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Abstract:  In this study, we have introduced a two-parameter univariate continuous distribution called Logistic inverse 

exponential distribution. Some mathematical and statistical properties of the distribution such as the shapes of the probability 

density, cumulative distribution and hazard rate functions, survival function, quantile function, the skewness, and kurtosis 

measures are derived and established. To estimate the model parameters, we have employed three well-known estimation 

methods namely maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises estimation 

(CVME) methods.  A real data set is considered to explore the applicability and capability of the proposed distribution also 

AIC, BIC, CAIC and HQIC are calculated to assess the validity of the Logistic inverse exponential distribution. 
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I. INTRODUCTION 

In most of the literature of probability distributions and applied statistics, it is observed that the study of reliability and survival 

analysis in various fields of applied statistics and life sciences, the probability distributions are often used. In modeling survival 

data, existing models do not always reveal a better fit. Hence most of the researchers are interested to generalizing standard 

distributions and investigating their flexibility and applicability. Usually, these new compounded models produces an improved 

fit as compared to usual classical survival models and are obtained by introducing one or more additional shape parameter(s) to 

the parent distribution. 

The exponential distribution plays a vital role in analyses of life testing data in statistics and probability theory. It is the 

probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur 

independently and continuously at a constant average rate. It is a specific case of the gamma distribution. It is the continuous 

analog of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis 

of Poisson point processes, it is found in various other contexts. 

A compounded survival model that includes the different shapes like Increasing, decreasing, bathtub-shaped, and inverted 

Bathtub-Shaped failure rate in a single model would be constructive in survival analysis. Such a model would provide 

considerable flexibility and goodness of fit for fitting a broad variety of lifetime data sets. Such a survival model might also be 

taken to determine the distribution class from which the data is selected, by constructing confidence interval over its 

parameters. The proposed distribution introduced here satisfies these criteria. 

The inverse exponential distribution was proposed as an alternative to the Exponential distribution because it does not have a 

constant failure rate and it does not also reveal the memoryless property. Details about the Inverse Exponential distribution are 

readily available in (Keller & Kamath, 1982) and (Prakash, 2012). The inverse exponential distribution has been compounded 

in recent times resulting into Kumaraswamy Inverse Exponential distribution (Oguntunde et al., 2017), (Chaudhary, et al., 

2020) has presented Truncated Cauchy power–inverse exponential distribution, The Exponential Inverse Exponential 

distribution has introduced by (Oguntunde et al., 2017). Rao (2013) has used inverse exponential distribution for the estimation 

of reliability in 

multi-component stress-strength. Basheer (2019) has introduced the Marshall–Olkin alpha power inverse exponential 

distribution. 

The logistic distribution is a univariate continuous distribution and both its PDF and CDF functions have been used in many 

different areas such as logistic regression, logit models and neural networks. It has been used in the physical sciences, 

demography, sports modeling, and recently in finance. The logistic distribution has wider tails than a normal distribution so it 

is more consistent with the underlying data and provides better insight into the likelihood of extreme events. 

If X follows the logistic random variable with shape parameter  
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λ > 0, its cumulative distribution function is given by 
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Tahir et al. (2016) has defined the logistic-X family as a new generating family of continuous distributions produced from a 

logistic random variable whose density function can be defined as being right-skewed, left-skewed, symmetrical and reversed-J 

shaped, and can have decreasing, increasing, bathtub and upside-down bathtub hazard rates shaped. Lan and Leemis, (2008) 

has introduced an approach to define the logistic compounded model and introduced the logistic–exponential survival 

distribution. This has several useful probabilistic properties for lifetime modeling. Unlike most distributions in the bathtub and 

upside down bathtub classes, the logistic–exponential distribution exibit closed-form density, hazard, cumulative hazard, and 

survival functions. The survival function of the logistic–exponential distribution is
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Using the same approach used by (Lan & Leemis, 2008) we have defined the new distribution called logistic- inverse 

exponential (LIE) distribution. The main aim of this study is to present a more flexible distribution by adding just one extra 

parameter to the inverse exponential distribution to attain a better fit to the lifetime data sets. We have discussed some 

distributional properties and its applicability. The remaining sections of the proposed study are arranged as follows. In Section 

2 we present the new logistic- inverse exponential (LIE) distribution and its various mathematical and statistical properties. We 

have make use of three well-known estimation methods to estimate the model parameters namely the maximum likelihood 

estimation (MLE), least-square estimation (LSE) and Cramer-Von-Mises estimation (CVME) methods. For the maximum 

likelihood (ML) estimate, we have constructed the asymptotic confidence intervals using the observed information matrix are 

presented in Section 3. In Section 4, a real data set has been analyzed to explore the applications and capability of the proposed 

distribution. In this section, we present the estimated value of the parameters and log-likelihood, AIC, BIC and CAIC criterion 

for ML, LSE, and CVME.  Finally, in Section 5 we present some concluding remarks 

II. THE LOGISTIC-INVERSE EXPONENTIAL(LIE) DISTRIBUTION 

The Inverse Exponential (IE) distribution has been introduced by (Keller & Kamath, 1982) and it has been studied and 

discussed as a lifetime model. If a random variable ( )Y IE   then the variable 
1

U
Y

=  will have an inverse exponential 

distribution and its CDF and PDF can be written as, 
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Let X be a positive random variable with a positive shape parameter α and a positive scale parameter λ then CDF of logistic- 

inverse exponential distribution can be defined as 
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And its PDF is 
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This CDF function be similar to the log logistic CDF function with the second term of the denominator being changed in its 

base to an inverse exponential function, hence we named it Logistic inverse exponential distribution. 

 

A. Reliability function  

The reliability function of Logistic inverse exponential (LIE) distribution is 

( ) 1 ( )R x F x= −
 

1
1 ;  ( , ) 0,  0

1 exp / 1
x

x


 


= −  
+ −  

                                                                            (2.5) 

B. Hazard function  

The failure rate function of LIE distribution can be defined as, 
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(2.6)                                            

In Figure 1, we have displayed the plots of the PDF and hazard rate function of LIE distribution for different values of α and λ. 

 

Figure 1. Plots of PDF (left panel) and hazard function (right panel) for different values of α and λ. 

C. Quantile function: 

Quantile function of Logistic Inverse Exponential distribution can be expressed as 

( )

1
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D. Skewness and Kurtosis: 

The Skewness and Kurtosis based on quantile function are, 

Bowley’s coefficient of skewness is 



Arun Kumar Chaudhary et al. / IJMTT, 66(10), 151-162, 2020 

 

 

154 

( ) ( ) ( )

( ) ( )

0.75 0.25 2 0.5
,

0.75 0.25
Sk

Q Q Q

Q Q

+ −
 =

−
                                                                                                                     (2.8) 

                                                        

Coefficient of kurtosis based on octiles which was defined by (Moors, 1988) is 
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III. METHODS OF ESTIMATION 

In this section, we have presented some well-known estimation methods for estimating parameters of the proposed model, 

which are as follows 

 

A. Maximum Likelihood Estimates 

For the estimation of the parameter, the maximum likelihood method is the most commonly used method (Casella & Berger, 

1990). Let, 1 2, ,... nx x x  is a random sample from ( ),LIE    and the likelihood function, ( ),L    is given by, 
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Now log-likelihood density is 
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Differentiating (3.1.1) with respect to α and λ we get, 
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(3.1.3)                                       

where ( ) ( )exp / 1i iA x x= −  

Equating (3.1.2) and (3.1.3) to zero and solving simultaneously for α and λ, we get the maximum likelihood estimate 

ˆˆ   and   of the parameters α and λ. By using computer software like R, Matlab, Mathematica etc for maximization of 

(3.1.1) we can obtain the estimated value of α and λ. For the confidence interval estimation of α and λ and testing of the 

hypothesis, we have to calculate the observed information matrix. The observed information matrix for α and λ can be obtained 

as, 
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Let ( , )  =  denote the parameter space and the corresponding MLE of   as ˆˆ ˆ( , )  = , then 
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 where ( )B   is the Fisher’s information matrix. Using the Newton-Raphson algorithm to 

maximize the likelihood creates the observed information matrix and hence the variance-covariance matrix is obtained as,
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α and λ can be constructed 

as, 
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where /2z is the upper percentile of standard normal variate. 

 

B. Method of Least-Square Estimation (LSE) 

The weighted square estimators and ordinary least square estimators are proposed by Swain et al. (1988) to estimate the 

parameters of Beta distributions. Here we have applied the same procedure for the LIE distribution. The least-square estimators 

of the unknown parameters α and λ of LIE distribution can be obtained by minimizing  
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with respect to unknown parameters α and λ. 

Consider ( )iG X denotes the distribution function of the ordered random variables
( ) ( ) ( )1 2 n

X  X   X    

where  1 2, ,  , nX X X  is a random sample of size n from a distribution function G(.). The least-square estimators of α and 

λ say ˆˆ   and   respectively, can be obtained by minimizing 
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Differentiating (3.2.2) with respect to α and λ we get, 
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Hence, the weighted least square estimators of α and λ respectively can be obtained by minimizing, 
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with respect to α and λ. 

 

C. Method of Cramer-Von-Mises estimation (CVME) 

 

The CVME estimators of α and λ are obtained by minimizing the function 
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Differentiating (3.3.1) with respect to α and λ we get, 
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IV. ILLUSTRATION WITH A REAL DATASET 

The data given below represents the fatigue life of 6061-T6 aluminum coupons oscillated at 18 cycles per seconds (cps), cut 

parallel to the direction of rolling which consists of 101 observations with maximum stress per cycle 31,000 psi. Birnbaum and 

Saunders (1969) initially studied this data set. 
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The contour plot and fitted CDF with empirical distribution function (EDF) are presented in Figure 2, Kumar & Ligges (2011). 

 

 
Figure 2. Contour plot (left panel) and the fitted CDF with empirical distribution function (right panel) of LIE distribution. 

The MLEs are calculated directly by using optim() function (Ming, 2019) in R software (R Core Team, 2020) and (Rizzo, 

2008) by maximizing the likelihood function (3.1.1). We have obtained ̂ = 7.6230and ̂  = 91.7136 and the corresponding 

Log-Likelihood value is -456.4885. In Table 1 we have demonstrated the MLE’s with their standard errors (SE) and 95% 

confidence interval for α and λ. 

 

Table 1 

MLEs, SE and 95% confidence interval 

 

 

 

 
Hence the Hessian variance-covariance matrix is obtained as, 

( )
1

ˆˆ ˆvar( ) cov( , ) 0.3743   0.0000

ˆ ˆ 0.0000   2.5132ˆcov( , ) var( )
B

  

  

−    
 = =           

 

 

We have displayed the graph of the profile log-likelihood function of α and λ in Figure 3 and observed that the MLEs are 

unique. 

 

Parameter MLE SE 95% ACI 

alpha 7.6230 0.6118 (6.4239, 8.8221) 

lambda 91.7136 1.5853 (88.6064, 94.8208) 
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Figure 3. Graph of profile log-likelihood function of α and λ. 

 

By using MLE method we estimate the parameter of each of these distributions. For the goodness of fit purpose we 

use negative log-likelihood (-LL), Bayesian information criterion (BIC), Akaike information criterion (AIC), Corrected Akaike 

Information criterion (CAIC) and Hannan-Quinn information criterion (HQIC), statistic to select the best model among 

selected models. The expressions to calculate AIC, BIC, CAIC and HQIC are listed below: 

a) ˆ2 ( ) 2AIC l k= − +   

b) ( )ˆ2 ( ) logBIC l k n= − +  

c) 
( )2 1

1

k k
CAIC AIC

n k

+
= +

− −
  

d) ( )ˆ2 ( ) 2 log logHQIC l k n= − +      

where the number of parameters is denoted by k and n denotes sample size in the model under consideration.Further, in order 

to evaluate the fits of the LHC distribution with some selected distributions we have taken the Kolmogorov-Simnorov (KS), 

the Anderson-Darling (W) and the Cramer-Von Mises (A2) statistic. These statistics are widely used to compare non-nested 

models and to illustrate how closely a specific CDF fits the empirical distribution of a given data set.  These statistics are 

calculated as 

 
1

1
max ,i i

i n

i i
KS d d

n n 

− 
= − − 

 
 

( ) ( )1

1

1
2 1 ln ln 1

n

i n i

i

W n i d d
n

+ −

=

= − − − + −    

 
( )

2

2

1

2 11

12 2

n

i

i

i
A d

n n=

− 
= + − 

 
  

where ( )i i  ;d CDF x=  the xi’s being the ordered observations. 

 

In Table 2 we have displayed the estimated value of the parameters of Logistic inverse exponential distribution using MLE, 

LSE and CVME method and their corresponding negative log-likelihood, AIC, BIC CAIC and HQIC information criteria.  
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Table 2 
Estimated parameters, log-likelihood, AIC, BIC, CAIC and HQIC 

Method of 

Estimation 
̂  ̂  -LL AIC BIC   CAIC         HQIC  

MLE 7.6230 91.7136 456.4885 916.9769 922.2071 917.0994 919.0943  

LSE 7.5222 91.9984 456.5182 917.0364 922.2667 917.1589 919.1538  

CVME 7.6485 92.0105 456.5093 917.0185 922.2488 917.1410 919.1359  

 

 
Figure 4. The Histogram and the density function of fitted distributions (left panel) and Q-Q plot of estimation methods MLE, 

LSE and CVME(right panel). 

 
Table 3 

The KS, AD and CVM statistic with p-value 

In order to illustrate the goodness of fit of the Lindley inverse exponential distribution, we have taken some well known 

distribution for comparison purpose which are listed blew, 

 

A. Burr Type X distribution 

The probability density function of Burr Type X distribution (Burr, 1942) 

( ) ( ) ( )
2 2 -1

- -2;  ,    2 1 -  ;    0,    0,    0.
x x

BurrXf x xe e x


 
     =   

  
 

 

B. Generalized Exponential (GE) distribution 

The probability density function of generalized exponential distribution (Gupta & Kundu, 1999) 

( )   ( )
1

1 ; 0 0x x
GEf x; , e e , , x


      

−
− −= −   . 

Method of 

Estimation 
KS(p-value) AD(p-value) CVM(p-value) 

MLE 0.0672(0.7511) 0.0608(0.8102) 0.4369(0.8112) 

LSE 0.0598(0.8629) 0.0576(0.8302) 0.4523(0.7953) 

CVME 0.0586(0.8791) 0.0569(0.8346) 0.4561(0.7915) 
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C. Chen distribution 

The probability density function of Chen distribution (Chen, 2000) is 

( ) 1 1 0 0x x
CNf x; , x e exp e ; ( , ) , x

       −   
= −    

  
. 

D. Exponential power (EP) distribution 

 

The probability density function Exponential power (EP) distribution (Smith & Bain, 1975) is 

( ) ( )1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
 

     −  
= −   

 
 

where λ and α are the scale and shape parameters, respectively.  
 

In Figure 5 we have presented the P-P plot (empirical distribution function against theoretical distribution function) and Q-Q 

plot (empirical quantile against theoretical quantile). 

 
 

Figure 5. The P-P plot (left panel) and Q-Q plot (right panel) of LIE distribution 

 
For the judgment of potentiality of the proposed model we have presented the value of  Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Corrected Akaike information criterion (CAIC) and Hannan-Quinn information criterion 

(HQIC) which are presented in Table 4.  

 

 
Table 4 

Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

 

The Histogram and the density function of fitted distributions and Empirical distribution function with estimated distribution 

function of LIE and some selected distributions are presented in Figure 6. 

Model -LL AIC BIC CAIC HQIC 

LIE 456.4885 916.9769 922.2071 917.0994 919.0943 

BurrX 457.3766 918.7532 923.9835 918.8757 920.8706 

GenExp 463.7324 931.4648 936.6951 931.5873 933.5822 

Chen 467.0598 938.1196 943.3499 938.2421 940.2370 

ExpPower 476.7897 957.5794 962.8096 957.6994 959.6967 
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Figure 6. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution function with 

estimated distribution function (right panel). 

To compare the goodness-of-fit of the LIE distribution with other competing distributions we have presented the value of 

Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics in Table 5. It is 

observed that the LIE distribution has the minimum value of the test statistic and higher p-value thus we conclude that the 

LIE distribution gets quite better fit and more consistent and reliable results from others taken for comparison. 

Table 5 

The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) 
AD(p-value) CVM(p-value) 

LIE 0.0672(0.7511)  0.0608(0.8102)  0.4369(0.8112) 

BurrX 0.0901(0.3850) 0.1050(0.5620) 0.6033(0.6445) 

GenExp 0.1066(0.2014) 0.3112(0.1257) 2.0724(0.0840)  

Chen 0.1102(0.1718) 0.2960(0.1386) 2.0769(0.0835) 

ExpPower 0.1378(0.0433) 0.6942(0.0130) 4.5057(0.0050)  

 

VI. CONCLUSIONS 

In this study, we have introduced a two-parameter univariate continuous Logistic inverse exponential (LIE) 

distribution. Some statistical and distributional properties of the LIE distribution are presented such as the shapes of 

the cumulative distribution function, probability density function and hazard rate function, survival function, hazard 

function quantile function the skewness, and kurtosis measures are derived and established and found that the 

proposed model is flexible and inverted bathtub shaped hazard function. the model parameters are estimated by using 

three well-known estimation methods namely maximum likelihood estimation (MLE), least-square estimation (LSE), 

and Cramer-Von-Mises estimation (CVME) methods and we concluded that the MLEs are quite better than LSE, and 

CVM. A real data set is considered to explore the applicability and suitability of the proposed distribution and found 

that the proposed model is quite better than other lifetime model taken into consideration.  
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