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Abstract: 

        With the remarkable advances made in various branches of science, engineering and technology, today, more than 

ever before, the study of partial differential equations has become essential. For, to have an in-depth understanding of 

subjects like fluid dynamics and heat transfer, aerodynamics, elasticity, waves, and electromagnetics, the knowledge of 

finding solutions to partial differential equation is absolutely necessary. In this article, Laplace transform method is self-

contained since the subject matter has been developed from the basic definition.   

 

Introduction: 

                           In this paper, we present a new complex inversion formula for a Laplace function. In solving some 

complicated problems using the Laplace transform method. Methods based on complex variable theory may come in handy 

for finding the inverse transform. Also it can be noted that the Laplace transform of f(t) is expressed as in integral. 

Similarly, the inverse Laplace transform of F(s) can be expressed as in integral which is known as inverse integral. This 

integral can be evaluated by using contour integration methods. The complex inversion formula is stated below. 

 

Theorem: 

               Let f(t) and f’(t) be continuous functions on t≥0 and f(t)=0 for t<0. In addition, if f (t) is 0(𝑒𝑡𝛾0) and F(s) =L [f (t); 

s] Then 𝐿−1[F(s); t]=f (t) =
1

2𝑖
∫ 𝑒𝑠𝑡𝐹(𝑠)𝑑𝑠

𝛾+𝑖∞

𝛾−𝑖∞
, t>0 and 𝛾 is a positive constant. 

Proof: 

    Let g(t) and g’(t) be continuous functions and if ∫ 𝑔(𝑡)𝑑𝑡
∞

−∞
converges absolutely and uniformly then g(t) may  be 

represented by the Fourier integral formula  

g(t)=
1

2
∫ 𝑔(𝑣)[∫ cos 𝜔(𝑡 − 𝑣)𝑑𝜔]𝑑𝑣

∞

−∞

∞

−∞
 

         =
1

2
∫ [∫ g(v) cos 𝜔(𝑡 − 𝑣)𝑑𝑣]𝑑𝜔

∞

−∞

∞

−∞
            ....................... (1) 

Since sin ω (t-v) is an odd function of ω,  

We have  

=
1

2
∫ [∫ g(v)sin 𝜔(𝑡 − 𝑣)𝑑𝑣]𝑑𝜔 = 0

∞

−∞

∞

−∞

 

Combining this expression with equation (1) we get 
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g(t)=
1

2
∫ [∫ 𝑔(𝑣)𝑒𝑖𝜔(𝑡−𝑣)𝑑𝑣]𝑑𝜔

∞

−∞

∞

−∞
 

         =
1

2
∫ 𝑒𝑖𝜔𝑡[∫ 𝑔(𝑣)𝑒−𝑖𝜔𝑣𝑑𝑣]𝑑𝜔

∞

−∞

∞

−∞
            ....................... (2) 

In addition we assume that g(t) is of exponential order =0(𝑒𝑡𝛾0). 

 Now we consider the function 

g(t) = {𝑒−𝛾𝑡                              𝑡≥0             

0                      𝑡 < 0
 

Where 𝛾 is a real number greater than𝛾0. Thus, g(t) satisfies all the conditions required by the Fourier integral theorem and, 

therefore we have from equation (2). 

For t≥0 the relation  

                              𝑒−𝛾𝑡f (t) =  
1

2
∫ 𝑒𝑖𝜔𝑡∞

−∞
[∫ 𝑒𝛾𝑣𝑓(𝑣)𝑒−𝑖𝜔𝑣𝑑𝑣] 𝑑

∞

−∞
ω 

                                            = 
1

2
∫ 𝑒𝑖𝜔𝑡∞

−∞
[∫ 𝑒−(𝛾+𝑖𝜔)𝑣𝑓(𝑣)𝑑𝑣] 𝑑

∞

−∞
ω 

                                           = 
1

2
∫ 𝑒𝑖𝜔𝑡∞

−∞
𝐹(𝛾 + 𝑖𝜔)𝑑ω  [definition of Laplace] 

Let 𝛾 + 𝑖𝜔=s, so that𝑑𝜔 = 𝑑𝑠 𝑖⁄ . It follows that 𝑒−𝛾𝑡f (t)=
1

2
∫ 𝑒𝑡(𝑠−𝛾)𝛾+𝑖∞

−𝛾+𝑖∞
F(s) ds 

Therefore, 

                                 f (t) = 
1

2
∫ 𝑒𝑠𝑡𝛾+𝑖∞

−𝛾+𝑖∞
F(s) ds,    t ≥ 0                             …………..... (3) 

                                          Hence proved 

 

Definition 1: 

         A continuous function can be formally defined as a function 𝑓: 𝑋 → 𝑌 where the preimage of every open set in Y is 

open in X. More concretely, a function 𝑓(𝑥) in a single variable 𝑥 is said to be continuous at point 𝑥0 if   

            *𝑓(𝑥0)is defined, so that 𝑥0 is in the domain of 𝑓. 

            *lim𝑥→𝑥0
𝑓(𝑥) exists for 𝑥 in the domain of 𝑓. 

            *lim𝑥→𝑥0
𝑓(𝑥) = 𝑓(𝑥0). 

Definition 2: 

Laplace transform is the integral transform of the given derivative function with real variable t to convert into complex 

function with variable s. For t ≥ 0, let f(t) be given and assume the function satisfies certain conditions to be stated later on. 

The Laplace transform of f(t), that it is denoted by f(t) or F(s) is defined by the equation 

𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 

Definition 3: 

The integral ∫ 𝑓(𝑥)𝑑𝑥
𝐴

 of a real or complex-valued function is said to converge absolutely if ∫ │𝑓(𝑥)│𝑑𝑥 < ∞.
𝐴

 

Definition 4: 

               If a function 𝑓(𝑋) satisfies the Dirichlet condition on every finite interval and if the integral ∫ |𝑓(𝑥)|𝑑𝑥
∞

−∞
 

converges then, 𝑓(𝑥) =
1

2
∫ 𝑔(𝑣)[∫ cos 𝜔(𝑡 − 𝑣)𝑑𝜔]𝑑𝑣

∞

−∞

∞

−∞
. 

Example 1: 

          Find the Laplace inverse of
1

𝑠2+1
 

Solution: 

https://en.wikipedia.org/wiki/Integral
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    From the formula  

                                           𝐿−1[F(s); t]=f (t) = 
1

2𝑖
∫ 𝑒𝑠𝑡𝐹(𝑠)𝑑𝑠

𝛾+𝑖∞

𝛾−𝑖∞
 

𝐿−1 [
1

𝑠2 + 1
; t] =

1

2
∫

𝑒𝑠𝑡𝑑𝑠

𝑠2 + 1

𝛾+𝑖∞

𝛾−𝑖∞

 

 

                                                                       = sum of residues of
𝑒𝑠𝑡

𝑠2+1
 

It has two poles s=𝑖 and s = −𝑖 

                                                                      = sum of the residues of
𝑒𝑠𝑡

(𝑠+𝑖)(𝑠−𝑖)
 

                                                                      =R1+R2                      ………………….(1) 

R1 is a simple pole at s = 𝑖, Formula for simple pole is 𝑓(𝑧) = lim𝑠→𝑠0
(𝑠 − 𝑠0)𝑓(𝑧) 

Appling the formula 

   R1= lim𝑠→𝑖(𝑠 − 𝑖)
𝑒𝑠𝑡

(𝑠+𝑖)(𝑠−𝑖) 

                                                                                                    = lim𝑠→𝑖
𝑒𝑠𝑡

(𝑠+𝑖) 

                                                                                                  =
𝑒𝑖𝑡

(𝑖+𝑖) 

                                                                                                  =
𝑒𝑖𝑡

2𝑖  

                                                           R2= lim𝑠→−𝑖(𝑠 + 𝑖)
𝑒𝑠𝑡

(𝑠+𝑖)(𝑠−𝑖) 

= lim
𝑠→−𝑖

𝑒𝑠𝑡

(𝑠 − 𝑖)
 

=
𝑒−𝑖𝑡

(−𝑖 − 𝑖)
 

=
𝑒−𝑖𝑡

−2𝑖
 

Substitute the values of R1 and R2 in equation (1) 

Laplace inverse of 
1

𝑠2+1
=

𝑒𝑖𝑡

2𝑖
+

𝑒−𝑖𝑡

−2𝑖
 

                                      =
𝑒𝑖𝑡−𝑒−𝑖𝑡

2𝑖
 

Hence the Laplace inverse of 
1

𝑠2+1
 is Sin t  

Verification through normal Laplace inverse formula 

𝐿−1 [
1

(𝑠2 + 1)
] 

First we solve the partial fraction 
1

𝑠2+1
 

 The denominator 𝑠2 + 1can be factorized into linear factors. 

𝑠2 + 1 = (𝑠 + 𝑖)(𝑠 − 𝑖) 

We assume 
1

(𝑠−𝑖)(𝑠+𝑖)
=

𝐴

(𝑠−𝑖)
+

𝐵

(𝑠+𝑖)
…………..(1)where A and B are constants. 

⇒
1

(𝑠 − 𝑖)(𝑠 + 𝑖)
=

𝐴(𝑠 + 𝑖) + 𝐵(𝑠 − 𝑖)

(𝑠 − 𝑖)(𝑠 + 𝑖)
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                                          ⇒                      1 = 𝐴(𝑠 + 𝑖) + 𝐵(𝑠 − 𝑖)……………(2) 

To find A, put s = 𝑖 in equation (2) 

                                                ⇒                         1 = 𝐴(𝑖 + 𝑖) + 𝐵(𝑖 − 𝑖) 

                                                ⇒                         1 = 𝐴(2𝑖) + 𝐵(0) 

                                                ⇒                         𝐴 =
1

2𝑖
 

To find B, put s = −𝑖 in equation (2) 

                                                ⇒                         1 = 𝐴(−𝑖 + 𝑖) + 𝐵(−𝑖 − 𝑖) 

                                                ⇒                         1 = 𝐴(0) + 𝐵(−2𝑖) 

                                               ⇒                          𝐵 =
1

−2𝑖
. 

Substitute the values of A and B in equation (1) 

1

(𝑠 − 𝑖)(𝑠 + 𝑖)
=

1

2𝑖(𝑠 − 𝑖)
−

1

2𝑖(𝑠 + 𝑖)
 

Appling Laplace inverse 

𝐿−1 [
1

(𝑠 − 𝑖)(𝑠 + 𝑖)
] = 𝐿−1 [

1

2𝑖(𝑠 − 𝑖)
−

1

2𝑖(𝑠 + 𝑖)
] 

                                                                  = 𝐿−1 [
1

2𝑖(𝑠−𝑖)
] − 𝐿−1 [

1

2𝑖(𝑠+𝑖)
] 

                                                                  =
1

2𝑖
𝐿−1 [

1

(𝑠−𝑖)
] −

1

2𝑖
𝐿−1 [

1

(𝑠+𝑖)
] 

                                                                 =
1

2𝑖
{𝐿−1 [

1

(𝑠−𝑖)
] − 𝐿−1 [

1

(𝑠+𝑖)
]} 

                                                                 =
1

2𝑖
{𝑒𝑖𝑡 − 𝑒−𝑖𝑡} 

= sin 𝑡 

Hence proved. 

Example 2: 

Find the Laplace inverse of
1

(𝑠+1)(𝑠−2)2. 

Solution: 

    From the formula  

                                                       𝐿−1[F(s); t]= f (t) =
1

2𝑖
∫ 𝑒𝑠𝑡𝐹(𝑠)𝑑𝑠

𝛾+𝑖∞

𝛾−𝑖∞
 

𝐿−1 [
1

(𝑠 + 1)(𝑠 − 2)2
; t] =

1

2
∫

𝑒𝑠𝑡𝑑𝑠

(𝑠 + 1)(𝑠 − 2)2

𝛾+𝑖∞

𝛾−𝑖∞

 

                                                                         = sum of residues of  
𝑒𝑠𝑡

(𝑠+1)(𝑠−2)2 

It has two poles at s = -1 and s = 2. 

                                                                    =R1+R2   ………………..(3) 

R1 is a simple pole at s = -1 

Formula for simple pole is 𝑓(𝑧) = lim𝑧→𝑧0
(𝑧 − 𝑧0)𝑓(𝑧) 

Here the function is s so z = s, 𝑧0 = −1, f(z) =  
𝑒𝑠𝑡

(𝑠+1)(𝑠−2)2. 

Applying the formula, 
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     R1= lim𝑠→−1(𝑠 + 1)
𝑒𝑠𝑡

(𝑠+1)(𝑠−2)2 

                                                                     = lim
𝑠→−1

𝑒𝑠𝑡

(𝑠−2)2 

                                                                    = 
𝑒−𝑡

(−1−2)2 

                                                                   = 
𝑒−𝑡

(−3)2 

                                                                  = 
𝑒−𝑡

9
 

R2 is a double pole at s = 2 

Formula for double pole for power m is 
1

(𝑚−1)!
lim𝑠→𝑠0

𝑑𝑚−1

𝑑𝑧𝑚−1
[(𝑠 − 𝑠0)𝑚𝑓(𝑧)] 

R2 = 
1

(2−1)!
lim𝑠→2

𝑑2−1

𝑑𝑠2−1 [(𝑠 − 2)2 𝑒𝑠𝑡

(𝑠+1)(𝑠−2)2] 

            = 
1

1!
lim𝑠→2

𝑑

𝑑𝑠
[

𝑒𝑠𝑡

(𝑠+1)
] 

            = lim𝑠→2(
(𝑠+1)𝑒𝑠𝑡(𝑡)−𝑒𝑠𝑡(1)

(𝑠+1)2 ) 

                 =  lim𝑠→2 [
(𝑠+1)𝑡.𝑒𝑠𝑡−𝑒𝑠𝑡

(𝑠+1)2 ] 

                                                              = lim𝑠→2 [
𝑒𝑠𝑡[(𝑠+1)𝑡−1]

(𝑠+1)2 ] 

                                                              = [
𝑒2𝑡[(2+1)𝑡−1]

(2+1)2 ] 

=  
𝑒2𝑡(3𝑡 − 1)

32
 

=
3𝑡. 𝑒2𝑡

9
−

𝑒2𝑡

9
 

=
𝑡𝑒2𝑡

3
−

𝑒2𝑡

9
 

Substitute the values of R1 and R2 in equation (1) 

Laplace inverse of                 
1

(𝑠+1)(𝑠−2)2 =
𝑒−𝑡

9
+

𝑡𝑒2𝑡

3
−

𝑒2𝑡

9
. 

 

CONCLUSION : 

                           In this paper, we present a new complex inversion formula for a Laplace function. In solving some 

complicated problems using the Laplace transform method. Methods based on complex variable theory may come in handy 

for finding the inverse transform. Also it can be noted that the Laplace transform of f(t) is expressed as in integral. 

Similarly, the inverse Laplace transform of F(s) can be expressed as in integral which is known as inverse integral. With 

the remarkable advances made in various branches of science, engineering and technology, today, more than ever before, 

the study of partial differential equations has become essential.  
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