# Relation between Lah matrix and

# k-Fibonacci Matrix

Irda Melina Zet<sup>#1</sup>, Sri Gemawati<sup>#2</sup>, Kartini Kartini<sup>#3</sup>

<sup>#</sup>Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau Bina Widya Campus, Pekanbaru 28293, Indonesia

**Abstract.** - The Lah matrix is represented by  $L_n$ , is a matrix where each entry is Lah number. Lah number is count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. k-Fibonacci matrix,  $F_n(k)$  is a matrix which all the entries are k-Fibonacci numbers. k-Fibonacci numbers are consist of the first term being 0, the second term being 1 and the next term depends on a natural number k. In this paper, a new matrix is defined namely  $A_n$  where it is not commutative to multiplicity of two matrices, so that another matrix  $B_n$  is defined such that  $A_n \neq B_n$ . The result is two forms of factorization from those matrices. In addition, the properties of the relation of Lah matrix and k-Fibonacci matrix is yielded as well.

Keywords — Lah numbers, Lah matrix, k-Fibonacci numbers, k-Fibonacci matrix.

### I. INTRODUCTION

Guo and Qi [5] stated that Lah numbers were introduced in 1955 and discovered by Ivo. Lah numbers are count the number of ways a set of *n* elements can be partitioned into *k* non-empty linearly ordered subsets. Lah numbers [9] is denoted by L(n,k) for every *n*, *k* are elements of integers with initial value L(0,0) = 1. Lah numbers can also be presented in Lah matrix where all the entries are Lah numbers and denoted by  $L_n$  [9].

Reference [1] discussed about Stirling matrix and Lah matrix with the inverses and yields some interesting properties. Reference [5] gives six proofs of Lah numbers identity property by using Lah numbers generator function, Chu-Vandermonde addition formula, inverse formula, Gauss hypergeometric series, and first kind Stirling numbers generator function. In [9] discussed Lah numbers and Lindstorm theorem by giving a combinatorial interpretation from Lah numbers through planar network resulting in some properties. Moreover, *k*-Fibonacci numbers were introduced by Falcon [2] and denoted by  $F_{n,k}$  where *n*, *k* are elements of integers. The *k*-Fibonacci numbers can be represented into *k*-Fibonacci matrix where all entries are *k*-Fibonacci numbers. It is denoted by  $F_n(k)$ . Reference [8] talks about the relation of *k*-Fibonacci sequence modulo ring. Reference [2] discusses the relation between *k*-Fibonacci matrix and Pascal matrix where two new matrices are yielded. [10] also talks about the relation of Bell polynomial matrix.

This article discusses Lah matrix and k-Fibonacci matrix, invers of k-Fibonacci matrix which is used to find new matrices, and relationship of Lah matrix and k-Fibonacci matrix. The second section of this article discusses about Lah matrix and k-Fibonacci matrix. The third section contains the main result which is the relationship of Lah matrix and k-Fibonacci matrix. Conclusion is given in the last section.

## II. LAH MATRIX AND K-FIBONACCI MATRIX

In this section, we recall the notions of Lah and *k*-Fibonacci matrices and review some properties which we will need in the next section. Some definitions and theories related to Lah and *k*-Fibonacci matrices that have been discussed by several authors will also be presented.

Lah numbers are defined by Guo and Qi [5] as follows.

**Definition 2.1.** Lah numbers, L(n, k) are defined as

$$L(n,k) = \binom{n-1}{k-1} \frac{n!}{k!}$$

for n, k are natural numbers. It can be concluded that

If k = 1 then L(n, 1) = n!. If k = n then L(n, n) = 1. If n < k then L(n, k) = 0.

If k = 0 then L(n, 0) = 0.



Martinjak [9] gives recursive formula for Lah numbers:

$$L(n + 1, k) = L(n, k - 1) + (n + k)L(n, k).$$

where *n*, *k* are integers and  $n \ge k$  with initial value L(0,0) = 1.

Lah matrix is a lower triangle matrix with every entry is Lah number. Definition of Lah matrix according to Martinjak [9] is given below.

**Definition 2.2.** Let L(i, j) be Lah numbers. The  $n \times n$  Lah matrix is denoted by  $L_n = [l_{i,j}]$  where i, j = 1, 2, ..., n and defined as

$$l_{i,j} = \begin{cases} L(i,j) & \text{if } i \ge j, \\ 0, & \text{otherwise.} \end{cases}$$

The general form of Lah matrix is

| $L_n =$ | $\begin{bmatrix} 1 \\ l_{2,1} \\ l_{2,1} \end{bmatrix}$ | 0<br>1<br>122 | 0<br>0<br>1 | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 |
|---------|---------------------------------------------------------|---------------|-------------|-------------|-------------|-------------|
|         | $l_{4,1}^{\iota_{3,1}}$                                 | $l_{4,2}$     | $l_{4,3}$   | 1           | 0           | 0           |
|         | 1                                                       | ÷             | :           | :           | ۰.          | 0           |
|         | $l_{n,1}$                                               | $l_{n,n-1}$   | $l_{n,n-2}$ | $l_{n,n-3}$ |             | 1           |

From the general form above, it can be seen that the main diagonal is 1 and the determinant (det) of  $L_n$  is obtained from the multiplication of the diagonal entries and so det  $(L_n) = 1$ . Since det  $(L_n) \neq 0$  then  $L_n$  has inverse. Engbers et al. [1] defines matrix inverse of Lah matrix as follows.

**Definition 2.3.** Let L(i,j) be Lah numbers and  $L_n = [l_{i,j}]$  be  $n \times n$  Lah matrix. The inverse of Lah matrix is  $L_n^{-1} = [(-1)^{i-j}l_{i,j}]$  where i, j = 1, 2, ..., n.

The following is the general form of Lah matrix:

| $L_{n}^{-1} =$ | [ 1              | 0            | 0           | 0            | 0  | 0 ] |
|----------------|------------------|--------------|-------------|--------------|----|-----|
|                | $-l_{2,1}$       | 1            | 0           | 0            | 0  | 0   |
|                | l <sub>3,1</sub> | $-l_{3,2}$   | 1           | 0            | 0  | 0   |
|                | $-l_{4,1}$       | $l_{4,2}$    | $-l_{4,3}$  | 1            | 0  | 0   |
|                | 1                | :            | :           | :            | •. | 0   |
|                | $l_{n,1}$        | $-l_{n,n-1}$ | $l_{n,n-2}$ | $-l_{n,n-3}$ |    | 1   |

The notion of k-Fibonacci numbers defined by Falcon [3] is given below.

**Definition 2.4.** For any integer number  $k \ge 1$ , the  $k^{\text{th}}$  Fibonacci sequence, say  $\{F_{k,n}\}_{n \in \mathbb{N}}$  is defined recurrently by  $F_{k,0} = 0$ ,  $F_{k,1} = 1$ , dan  $F_{k,n+1} = k F_{k,n} + F_{k,n-1}$  for any  $n \ge 1$ .

The *k*-Fibonacci numbers can also be represented in a lower triangular matrix where each entry is *k*-Fibonacci number. This definition is given in [2].

**Definition 2.5.** Let  $F_{k,n}$  be  $n^{th}$  k-Fibonacci number, the  $n \times n$  k-Fibonacci matrix as the unipotent lower triangular matrix  $F_n(k) = [f_{i,j}]_{i,j=1,...,n}$  defined with entries. That is

$$f_{i,j}(k) = \begin{cases} F_{k,i-j+1} & \text{if } i \ge j, \\ 0, & \text{otherwise } i < j. \end{cases}$$

Generally, k-Fibonacci matrix is written in this form

$$F_n(k) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ F_{k,2} & 1 & 0 & 0 & 0 & 0 \\ F_{k,3} & F_{k,2} & 1 & 0 & 0 & 0 \\ F_{k,4} & F_{k,3} & F_{k,2} & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ F_{k,n} & F_{k,n-1} & F_{k,n-2} & F_{k,n-3} & \cdots & 1 \end{bmatrix}.$$

From the above general formula of k-Fibonacci matrix it can be seen that the main diagonal is 1 and determinant (det) is yielded from the multiplication of the entries of the diagonal and so that det  $(F_n(k)) = 1$ . Since det  $F_n(k) \neq 0$ ,  $F_n(k)$  is has inverse. Falcon [2] defines the inverse matrix of the k-Fibonacci matrix as follows.

**Definition 2.6.** Let  $F_n^{-1}(k)$  be inverse matrix of the *k*-Fibonacci matrix, the  $n \times n$  inverse *k*-Fibonacci matrix as lower triangular matrix  $F_n^{-1}(k) = [f'_{i,j}(k)]_{i,j=1,...,n}$  where

$$f'_{i,j}(k) = \begin{cases} 1 & \text{if } j = i, \\ -k & \text{if } j = i-1, \\ -1 & \text{if } j = i-2, \\ 0 & \text{otherwise,} \end{cases}$$

Since  $F_n(k)$  has inverse, then  $F_n(k) F_n^{-1}(k) = I_n = F_n^{-1}(k)F_n(k)$ . Therefore k-Fibonacci  $F_n(k)$  is an *invertible* matrix. Generally k-Fibonacci matrix can be written by

$$F_n^{-1}(k) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -k & 1 & 0 & 0 & 0 & 0 \\ -1 & -k & 1 & 0 & 0 & 0 \\ 0 & -1 & -k & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & -1 & -k & 1 \end{bmatrix}$$

From the general form above, it can be concluded that each entry of the inverse of the k-Fibonacci matrix is 1, -k, -1, and 0. In other words, the entry of  $F_n^{-1}(k)$  for any n is fixed.

### III. RELATION BETWEEN LAH MATRIX AND K-FIBONACCI MATRIX

Relationship of Lah matrix and k-Fibonacci matrix is obtained from multiplication of two matrices, which is multiplication of inverse of k-Fibonacci matrix and Lah matrix and the other way around. It starts from multiplying  $2 \times 2$  matrices, follows by  $3 \times 3$  and eventually a new matrix is obtained. To construct the general form of the new matrix, the properties of this new matrix should be investigated. Therefore, a larger size of matrices are needed. To make the calculation easier, software Maple 13 is used. In the first factorization, a new matrix  $A_n$ , for any *n* integer, is obtained from multiplying inverse of *k*-Fibonacci matrix and Lah matrix. In the second factorization, a new matrix  $B_n$  is yielded from multiplying Lah matrix and *k*-Fibonacci inverse matrix.

#### A. First Factorization of Lah matrix and k-Fibonacci Matrix

To get the relationship of Lah matrix and k-Fibonacci matrix, multiply two  $2 \times 2$  matrices which are inverse of k-Fibonacci matrix  $F_2^{-1}(k)$  and  $L_2$  Lah matrix and obtain

$$F_2^{-1}(k) L_2 = \begin{bmatrix} 1 & 0 \\ -k & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 - k & 1 \end{bmatrix} = A_2.$$

For n = 3, by multiplying inverse of k-Fibonacci  $F_3^{-1}(k)$  matrix and Lah matrix  $L_3$  it is obtained

$$F_{3}^{-1}(k) L_{3} = \begin{bmatrix} 1 & 0 & 0 \\ -k & 1 & 0 \\ -1 & -k & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 6 & 6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 - k & 1 & 0 \\ 5 - 2k & 6 - k & 1 \end{bmatrix} = A_{3}.$$

Then, for n > 3, multiplication of inverse of k-Fibonacci matrix and Lah matrix is done by Maple 13. By investigating each entry of  $A_4$  for i = j entry the entries of the diagonal is 1 and for i > j the following construction is given :

i. In the first row,  $a_{1,1} = 1$ ,  $a_{1,j} = 0$  for  $j \ge 2$ .

ii. In the second row,  $a_{2,1} = 2 - k$ ,  $a_{2,2} = 1$ ,  $a_{2,j} = 0$  for  $j \ge 3$ .

iii. In the third row  $a_{3,1} = 5 - 2k$ ,  $a_{3,2} = 6 - k$ ,  $a_{3,3} = 1$ ,  $a_{3,j} = 0$  for  $j \ge 3$ .

iv.  $a_{i,j} = 1$  for any i = j and for i < j,  $a_{i,j} = 0$ .

The entry of  $A_4$  matrix is listed in the following Table 3.1

By investigating the entries of  $A_4$  for  $i \ge j$ , the value of entries of  $A_4$  can be derived as listed in the table below.

|                         | Table 5.1. Elements of $A_n$                                                            |
|-------------------------|-----------------------------------------------------------------------------------------|
| Entries of $A_n$        | Value of the entries of $A_n$                                                           |
| <i>a</i> <sub>1,1</sub> | $(1) l_{1,1} = L(1,1)$                                                                  |
| a <sub>2,2</sub>        | (1) $l_{2,2} = L(2,2)$                                                                  |
| a <sub>3,3</sub>        | $(1) l_{3,3} = L(3,3)$                                                                  |
| a <sub>4,4</sub>        | (1) $l_{4,4} = L(4,4)$                                                                  |
| a <sub>2,1</sub>        | (1) $l_{2,1} + (-k) l_{1,1} = L(2,1) - kL(1,1)$                                         |
| a <sub>3,2</sub>        | $(1)l_{3,2} + (-k) l_{2,2} = L(3,2) - kL(2,2)$                                          |
| a <sub>4,3</sub>        | $(1)l_{4,3} + (-k) l_{3,3} = L(4,3) - kL(3,3)$                                          |
| <i>a</i> <sub>3,1</sub> | $(1)l_{3,1} + (-k) l_{2,1} + (-1) l_{1,1} = L(3,1) - kL(2,1) - L(1,1)$                  |
| a <sub>4,2</sub>        | $(1)l_{4,2} + (-k) l_{3,2} + (-1) l_{2,2} = L(4,2) - kL(3,2) - L(2,2)$                  |
| <i>a</i> <sub>4,1</sub> | $(1)l_{4,1} + (-k) l_{3,1} + (-1) l_{2,1} + (0) (1)l_{1,1} = L(4,1) - kL(3,1) - L(2,1)$ |
| :                       | :                                                                                       |
| $a_{i,j}$               | L(i,j) - k L(i-1,j) - L(i-2,j)                                                          |

Table 3.1: Elements of  $A_n$ 

Hence, multiplication of inverse of k-Fibonacci matrix and Lah matrix yields a new matrix  $A_n$  and the definition generally is given as follows.

**Definition 3.1.** For every natural number *n*, it is defined an  $(n + 1) \times (n + 1)$  matrix  $A_n = [a_{i,j}]$  with i, j = 0, 1, 2, ..., n as follows

$$a_{i,j} = L(i,j) - k L(i-1,j) - L(i-2,j).$$

From the definition above,  $a_{i,j} = 1$  for every i = j,  $a_{i,j} = 0$  when i < j. For every i > j, apply  $a_{i,j} = L(i,j) - k L(i-1,j) - L(i-2,j)$ .

From definitions of Lah matrix, k-Fibonacci matrix, and  $A_n$  matrix, the following theorem is derived.

**Theorem 3.2.** Lah matrix defined in Definition 2.2 can be defined as multiplication of k-Fibonacci  $F_n(k)$  defined in Definition 2.5 with  $A_n$  and given as  $L_n = F_n(k) A_n$ .

**Proof.** Since k-Fibonacci matrix  $F_n(k)$  has inverse, it will be proven that

$$A_n = F_n^{-1}(k) L_n$$

Suppose  $F_n^{-1}(k)$  is inverse of k-Fibonacci matrix so that the main diagonal is 1.  $L_n$  is Lah matrix and so the main diagonal is also 1. Multiplication of  $F_n^{-1}(k)$  with  $L_n$  yields a new matrix with main diagonal 1. If i = j then  $a_{i,j} = 1$  and if i < j then  $a_{i,j} = 0$ , and for every i > 2 then

$$a_{i,j} = f'_{i,i}(k) \ l_{i,j} + f'_{i,i-1}(k) \ l_{i-1,j} + f'_{i,i-2}(k) \ l_{i-2,j} + f'_{i,i-3}(k) \ l_{i-3,j} + \dots + f'_{i,n}(k) \ l_{n,j},$$
  
=  $\sum_{r=1}^{n} f'_{i,r}(k) \ l_{r,j}.$ 

It can be concluded that  $F_n^{-1}(k) L_n = A_n$ . Hence  $L_n = F_n(k) A_n$ .

Theorem 3.2 gives the relation of Lah numbers and *k*-Fibonacci numbers defined in Theorem 3.3.

**Theorem 3.3.** Suppose L(i, j) is Lah number defined in Definition 2.1 and  $F_{k,n}$  is the *k*-Fibonacci numbers defined in Definition 2.5. Then for  $i \ge j + 2$ ,

$$L(i,j) = F_{k,i-j+1} + (j^2 + j - k) F_{k,i-j} + \sum_{r=j+2}^{l} (L(r,j) - k L(r-1,j) - L(r-2,j)) F_{k,i-r+1}.$$

For i < j + 2 it is obtained that  $L(i, j) = F_{k,i-j+1} + (j^2 + j - k) F_{k,i-j}$  and for i < j then L(i, j) = 0 for i to be natural numbers.

## Proof.

From Definition 3.2  $a_{j,j} = L(j,j) = 1,$   $a_{j+1,j} = L(j+1,j) - kL(j,j) - L(j-1,j)$  = j(j+1) - k(1) - 0 $= j^2 + j - k,$ 

for 
$$r \ge j + 2$$
  
 $a_{t,j} = L(r,j) - kL(r-1,j) - L(r-2,j)$ 

Definition 2.5 and Theorem 3.2 gives the following

$$L(i, j) = l_{i,j}$$

$$= \sum_{r=j}^{i} f_{i,r}(k) a_{r,j}$$

$$= \sum_{r=j}^{i} F_{k,i-r+1} a_{r,j}$$

$$= F_{k,i-j+1} a_{j,j} + F_{k,i-(j+1)+1} a_{j+1,j} + \sum_{r=j+2}^{i} F_{k,i-r+1} a_{r,j}$$

$$= F_{k,i-j+1} + F_{k,i-j}(j^{2} + j - k) + \sum_{r=j+2}^{i} F_{k,i-r+1} (L(r,j) - kL(r-1,j) - L(r-2,j))$$

$$L(i,j) = F_{k,i-j+1} + (j^{2} + j - k) F_{k,i-j} + \sum_{r=j+2}^{i} (L(r,j) - kL(r-1,j) - L(r-2,j)) F_{k,i-r+1}.$$

#### B. Second Factorization for Lah matrix and k-Fibonacci Matrix

To find the relation of Lah matrix and *k*-Fibonacci matrix from second factorization, multiplication of two matrices is needed. It is done by multiplying Lah matrix  $L_n$  and  $F_n^{-1}(k)$  inverse of *k*-Fibonacci matrix and eventually yielding a new matrix called  $B_n$ . It starts from multiplying 2 × 2 matrices such that the following is obtained.

$$L_2 F_2^{-1}(k) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -k & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 - k & 1 \end{bmatrix} = B_2.$$

Then proceed with multiplication of  $3 \times 3$  matrices to get

$$L_{3}F_{3}^{-1}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 6 & 6 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -k & 1 & 0 \\ -1 & -k & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 - k & 1 & 0 \\ 5 - 6k & 6 - k & 1 \end{bmatrix} = B_{3}$$

Then, for n > 3 is done by Maple 13 to get the general form. By observing each entry of  $B_4$  it can be seen that for i = j the entry in the main diagonal is 1 and for i > j a simple construction is obtained as follows:

i. In the first row  $b_{1,1} = 1$ ,  $b_{1,j} = 0$  for  $j \ge 2$ .

- ii. In the second row  $b_{2,1} = 2 k$ ,  $b_{2,2} = 1$ ,  $b_{2,j} = 0$  for  $j \ge 3$ .
- iii. In the third row  $b_{3,1} = 5 6k$ ,  $b_{3,2} = 6 k$ ,  $b_{3,3} = 1$ ,  $b_{3,j} = 0$  for  $j \ge 3$ .
- iv. The entry is  $b_{i,j} = 1$  for every i = j and for i < j the entry is  $b_{i,j} = 0$ .

By observing entries of  $B_4$  for  $i \ge j$ , all entries of  $B_4$  is listed in the following Table 3.2

|                         | Table 3.2: Elements of $B_n$                                                            |
|-------------------------|-----------------------------------------------------------------------------------------|
| Entries $B_n$           | The value of entries of $B_n$                                                           |
| <i>b</i> <sub>1,1</sub> | $(1) l_{1,1} = L(1,1)$                                                                  |
| b <sub>2,2</sub>        | $(1) l_{2,2} = L(2,2)$                                                                  |
| b <sub>3,3</sub>        | $(1) l_{3,3} = L(3,3)$                                                                  |
| $b_{4,4}$               | (1) $l_{4,4} = L(4,4)$                                                                  |
| b <sub>2,1</sub>        | $(1) l_{2,1} + (-k) l_{2,2} = L(2,1) - kL(2,2)$                                         |
| b <sub>3,2</sub>        | $(1)l_{3,2} + (-k) l_{3,3} = L(3,2) - kL(3,3)$                                          |
| $b_{4,3}$               | $(1)l_{4,3} + (-k) l_{4,4} = L(4,3) - kL(4,4)$                                          |
| b <sub>3,1</sub>        | $(1)l_{3,1} + (-k) l_{3,2} + (-1) l_{3,3} = L(3,1) - kL(3,2) - L(3,3)$                  |
| $b_{4,2}$               | $(1)l_{4,2} + (-k) l_{4,3} + (-1) l_{4,4} = L(4,2) - kL(4,3) - L(4,4)$                  |
| $b_{4,1}$               | $(1)l_{4,1} + (-k) l_{4,2} + (-1) l_{4,3} + (0) (1)l_{4,4} = L(4,1) - kL(4,2) - L(4,3)$ |
| :                       | :                                                                                       |
| b <sub>i,j</sub>        | L(i,j) - k L(i,j+1) - L(i,j+2)                                                          |

So, Lah matrix and inverse of k-Fibonacci matrix multiplication gives a new matrix, which is  $B_n$  where the general definition is given by the following.

**Definition 3.4.** For every *n* being natural number, the  $n \times n$  matrix  $B_n$  with entry  $B_n = [b_{i,j}]$  for every i, j = 1, 2, ..., n, is defined as follows

$$b_{i,j} = L(i,j) - k L(i,j+1) - L(i,j+2).$$

It is easy to see that  $b_{i,j} = 1$  for every i = j,  $b_{i,j} = 0$  for every i < j. Moreover, for i > j then

$$b_{i,j} = L(i,j) - k L(i,j+1) - L(i,j+2).$$

The following theorem is constructed from defining  $B_n$  matrix, Lah matrix, and *k*-Fibonacci matrix. **Theorem 3.5** Lah matrix defined in Definition 2.2 can be stated as multiplication of *k*-Fibonacci  $F_n(k)$  in Definition 2.5 and  $B_n$  matrix in Definition 3.4 for *n* and *k* to be natural numbers such that  $L_n = B_n F_n(k)$ .

**Proof.** Since k-Fibonacci matrix  $F_n(k)$  has inverse it will be proven that

$$B_n = L_n F_n^{-1}(k).$$

Suppose  $L_n$  is Lah matrix, then the main diagonal of Lah matrix is 1.  $F_n^{-1}(k)$  is inverse of k-Fibonacci matrix, then the main diagonal of inverse of k-Fibonacci matrix is also 1. Multiplication of Lah matrix  $L_n$  and inverse of k-Fibonacci matrix  $F_n^{-1}(k)$  resulting in a new matrix with main diagonal 1. Then, if i = j then  $b_{i,j} = 1$  and if i < j then  $b_{i,j} = 0$ , and for i > 2 then

$$b_{i,j} = l_{i,j} f'_{j,j}(k) + l_{i,j+1} f'_{j+1,j}(k) + l_{i,j+2} f'_{j+2,j}(k) + l_{i,j+3} f'_{j+3,j}(k) + \dots + l_{i,n} f'_{n,j}(k),$$
  
=  $\sum_{r=1}^{n} l_{i,r} f'_{r,j}(k).$ 

It can be concluded that  $L_n F_n^{-1}(k) = B_n$ . Hence,  $L_n = B_n F_n(k)$ .

From Theorem 3.5, it can derived the following properties

**Theorem 3.6.** Let L(i, j) to be Lah numbers defined in Definition 2.1 and  $F_{k,n}$  to be *k*-Fibonacci numbers defined in Definition 2.5 then for  $i \ge j + 2$ 

$$L(i,j) = F_{k,i-j+1} + (i^2 - i - k) F_{k,i-j} + \sum_{r=j}^{i-2} (L(i,r) - k L(i,r+1) - L(i,r+2)) F_{k,r-j+1}.$$

 $L(i,j) = F_{k,i-j+1} + (i^2 - i - k) F_{k,i-j}$  for i < j + 2 and for i < j then L(i,j) = 0 for natural numbers i.

**Proof.** From Definition 3.4,  $b_{i,i} = L(i, i) = 1,$   $b_{i,i-1} = L(i, i-1) - kL(i, i) - L(i, i+1)$  = i(i-1) - k(1) - 0  $= i^2 - i - k,$ For  $j \le r \le i - 2$  then  $b_{i,t} = L(i, r) - kL(i, r+1) - L(i, r+2).$ 

Then, from Definition 2.5 and Theorem 3.5

L

$$\begin{aligned} (i,j) &= l_{i,j} \\ &= \sum_{\substack{r=j \\ i}}^{i} b_{i,r} f_{r,j}(k) \\ &= \sum_{\substack{r=j \\ r=j}}^{i} b_{i,r} F_{k,r-j+1} \\ &= b_{i,i} F_{k,i-j+1} + b_{i,i-1} F_{k,i-1-j+1} + \sum_{\substack{r=j \\ r=j}}^{i-2} b_{i,r} F_{k,r-j+1} \\ &= F_{k,i-j+1} + (i^2 - i - k) F_{k,i-j} + \sum_{\substack{r=j \\ r=j}}^{i-2} (L_{i,r} - kL_{i,r+1} - L_{i,r+2}) F_{k,r-j+1} \end{aligned}$$

$$L(i,j) = F_{k,i-j+1} + (i^2 - i - k)F_{k,i-j} + \sum_{r=j}^{i-2} (L(i,r) - kL(i,r+1) - L(i,r+2))F_{k,r-j+1}.$$

#### **IV. CONCLUSION**

This article discusses about the relation of Lah matrix and *k*-Fibonacci matrix. From this relation, derived two kinds of Lah matrix factorization. The first factorization gives a new matrix that is obtained from multiplication of inverse of *k*-Fibonacci matrix and Lah matrix. The second factorization gives a new matrix that is yielded from multiplication of Lah matrix and inverse of *k*-Fibonacci matrix. These new matrices are difference. In addition, some properties that also states the relation of Lah numbers and *k*-Fibonacci numbers are also obtained.

#### REFERENCES

- [1] J. Engbers, D. Galvin, and C. Smyth, *Restricted Stirling and Lah number matrices and their inverses*, Journal of Combinatorial Theory Series A, 161 (2017), 1-26.
- [2] S. Falcon, The k-Fibonacci matrix and the Pascal matrix, Central European Journal of Mathematics, 9 (6), 2011, 1403–1410.
- [3] S. Falcon and A. Plaza, k-Fibonacci sequences modulo m, Chaos Solitons & Fractals, 41 (2009), 497-504.
- [4] S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons & Fractals, 32 (2007), 1615-1624.
- [5] B. Guo and F. Qi, Six Proofs for an Identity of the Lah Numbers, Online Journal of Analytic Combinatorics, 10 (2015), 1-5.
- [6] V. E. Hoggat, Fibonacci and Lucas Numbers, Houghton–Mifflin, Palo Alto, CA., 1969.
- [7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley Interscience, New York, 2001.
- [8] G. Y. Lee and J. S. Kim, *The linear algebra of the k-Fibonacci matrix*, Linear Algebra and its Applications, Elsevier, 373 (2003), 75–87.
- [9] I. Martinjak, Lah Number and Lindstrom's Lemma, Comptes Rendus Mathematique, 356(2017), 1-4.
- [10] Mawaddaturrohmah and S. Gemawati, Relationship of Bell's Polynomial Matrix and k-Fibonacci Matrix, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 65(2020), 29-38.
- [11] R. Munir, *Metode Numerik*, Informatika : Bandung, 2008.
- [12] G. P. S. Rathore, A. A Wani, and K. Sisodiya, Matrix Representation of Generalized k-Fibonacci Sequence, OSR Journal of Mathematics, 12 (2016), 67–72.
- [13] T. Wahyuni, S. Gemawati, and Syamsudhuha, On some Identities of k-Fibonacci Sequences Modulo Ring Z<sub>6</sub> and Z<sub>10</sub>, Applied Mathematical Sciences, 12 (2018), 441-448.