) l_{4,2}+(-1) l_{4,3}+(0)(1) l_{4,4}=L(4,1)-k L(4,2)-L(4,3)$
\vdots	
$b_{i, j}$	$L(i, j)-k L(i, j+1)-L(i, j+2)$

So, Lah matrix and inverse of k-Fibonacci matrix multiplication gives a new matrix, which is B_{n} where the general definition is given by the following.
Definition 3.4. For every n being natural number, the $n \times n$ matrix B_{n} with entry $B_{n}=\left[b_{i, j}\right]$ for every $i, j=1,2, \ldots, n$, is defined as follows

$$
b_{i, j}=L(i, j)-k L(i, j+1)-L(i, j+2) .
$$

It is easy to see that $b_{i, j}=1$ for every $i=j, b_{i, j}=0$ for every $i<j$. Moreover, for $i>j$ then

$$
b_{i, j}=L(i, j)-k L(i, j+1)-L(i, j+2) .
$$

The following theorem is constructed from defining B_{n} matrix, Lah matrix, and k-Fibonacci matrix.
Theorem 3.5 Lah matrix defined in Definition 2.2 can be stated as multiplication of k-Fibonacci $F_{n}(k)$ in Definition 2.5 and B_{n} matrix in Definition 3.4 for n and k to be natural numbers such that $L_{n}=B_{n} F_{n}(k)$.

Proof. Since k-Fibonacci matrix $F_{n}(k)$ has inverse it will be proven that

$$
B_{n}=L_{n} F_{n}^{-1}(k) .
$$

Suppose L_{n} is Lah matrix, then the main diagonal of Lah matrix is $1 . F_{n}^{-1}(k)$ is inverse of k-Fibonacci matrix, then the main diagonal of inverse of k-Fibonacci matrix is also 1 . Multiplication of Lah matrix L_{n} and inverse of k-Fibonacci matrix $F_{n}^{-1}(k)$ resulting in a new matrix with main diagonal 1 . Then, if $i=j$ then $b_{i, j}=1$ and if $i<j$ then $b_{i, j}=0$, and for $i>2$ then

$$
\begin{aligned}
b_{i, j} & =l_{i, j} f_{j, j}^{\prime}(k)+l_{i, j+1} f_{j+1, j}^{\prime}(k)+l_{i, j+2} f_{j+2, j}^{\prime}(k)+l_{i, j+3} f_{j+3, j}^{\prime}(k)+\cdots+l_{i, n} f_{n, j}^{\prime}(k), \\
& =\sum_{r=1}^{n} l_{i, r} f_{r, j}^{\prime}(k)
\end{aligned}
$$

It can be concluded that $L_{n} F_{n}^{-1}(k)=B_{n}$. Hence, $L_{n}=B_{n} F_{n}(k)$.
From Theorem 3.5, it can derived the following properties
Theorem 3.6. Let $L(i, j)$ to be Lah numbers defined in Definition 2.1 and $F_{k, n}$ to be k-Fibonacci numbers defined in Definition 2.5 then for $i \geq j+2$

$$
L(i, j)=F_{k, i-j+1}+\left(i^{2}-i-k\right) F_{k, i-j}+\sum_{r=j}^{i-2}(L(i, r)-k L(i, r+1)-L(i, r+2)) F_{k, r-j+1}
$$

$L(i, j)=F_{k, i-j+1}+\left(i^{2}-i-k\right) F_{k, i-j}$ for $i<j+2$ and for $i<j$ then $L(i, j)=0$ for natural numbers i.
Proof. From Definition 3.4,
$b_{i, i}=L(i, i)=1$,
$\begin{aligned} b_{i, i-1} & =L(i, i-1)-k L(i, i)-L(i, i+1) \\ & =i(i-1)-k(1)-0 \\ & =i^{2}-i-k,\end{aligned}$
For $j \leq r \leq i-2$ then
$b_{i, t}=L(i, r)-k L(i, r+1)-L(i, r+2)$.
Then, from Definition 2.5 and Theorem 3.5

$$
\begin{aligned}
L(i, j) & =l_{i, j}^{i} \\
& =\sum_{\substack{i=j}}^{i} b_{i, r} f_{r, j}(k) \\
& =\sum_{r=j}^{i} b_{i, r} F_{k, r-j+1} \\
& =b_{i, i} F_{k, i-j+1}+b_{i, i-1} F_{k, i-1-j+1}+\sum_{r=j}^{i-2} b_{i, r} F_{k, r-j+1} \\
& =F_{k, i-j+1}+\left(i^{2}-i-k\right) F_{k, i-j}+\sum_{r=j}^{i-2}\left(L_{i, r}-k L_{i, r+1}-L_{i, r+2}\right) F_{k, r-j+1}
\end{aligned}
$$

$$
L(i, j)=F_{k, i-j+1}+\left(i^{2}-i-k\right) F_{k, i-j}+\sum_{r=j}^{i-2}(L(i, r)-k L(i, r+1)-L(i, r+2)) F_{k, r-j+1}
$$

IV. CONCLUSION

This article discusses about the relation of Lah matrix and k-Fibonacci matrix. From this relation, derived two kinds of Lah matrix factorization. The first factorization gives a new matrix that is obtained from multiplication of inverse of k-Fibonacci matrix and Lah matrix. The second factorization gives a new matrix that is yielded from multiplication of Lah matrix and inverse of k-Fibonacci matrix. These new matrices are difference. In addition, some properties that also states the relation of Lah numbers and k-Fibonacci numbers are also obtained.

REFERENCES

[1] J. Engbers, D. Galvin, and C. Smyth, Restricted Stirling and Lah number matrices and their inverses, Journal of Combinatorial Theory Series A, 161 (2017), 1-26.
[2] S. Falcon, The k-Fibonacci matrix and the Pascal matrix, Central European Journal of Mathematics, 9 (6), 2011, 1403-1410.
[3] S. Falcon and A. Plaza, k-Fibonacci sequences modulo m, Chaos Solitons \& Fractals, 41 (2009), 497-504.
[4] S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons \& Fractals, 32 (2007), 1615-1624.
[5] B. Guo and F. Qi, Six Proofs for an Identity of the Lah Numbers, Online Journal of Analytic Combinatorics, 10 (2015), 1-5.
[6] V. E. Hoggat, Fibonacci and Lucas Numbers, Houghton-Mifflin, Palo Alto, CA., 1969.
[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley Interscience, New York, 2001.
[8] G. Y. Lee and J. S. Kim, The linear algebra of the k-Fibonacci matrix, Linear Algebra and its Applications, Elsevier, 373 (2003), 7587.
[9] I. Martinjak, Lah Number and Lindstrom's Lemma, Comptes Rendus Mathematique, 356(2017), 1-4.
[10] Mawaddaturrohmah and S. Gemawati, Relationship of Bell's Polynomial Matrix and k-Fibonacci Matrix, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 65(2020), 29-38.
[11] R. Munir, Metode Numerik, Informatika : Bandung, 2008.
[12] G. P. S. Rathore, A. A Wani, and K. Sisodiya, Matrix Representation of Generalized k-Fibonacci Sequence, OSR Journal of Mathematics, 12 (2016), 67-72.
[13] T. Wahyuni, S. Gemawati, and Syamsudhuha, On some Identities of k-Fibonacci Sequences Modulo Ring Z_{6} and Z_{10}, Applied Mathematical Sciences, 12 (2018), 441-448.

