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Abstract. - The Lah matrix is represented by L,,, is a matrix where each entry is Lah number. Lah number is count the
number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. k-Fibonacci matrix, F, (k)
is a matrix which all the entries are k-Fibonacci numbers. k-Fibonacci numbers are consist of the first term being 0, the
second term being 1 and the next term depends on a natural number k. In this paper, a new matrix is defined namely 4,,
where it is not commutative to multiplicity of two matrices, so that another matrix B, is defined such that A,, # B,. The
result is two forms of factorization from those matrices. In addition, the properties of the relation of Lah matrix and k-
Fibonacci matrix is yielded as well.
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I. INTRODUCTION

Guo and Qi [5] stated that Lah numbers were introduced in 1955 and discovered by Ivo. Lah numbers are count the
number of ways a set of n elements can be partitioned into k non-empty linearly ordered subsets. Lah numbers [9] is
denoted by L(n, k) for every n, k are elements of integers with initial value L(0,0) = 1. Lah numbers can also be
presented in Lah matrix where all the entries are Lah numbers and denoted by L,, [9].

Reference [1] discussed about Stirling matrix and Lah matrix with the inverses and yields some interesting
properties. Reference [5] gives six proofs of Lah numbers identity property by using Lah numbers generator function, Chu-
Vandermonde addition formula, inverse formula, Gauss hypergeometric series, and first kind Stirling numbers generator
function. In [9] discussed Lah numbers and Lindstorm theorem by giving a combinatorial interpretation from Lah numbers
through planar network resulting in some properties. Moreover, k-Fibonacci numbers were introduced by Falcon [2] and
denoted by F,;, where n, k are elements of integers.The k-Fibonacci numbers can be represented into k-Fibonacci matrix
where all entries are k-Fibonacci numbers. It is denoted by E, (k). Reference [8] talks about the relation of k-Fibonacci
sequence and its generalization. Wahyuni et al. [13] introduces some identities of k-Fibonacci sequence modulo ring.
Reference [2] discusses the relation between k-Fibonacci matrix and Pascal matrix where two new matrices are yielded.
[10] also talks about the relation of Bell polynomial matrix and k-Fibonacci matrix such that two new matrices as form of
factorization of Bell polynomial matrix.

This article discusses Lah matrix and k-Fibonacci matrix, invers of k-Fibonacci matrix which is used to find new
matrices, and relationship of Lah matrix and k-Fibonacci matrix. The second section of this article discusses about Lah
matrix and k-Fibonacci matrix. The third section contains the main result which is the relationship of Lah matrix and k-
Fibonacci matrix. Conclusion is given in the last section.

I1. LAH MATRIX AND K-FIBONACCI MATRIX

In this section, we recall the notions of Lah and k-Fibonacci matrices and review some properties which we will need
in the next section. Some definitions and theories related to Lah and k-Fibonacci matrices that have been discussed by
several authors will also be presented.

Lah numbers are defined by Guo and Qi [5] as follows.

Definition 2.1. Lah numbers, L(n, k) are defined as
L(n, k) = (:—1 n! .

Y
for n, k are natural numbers.

It can be concluded that

If k =1then L(n,1) = nl.
If k =nthenL(n,n) = 1.
Ifn < kthen L(n, k) = 0.
If k = 0then L(n,0) = 0.
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Martinjak [9] gives recursive formula for Lah numbers:
Lin+1,k)=Lnk—1)+ (n+k)L(nk).
where n, k are integers and n = k with intial value L(0,0) = 1.

Lah matrix is a lower triangle matrix with every entry is Lah number. Definition of Lah matrix according to
Martinjak [9] is given below.

Definition 2.2. Let L(i,j) be Lah numbers. The n X n Lah matrix is denoted by L, = [[; ;] where i,j =1,2,...,n and
defined as
L = {L(i,j) if i>],
2 0, otherwise.
The general form of Lah matrix is

[1r o 0 0 0 0]
L 1 0 0 0 0
L = l3; U3z 1 0 0 0
" Ly lap las 1 0 ol
| . . . . 0|
l ln,l ln,n—l ln,n—z ln,n—3 1J

From the general form above, it can be seen that the main diagonal is 1 and the determinant (det) of L,, is obtained
from the multiplication of the diagonal entries and so det (L,,) = 1. Since det (L,) # 0 then L, has inverse. Engbers et al.
[1] defines matrix inverse of Lah matrix as follows.

Definition 2.3. Let L(i,j) be Lah numbers and L, = [I;;] be n x n Lah matrix. The inverse of Lah matrix is L' =
[(-1)"71;;] where i,j =1,2,..,n.

The following is the general form of Lah matrix:

1 0 0 0 0 0
[—lz.l 1 0 0 0 0 ]
11 | La —l3z 1 0 0 0 |
" _l —lay laz =l 1 0 Ol.
| : : : : . 0|
l ln.l _ln,n—l ln,n—z _ln,n—3 1J

The notion of k-Fibonacci numbers defined by Falcon [3] is given below.

Definition 2.4. For any integer number k > 1, the k™ Fibonacci sequence, say {Fy n}nen is defined recurrently by
Fro=0, F,iy=1,dan Fypiq =k Fyp + Fypq forany n>1.

The k-Fibonacci numbers can also be represented in a lower triangular matrix where each entry is k-Fibonacci
number. This definition is given in [2].

Definition 2.5. Let F,, be n*" k-Fibonacci number, the n x n k-Fibonacci matrix as the unipotent lower triangular matrix
Fn (k) = [fijlij=1,..n defined with entries. That is
Frizi
£ = {0 i—j+1

Generally, k-Fibonacci matrix is written in this form

ifi = j,
otherwise i < j.

1 0 0 0 0 0
Fep, 1 0 0 0 0
_|Frs Fre 1 0 0 0 I
Fally = Fy s F 3 F2 1 0 ol
| : ol
len Fkn—l Fkn—z Fkn—3 1J
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From the above general formula of k-Fibonacci matrix it can be seen that the main diagonal is 1 and determinant (det)
is yielded from the multiplication of the entries of the diagonal and so that det (F,(k)) = 1. Since det E,(k)) # 0, E,(k) is
has inverse. Falcon [2] defines the inverse matrix of the k-Fibonacci matrix as follows.

Definition 2.6. Let F ~1(k) be inverse matrix of the k-Fibonacci matrix, the n X n inverse k-Fibonacci matrix as lower
triangular matrix F ~1(k) = [fi;)]i j=1,.,n Where

1 ifj=1i,
, ) -k ifj=i-1,
fuj () = {—1 ifj=i-2,
t 0 otherwise,

Since E,(k) has inverse, then F,(k) F;1(k) = I, = E;*(k)FE, (k). Therefore k-Fibonacci F,(k) is an invertible
matrix. Generally k-Fibonacci matrix can be written by

1 0 0 0 0 0
[—k 1 0 0 0 0]
RrO=9 T b oo o
0 0 0 -1 -k 1

From the general form above, it can be concluded that each entry of the inverse of the k-Fibonacci matrix is
1,—k,—1, and 0. In other words, the entry of E;1(k) for any n is fixed.

11l. RELATION BETWEEN LAH MATRIX AND K-FIBONACCI MATRIX

Relationship of Lah matrix and k-Fibonacci matrix is obtained from multiplication of two matrices, which is
multiplication of inverse of k-Fibonacci matrix and Lah matrix and the other way around. It starts from multiplying 2 x 2
matrices, follows by 3 x 3 and eventually a new matrix is obtained. To construct the general form of the new matrix, the
properties of this new matrix should be investigated. Therefore, a larger size of matrices are needed. To make the
calculation easier, software Maple 13 is used. In the first factorization, a new matrix A,,, for any n integer, is obtained
from multiplying inverse of k-Fibonacci matrix and Lah matrix. In the second factorization, a new matrix B,, is yielded
from multiplying Lah matrix and k-Fibonacci inverse matrix.

A. First Factorization of Lah matrix and k-Fibonacci Matrix
To get the relationship of Lah matrix and k-Fibonacci matrix, multiply two 2 x 2 matrices which are inverse of k-

Fibonacci matrix F; (k) and L, Lah matrix and obtain

-1 _[1 0111 0o1_1 1 0] _
F2 (k)LZ_[—k 1”2 1 _[z—k 1]_‘42'
For n = 3, by multiplying inverse of k- Fibonacci F;1(k) matrix and Lah matrix L5 it is obtained

1 00 1 0 0
Fil(k) Ly = [ HZ 1 0] 2—k 1 0] = As.
-1 —k 1Ile 6 1 5-2k 6-k 1

Then, for n > 3, multiplication of inverse of k-Fibonacci matrix and Lah matrix is done by Maple 13. By
investigating each entry of A, for i = j entry the entries of the diagonal is 1 and for i > j the following construction is
given :

i Inthe firstrow, a;; =1, a,; = 0for j > 2.
ii. Inthe second row, a,; =2 —k,a,, =1,a,; =0forj = 3.
iii. Inthe thirdrow az; =5 — 2k, a3, =6 —k,a33 =1, a3 ;= 0forj = 3.
iv. a;;j=1foranyi=jandfori <j, a;; =0.
The entry of A, matrix is listed in the following Table 3.1
By investigating the entries of A, for i > j, the value of entries of A, can be derived as listed in the table below.
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Table 3.1: Elements of 4,

Entries of 4, Value of the entries of 4,
1,1 Dl =LAD
azp D) Le =L(22)
aszs (1) 33 =L(33)
Ay q ¢y l4,4 =L(44)
az1 (D)l + (k) Iy = L(21) — kL(L,1)
asz Dl + (k) L2 = L(3,2) — kL(2,2)
Ay (Dlys + (k) I35 = L(4,3) — kL(3,3)
Qs Wl + (k) L+ (DL, =L(31) —kL(2,1) - L(L1)
Qg2 Dl + (k) L3, + (=1) L, = L(42) — kL(3,2) — L(2,2)
Qa1 (1)14,1 + (_k) 13,1 + (_1) lz,1 + (0) (1)11,1 = L(4’:1) - kL(3:1) - L(2:1)
o LG j) — kLG — 1)) — LG - 2.))

Hence, multiplication of inverse of k-Fibonacci matrix and Lah matrix yields a new matrix A,, and the definition generally
is given as follows.
Definition 3.1. For every natural number n, it is defined an (n + 1) X (n + 1) matrix 4, = [a;;] with {,j =0,1,2,..,n
as follows
ag;j=L(,j)—kL{—1,j)—L3{-2)).

From the definition above, a;; =1 for every i=j, a;; =0 when i <j. For every i > j, apply a;; = L(i,j) —
ELG—-1,))—L({-2)).

From definitions of Lah matrix, k-Fibonacci matrix, and A,, matrix, the following theorem is derived.
Theorem 3.2. Lah matrix defined in Definition 2.2 can be defined as multiplication of k-Fibonacci F, (k) defined in
Definition 2.5 with A,, and given as L, = E, (k) A,.

Proof. Since k-Fibonacci matrix F, (k) has inverse, it will be proven that
Ap = Fn_l(k) Ly.

Suppose E; (k) is inverse of k-Fibonacci matrix so that the main diagonal is 1. L, is Lah matrix and so the main
diagonal is also 1. Multiplication of £, ' (k) with L, yields a new matrix with main diagonal 1. If i =jthen a;; = 1 and
if i <jthena;; =0,and foreveryi > 2then

a;j = fii(k) Lij + filioa () sy j + filioa(R) Limgj + filios(K) iz j + - + filn () Ly,

n
= > 100 L.
r=1

It can be concluded that E;1(k) L, = A,.Hence L,, = E,(k) A,,. ]

Theorem 3.2 gives the relation of Lah numbers and k-Fibonacci numbers defined in Theorem 3.3.
Theorem 3.3. Suppose L(i,j) is Lah number defined in Definition 2.1 and Fj,,, is the k-Fibonacci numbers defined in
Definition 2.5. Then for i > j + 2,

i
L(i,j) = Friojer + G2+ — k) Fii—j + Z L) —kLlr—21,)) =L —=2,j)Fci—rs-
r=j+2
Fori <j+ 2 itis obtained that L(i, /) = Fy;_j+1 + (j* +j — k) Fy;_; and for i < j then L(i,j) = 0 for i to be natural
numbers.

Proof.
From Definition 3.2
aj,j = L(_],]) = 1,

415 = LG+ 1)) —kLG,j) = LG —1,))
=j+1)—-k(1)-0
=j2 +J -k,
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forr=j+2
ag; =L, ) —kL(r = 1,)) = L(r = 2,)).

Definition 2.5 and Theorem 3.2 gives the following
L(i'j) =' li,j
L

= > fill)
r=j

i
= Z Fk,i—r+1 Qr,j
r=j

L
= Fri—j+1 4j + Fri-G+n+1 G+1; + Z Fri—r+1 Q)
r=j+2

L
= oo + P G2 4 =10+ ) Fgopin (L)) = kLG = 1)) = L0 = 2,)))
r=j+2

L)) = Frimjur + G2 +J = 5 Fioj + ZpmjoL () —kL(r = 1)) = L(r = 2,))) Fyimraa- u

B. Second Factorization for Lah matrix and k-Fibonacci Matrix
To find the relation of Lah matrix and k-Fibonacci matrix from second factorization, multiplication of two matrices is

needed. It is done by multiplying Lah matrix L,, and E;1(k) inverse of k-Fibonacci matrix and eventually yielding a new
matrix called B, . It starts from multiplying 2 x 2 matrices such that the following is obtained.

g~ 1 OI]1 O1_1 1 0]_
LoFy () = [2 1] [—k 1] - [Z—k 1] =B
Then proceed with multiplication of 3 x 3 matrices to get
1 0 O]t O O
LyFs%k)=(2 1 O||-k 1 0 2—k 1 0
6 6 11l-1 —k 1 5—-6k 6—k 1
Then, for n > 3 is done by Maple 13 to get the general form. By observing each entry of B, it can be seen that for i =j
the entry in the main diagonal is 1 and for i > j a simple construction is obtained as follows:
i Inthe firstrow by ; = 1, by ; = Ofor j > 2.
ii. In the second row b, ; =2 — k, b, = 1, b, ; = 0 for j = 3.
iii. In the third row b3'1 = 5 - 6k, b3‘2 =6— k, b3‘3 = 1, b3']' =0 forj > 3.
iv.  Theentryisb;; = 1foreveryi = jandfori < jtheentryisb;; = 0.

1 0 0
= B3.

By observing entries of B, for i > j, all entries of B, is listed in the following Table 3.2

Table 3.2: Elements of B,

Entries B, The value of entries of B,
b1 (1) Li=1L(11)
b, €Y lz,z =L(2,2)
bs 3 €Y l33 =L(3,3)
by,4 €Y 14,4 =L(44)
b, 1 (D) L + (k) L, = L(2,1) — kL(2,2)
b3,2 (1)13,2 + (k) l33 =L(3,2) —kL(3,3)
bys Dl + (k) lya=1L43)—kL(44)
bz Dlz1 + (k) I3, + (=D I35 = L(3,1) — kL(3,2) — L(3,3)
by, Dl + (k) Lz + (=D 1, = L(4,2) — kL(4,3) — L(44)
by, (Dlys + (k) Ly + (=D I3+ (0) (D0, = L(41) — kL(4,2) — L(4,3)
b; ; L(i,j)—kL(Aj+1)—L(3Ij+2)
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So, Lah matrix and inverse of k-Fibonacci matrix multiplication gives a new matrix, which is B,, where the general
definition is given by the following.
Definition 3.4. For every n being natural number, the n X n matrix B, with entry B, = [b;;] for every i,j = 1,2,...,n, is
defined as follows
bij=L(,j)—kL({j+1)—L(Ej+2).
Itis easy to see that b; ; = 1 for every i = j, b;; = 0 for every i < j. Moreover, for i > j then
bij =L@, ))—kL({j+1)—L(Ej+2).
The following theorem is constructed from defining B,, matrix, Lah matrix, and k-Fibonacci matrix.
Theorem 3.5 Lah matrix defined in Definition 2.2 can be stated as multiplication of k-Fibonacci E, (k) in Definition 2.5
and B,, matrix in Definition 3.4 for n and k to be natural numbers such that L,, = B, F, (k).

Proof. Since k-Fibonacci matrix F, (k) has inverse it will be proven that

B, = L, E71(k).
Suppose L,, is Lah matrix, then the main diagonal of Lah matrix is 1. F; (k) is inverse of k-Fibonacci matrix, then the
main diagonal of inverse of k-Fibonacci matrix is also 1. Multiplication of Lah matrix L, and inverse of k-Fibonacci
matrix E; (k) resulting in a new matrix with main diagonal 1. Then, if i = j then b;j = landif i <jthenb;; =0, and
for i > 2 then

bij =1L fi;U) + lijox fienj(k) + Lijua fiaajCk) + Ljus fies ;00 + -+ Ly £ (KD,

n
= Dl fi500.
r=1
It can be concluded that L,, E; (k) = B,,. Hence, L, = B, E,(k). n

From Theorem 3.5, it can derived the following properties

Theorem 3.6. Let L(i,j) to be Lah numbers defined in Definition 2.1 and F,, to be k-Fibonacci numbers defined in
Definition 2.5 thenfor i > j + 2
i-2
L(iJ) = Feijor + (2 — i — k) Fepj + Z(L(i, ") = kLG, + 1) — LG, 7 + 2))Ferejsn.
r=j

L(i,j) = Fgi—jy1 + (i* —i— k) Fy;_; fori < j + 2 and for i < j then L(i,j) = 0 for natural numbers i.

Proof. From Definition 3.4,

bi,i = L(l, l) = 1,

bi;—1 =LGi-1)—kL(@G1)—LEi+1)
=i(i—-1)—-k(1)-0
=i?—i—k,

For j <r <i-—2then

b, =L, v)—kL(i,7v+1) = L(,r + 2).

Then, from Definition 2.5 and Theorem 3.5
L@, j) =1
i

= D bir frs (0O
=)

i
= Z bir Fier—j+1
r=j
i-2

= by Fii—j+1 + biic1 Fiim1—j+1 + Z by Fir—ji1
r=j
i-2

=Fyi—jyr + ((®—i—k) F;_j + Z(Li,r —kLir41 — Ligsz) Firojia

r=j
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i-2

L(i,J) = Feiojor + (2 — i — K)Fi_; + Z(L(i, P = kLG, +1) =L, 7 +2)) Fepojer. M

r=j

IV. CONCLUSION

This article discusses about the relation of Lah matrix and k-Fibonacci matrix. From this relation, derived two

kinds of Lah matrix factorization. The first factorization gives a new matrix that is obtained from multiplication of inverse
of k-Fibonacci matrix and Lah matrix. The second factorization gives a new matrix that is yielded from multiplication of
Lah matrix and inverse of k-Fibonacci matrix. These new matrices are difference. In addition, some properties that also
states the relation of Lah numbers and k-Fibonacci numbers are also obtained.
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