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Introduction 
Labeling of graphs is the assignment of values to vertices, edges or both subject to certain conditions. There exist different 

labeling and its detailed report is given in [1]. The CDL was introduced by [4] and also he proved CDL for some standard 

graphs like paths, cycle, stars and trees. [3] defined generalized theta graph and [2] has proved on pair sum labeling of some 

special graphs. 

I. Preliminaries 

1. Consider a graph G said to be CDL if there exist a one to one correspondence f from v  to  1,...2,1,0 p  such that the 

procured function 
*

f given by 
33*

)()()( vfufuvf  is injective.   

2. A generalized theta graph consist a pair of end vertices joined by n internal disjoint paths of length atleast 2, we denote it as 

][
][ m

l , 1,3  ml . 

3. Hanging generalized theta graph is attained by joining the apex of a ][
][ m

l  to an edge connecting a leaf (Pendant Edge) 

and is denoted by H[ ][
][ m

l ]. 

 

Theorem 2.1 

The generalized theta graph admits CDL. 

Proof: Let G = ][
][ m

l  with )1( lm vertices and lm edges. The subsequent cases are observed here: 

Case (1): when m is odd 
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Define a vertex valued function  1)1(,...2,1,0:  lmvf as follows 
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The edge labels are: 

(i) When l is odd 

It is easily observed that  

)()()(
,1,1,1, jjljiji

uvfvufuuf









  

Similarly, )()()(
,,1,1, jijljiji
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Hence )()(
ji

efef


 for all )(, GEee
ji
 . 

(ii) When l is even 
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l
vwf ) are same as mentioned in subcase (i) in case (1). 
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Case (2): m is even 

Let  
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As defined in case(1) 

The vertex labeled function is defined as same in case (1) except for f(wi) 

Now the edge label induces 


f  by    
33

)()()( vfufuvf 


 

For all Euv   

(i) When l is odd 
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(ii) When l is even 

The induced function of (
jiji

uu
,1, 

) and (
jiji

vv
,1, 

) has same edge labeling as in case (2) subcase(i). 

 In addition to this the procured function f
*
(uu1,j), f

*
(vul-1,j), f

*
(uv1,j) and f

*
(vvl-1,j) attains the cube difference of odd and even 

integer values at end of the vertices gives us odd values which is strictly in increasing sequence. 

Thus, all the edge labeling are distinct. 

Hence ][
][ m

l is cube difference graph. 

For example, the graph ]4[
]6[

 and  ]4[
]5[

 are given in figure 1(a) and 1(b) respectively. 
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Figure1: CDL for 
]4[

]6[


and  
]4[

]5[


 

Theorem 2.2 

The graph H[ ][
][ m

l ] is a CDG. 

Proof: let G be a hanging generalized theta graph with m(l-1)+3 vertices and lm+1 edges. Let us follow the two class: 

Class 1: when m is even. 
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And the vertex labeled function f on v is defined as for 2/1,11 mjli   

f(y) = m(l-1)+2 

f(u) = m(l-1)+1 

f(v) = m(l-1) 

f(ui,j) = 2(i-1)+2(l-1)(j-1) 

f(vi,j) = 2i-1+2(l-1)(i-1) 

 

Class 2: when m is odd 

Define 
4321

)( VVVVGV  , where V1, V2 and V3 are same as defined in case(1) and V4={wi} 

Let the vertex labeled function are same as mentioned in class 1 added to 
 

iufwf
mli




)()(
2

,1
 

Similarly 
654321

)( EEEEEEGE  , where E1, E2, E3, E4 and E5 are same as in case (1) and E6 = {wiwi+1 

/i=1 to l-2}. 

Now there exist a induced function f
*
 for the edge labeling which are labeled as above discussed in theorem1 except for the 

apex )6(mod1)( 


yuf . Thus the above labeling are distinct. Hence the H[ ][
][ m

l ] admits CDL. 

II. Conclusion  

We have proved that the  ][
][ m

l and  H[ ][
][ m

l ] admits CDL. 
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