Square Difference Labeling For Tree Related and Degree Splitting Graphs

K. Bhuvaneswari^{#1}, P. Jagadeeswari^{*2}

^{#1}Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India ^{*2}Department of Mathematics, BIHER, Chennai, Tamil Nadu, India

Abstract - In this work, we scrutinize the $DS[Z - P_n]$, DS[braid], $DS[Y_{m+1}]$, DS[moth] graphs affirm Square difference labeling (SDL) and also prove that some tree related graphs are SDG.

Keywords: braid, lilly, moth, Square difference graph (SDG), y graph

AMS classification: 05C78

I. INTRODUCTION

Throughout the whole, we avail simple, finite and undirected graph and proceed condition and results from [3, 12]. Shiama demonstrated the existence of Square difference labelling in [13, 14]. The approach of degree splitting was bringing out by [10]. Degree splitting of some graphs are established in [2, 7, 8, 9, 11]. Here we examine some tree and cycle associated graphs for SDG. We aff ord a brief summary of definitions, which are mandatory for the subsisting work.

PRELIMINARIES

Definition 1.1 [13,6]

A function of a graph G admits a bijective function $f:V(G) \rightarrow \{0,1,2,...p-1\}$ such that the induced function $f^*: E(G) \rightarrow N$ for *Square difference graph* is given by $f^*(xy) = |[f(x)]^2 - [f(y)]^2|, \forall xy \in E(G)$ is distinct.

Definition 1.2.[6]

The *degree splitting* graph is attained from the graph G having at the minimum two nodes of the same degree and $T = V \bigcup_{i=1}^{t} S_i$. by adding vertices w_i, w_2, \dots, w_t and joining to each vertex of $S_i, 1 \le i \le t$ and is denoted by DS(G).

Definition 1.3.

Consider G = $(K_{1n}^{(1)}, K_{1n}^{(2)})$ is the graph attained by joining apex vertices of stars to a new vertex x.

Definition 1.4.

Lilly graph (I_n) (n \ge 2) can be acquired by two star graphs 2K_{1,n}, joining two path graphs 2P_n, with sharing a common vertex. i.e., I_n = 2K_{1,n} + 2P_n.

Definiton 1.5.[6]

Let P'_n and P''_n be the pair of paths with the vertices v_j and u_j , j = 1, 2, ..., n - 1, respectively. The graph Z - P_n is procured by joining j^{th} point of path P'_n with $(j + 1)^{\text{th}}$ point of path P''_n .

Definition 1.6.[6]

The braid graph B(n), $(n \ge 3)$, is attained by accompanying j^{th} vertex of P'_n with $(j + 1)^{\text{th}}$ vertex of P'_n and j^{th} vertex of P'_n with $(j + 2)^{\text{th}}$ vertex of P'_n with the new edges for all j = 1, 2, ..., n-2.

II. MAIN OUTCOMES

Theorem 2.1

The degree splitting of Z - P_n is Square difference.

Proof Let $G = DS (Z - P_n)$ with $V(DS (Z - P_n)) = \{u_i, v_i, w_1, w_2, w_3 / l \le i \le n\}$ $E(DS (Z - P_n)) = E_1 \cup E_2$, where $E_{1} = \{u_{j}u_{j+1}, v_{j}v_{j+1}, v_{j}u_{j+2} / l \le j \le n-1, l \le j \le n-2\}$ $\mathbf{E}_2 = \{w_1 u_1, w_1 v_n, w_2 u_i, w_3 v_1, w_3 u_n, w_2 v_i / l \le i \le n\}$ Obviously, that |V| = 2n + 3 and |E| = 5n - 3Now, f and f^* are described as $f(u_i) = 2j - 1$ $f(v_i) = 2(j-1)$ $f(w_1) = 2n$ $f(w_2) = 2n + 1$ $f(w_3) = 2n + 3$ $f^*(u_j u_{j+1}) = 8j \equiv 0 \pmod{8}$ $f^*(v_i v_{i+1}) = 8j - 4 \equiv 0 \pmod{4}$ $f^*(v_j u_{j+2}) = 12j - 3$ $f^*(w_1u_1) = 4n^2 - 1$ $f^{*}(w_{1}v_{n}) = 4n^{2} - f(v_{n})^{2}$ $f^*(w_2u_j) = 4(n^2 + n) - 4(j^2 + j)$ $f^*(w_3v_1) = (2n+3)^2$ $f^*(w_3u_n) = (2n+3)^2 - f(u_n)^2$ $f^*(w_2v_1) = (2n+2)^2 - (2j-2)^2$

Hence all the above functions are distinctive. Therefore, it is verified.

Figure 1. $DS(Z - P_6)$

Theorem 2.2

DS[B(n)] is SD labeling.

Proof.

Consider G with the vertices u_j , v_j , x, y, z for j = 1, 2, ..., n and the edges be $u_j u_{j+1}$, $v_j v_{j+1}$, $u_j v_{j+1}$, for j = 1, 2, ..., n - 1; $v_j u_{j+2}$, for j = 1, 2, ..., n - 2; xu_1 , xu_n , xv_1 , xv_n , yu_2 , yv_{n-1} ; zu_j for $3 \le j \le n - 1$; zu_j for $2 \le j \le n - 2$. Obviously, we receive 2n + 3 nodes and 6n - 5 edges.

Let illustrate the one – one and onto function $g: V \rightarrow \{0, 1, ..., 2n + 2\}$ as

 $g(u_j) = 2j - 1$ $g(v_j) = 2(j - 1)$ g(x) = 2n g(y) = 2n + 1 g(z) = 2n + 2and the injective function g^* for the mentioned vertex labeling as $g^*(u_j u_{j+1}) = 8j$ $g^*(v_j v_{j+1}) = 8j - 4$ $g^*(v_j v_{j+1}) = 8j - 4$ $g^*(v_j u_{j+2}) = 20j + 5$ $g^*(xu_1) = 4n^2 - 1$ $g^*(xu_n) = 4n^2 - f(u_n)^2$ $g^*(xv_n) = 4n^2 - f(v_n)^2$ $g^*(xv_n) = 4n^2 - f(v_n)^2$ $g^*(xv_n) = (2n + 1)^2 - f(v_n - 1)^2$ $g^*(zu_j) = (2n + 2)^2 - f(u_j)^2, 3 \le j \le n - 1$ $g^*(zv_j) = (2n + 2)^2 - f(v_j)^2, 2 \le j \le n - 2$

Clearly the labels defined above are distinct and satisfy the condition of SDL. Hence the theorem.

Figure 2. DS[B(6)]

Theorem 2.3.

 $DS[Y_{m+1}]$ affirm SDL.

Proof.

•

Consider DS[Y_{m+1}] be the graph with the vertex set $V(DS[Y_{m+1}]) = \{u_j, x, y/1 \le i \le n\} \text{ and}$ $E(DS[Y_{m+1}]) = \{u_j u_{j+1}/2 \le j \le n\} \text{ and} \{u_1 u_{3, x} u_j, y u_{n+1}, y u_1, y u_2/4 \le j \le n\}$ Obviously, we receive n + 3 points and 2n lines respectively. Specify g and g^* are mentioned below: $g(u_j) = j - 1$ g(x) = n + 1 g(y) = n + 2and $g^*(u_j u_{j+1}) = 2j - 1$ $g^*(u_1 u_3) = 4$ $g^*(x u_j) = |(n + 1)^2 - (j - 1)^2|$

 $g^{*}(yu_{n+1}) = 4n + 4$ $g^{*}(yu_{1}) = (n+2)^{2}$ $g^*(yu_2) = (n+2)^2 - 1$ both the *g* and g^* are satisfying the limitation of square difference labeling. Hence DS[Y_{m+1}] admits SDL.

Figure 3. $DS[Y_{6+1}]$

Theorem 2.4.

DS[moth graph] is SDG.

Proof.

Consider the graph G with

|V| = 8 and

|E| = 11.

Now, consider a function $f: V \rightarrow \{0, 1, 2, ..., 7\}$ be a bijection defined as follows:

 $f(u_j) = j - 1$

f(x) = 6

f(y) = 7

Figure 4. degree splitting of moth graph

By the above function, we receive one - one function f^* as:

 $f^{*}(u_{1}u_{2}) = 1$ $f^{*}(u_{1}u_{3}) = 4$ $f^{*}(u_{1}u_{4}) = 9$ $f^{*}(u_{1}u_{5}) = 16$ $f^{*}(u_{1}u_{6}) = 25$ $f^{*}(u_{2}u_{3}) = 3$ $f^{*}(u_{3}u_{4}) = 5$ $f^{*}(xu_{5}) = 20$

$$f^{*}(xu_{6}) = 11$$

$$f^{*}(yu_{2}) = 48$$

$$f^{*}(yu_{4}) = 40$$

It is easily observed that the function satisfies the condition of square difference labeling and also $f^{*}(uv)$ is an increasing function and disparate.

Theorem 2.5.

Appending two pendant edges to new vertex which subdivides the edge joining the center vertices of $(K_{1,n}^{(1)}, K_{1,n}^{(2)})$ is SDG.

Proof

Let G be the graph with |V| = 2m + 5 and |E| = 2m + 4. Define a vertex labeling g: {0, 1, 2, ..., 2m + 4}as

g(w) = 0 g(u) = 1 g(v) = 2 $g(u_i) = i + 2, 1 \le i \le m$ $g(v_i) = m + i + 2$ g(w') = 2m + 3g(w'') = 2m + 4

the above labeling satisfies the condition of Square difference labeling and gives the edge labeling g^* as

$$g^{*}(u u_{i}) = (i + 2)^{2} - 1$$

$$g^{*}(v v_{i}) = (m + i + 2)^{2} - 4$$

$$g^{*}(wu) = 1$$

$$g^{*}(wv) = 4$$

$$g^{*}(ww') = (2m + 3)^{2}$$

$$g^{*}(ww'') = (2m + 4)^{2}$$

Hence the theorem.

Theorem 2.6.

 $Y_{m+1} \Theta \overline{K_2}$ admits SDL. **Proof.** Let $G = Y_{m+1} \Theta \overline{K_2}$ has 3n + 3 vertices and 3n + 2 edges. We explore the node function f as $f(v_j) = j - 1$ $f(v'_j) = n + 2j - 1$ $f(v''_j) = n + 2j$ and the induced function f^* is defined as $f^{*}(v_{j}v_{j+1}) = 2j-1, j = 2, 3, ..., n$ $f^{*}(v_{1}v_{3}) = 4$ $f^{*}(v_{j}v_{j}') = |(j-1)^{2} - (n+2j-1)^{2}|$ $f^{*}(v_{j}v_{j}') = |(j-1)^{2} - (n+2j)^{2}|$

The above-mentioned labeling are distinctive.

Figure 6. $Y_{5+1} \odot \overline{K_2}$

Theorem 2.7.

Lilly graph I_n admits Square difference labeling. **Proof:** Consider the lilly graph $I_n = 2K_{1,n} + 2P_n$ with the vertex set $V(I_n) = \{u_i, v_i / 1 \le i \le n\} \cup \{x_i, y_i, w / 1 \le i \le n - 1\}$ $E(I_n) = \{wu_i, wv_i / 1 \le i \le n\} \cup \{x_i x_{i+1}, y_i y_{i+1} / 1 \le i \le n-2\} \cup \{wu_{n-1}, wv_{n-1}\}$ Clearly |V| = 4n - 1|E| = 4n - 2Now determine the bijective function f as: $f(u_i) = i - 1$ $f(v_i) = f(u_n) + i$ $f(x_i) = f(v_n) + i$ $f(y_i) = f(x_n) + i$ f(w) = 4n - 221 20 181617 19

> 13 •12 •11 10

Figure 7. Lilly graph

By the above function, the induced function f^* is given below: $f^*(wu_i) = (4n-2)^2 - (i-1)^2$ $f^*(wv_i) = (4n-2)^2 - (f(u_n) + i)^2$

 $f^{*}(x_{i}x_{i+1}) = 4n + 2i - 1$ $f^*(y_i y_{i+1}) = 6n + 2i - 3$ $f^{*}(wu_{n-1}) = (4n-2)^{2} - f(u_{n-1})^{2}$ $f^{*}(wv_{n-1}) = (4n-2)^{2} - f(v_{n-1})^{2}$

Clearly, the above given labeling satisfies the condition of square difference. Here all the edge labels are distinct and also in increasing sequence. Hence the theorem is verified.

VI. CONCLUSIONS

In this paper, we exemplified that certain tree and cycle relevant graphs are SDG.

REFERENCES

- [1] J. Arthy, K. Manimekalai, K. Ramanathan, "Cycle and path related graphs on L Cordial labeling", International Journal of Innovative Science and Research Technology, Vol 4, issue 6, June 2019.
- B. Basavangoud, Prashant. V. Patil and Sunil kumar, "Domination in degree splitting graphs", Journal of Analysis and computation, vol 8, No. 1, [2] (2012) ISSN: 0973 – 2861.
- Frank Harary "Graph Theory", Narosa Publishing House, 2001. [3]

- [4] Gallian J.A. "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics, #DS6, 2017.
 [5] J. A. Gallian, "A Dynamic survey of graph labeling", The electronics journal of Combinatories, 17(2010), #DS6.
 [6] P. Jagadeeswari, "Considering Square Difference Labeling for Validating Theta Graphs of Dynamic Machinaries", International Journal of Innovative and Exploring Engineering, ISSN: 2278-3075, Vol 9, Issue 2S4, Dec 2019.
- [7] P. Jagadeeswari, "Predicting Solar and Wind Based Computation Using Square Difference Labeling Technique", International Journal of Innovative and Exploring Engineering, ISSN: 2278-3075, Vol 9, Issue 2S4, Dec 2019.
- [8] P. Jagadeeswari, "Degree Spilliting Analysis for Polynomials Developed for Electrical Systems", International Journal of Innovative and Exploring Engineering, ISSN: 2278-3075, Vol 9, Issue 2S4, Dec 2019.
- [9] P. Maya, T. Nicholas, "Degree splitting of some I - Cordial graphs", International journal of Research in Advent Technology, vol 6, No. 8, (2018), ISSN: 2321 - 9637.
- [10] Ponraj. R, S. Somasundaram, "On the degree splitting of some graph", National Academy Science letters 27(2004), 275 278.
- [11] N. B. Rathod, K. K. Kanani, "4 cordiality of some new path related graphs", International Journal of Mathematics Trends and Technology, Vol 34, No.1, May 2016.
- [12] Rosa A "On Certain Valuation of Graph Theory of Graph", (Rome, July 1966), Golden & Breach .M and Paris (1967), 349 355.
- [13] Shiama.J. "Square difference labeling for some graphs" International Journal of Computer Applications (0975-08887), Vol.44 (4), April 2012.
- [14] Shiama.J. "Some Special types of Square difference graphs" International Journal of Mathematical archives, Vol. 3(6), 2012, 2369-2374 ISSN 2229-5046
- [15] G. Subashini, K. Bhuvaneswari, K. Manimekalai, Square Difference labeling of Theta Graphs, International Journal of Engineering and Research Vol-8, issue 9, September 2019, ISSN: 2278 - 0181.