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Abstract - This is a new concept to transform a function to a series combining Cosine and Sine functions with Polynomial,
Geometric, Sign and Matrix harmonic functions, unlike Fourier transformation which has only Cosine and Sine functions. The
inherent nature of the functions used in synthesizing the target functions finds application in data reduction techniques without
compromising fidelity and integrity of function. Here, | demonstrate the efficiency of extension in precision error, compression
ratio and implementation complexity while applying it to real-world problems such as faster live streaming, prediction of stock
market data, and storage of medical imaging data. | have also found methods to transform any discrete function to a
continuous function or a continuous function to another function with less error-rate. This is useful in finding interpolation,
smoothing or coil of rough functions, where the nature of curves is not known and is also useful in functions in a certain range
such as hearing frequency, visible wave-lengths. Further, 1 have found smoothing transformation which is useful in finding
both accurate values and in finding roots and maximum, minimum turning points of discrete points. Also one of the methods is
useful in constructing a decorative curve from a given path.

Keywords — Function transformation, Fourier series, trigonometric functions, polynomial functions, geometric functions,
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encryption, function compression, image compression, transformation, compression, smoothness, coil, polygon, quadratic,
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I. INTRODUCTION
A. Concept of Extension to Fourier Series

If fabT(G(n xx)) * Him *x) »dx = 0 and f:T(G(n *x))* Hn*x)*dx #0 (1)
for continuous functions, where T is alinear transformationand V 0 < m <o, 0<n<oo, m#n
or Yt  T(G(nxx))*H(m*x) =0 and Yk, T(G(n*x))*H(nxx) =0 (2)
for discrete functions, where T is a linear transformationand V 1 <m <1, 1<n<lL, m # n then,

One can transform F(x) to another series having G(n = x). For Fourier series, T(G(x)) = G(x). When G is Cosine, H is
Cosine and When G is Sine, H is Sine. Similarly 1 have found method for finding the appropriate T when G is either
Polynomial, Geometric, Sign or Matrix functions separately here and H is Cosine, Sine or any orthogonal function. This can
be used for faster approximations, data reductions, extrapolation, interpolation, compression and encryption.

B. Concept of Extension to Higher precision functions

If the discrete function’s maximum and minimum and the continuous function’s maximum and minimum are at same
locations, then we can approximate the discrete function to the same continuous function. Same concept also can be applied not
only to discrete function but also to the continuous functions to another continuous function for easy calculations. This can be
used for faster approximations, data reductions, extrapolation, interpolation, compression and encryption.

C. Concept of Extension to Faster Smooth functions

sy(x) =x —r+ |x — r| will behave into s.(x) =0 when x <r and s,(x) =2 = (x —r) when x = r .Using the
summation of powers of this curve, we can smooth the nearby points without looking into whole set of the curve. Thus it could
be faster in making discrete or continuous function to smoother curve for easy calculations. This can not only be used for faster
approximations, data reductions, extrapolation, interpolation, compression and encryption, but also be used for finding roots of
the equation and maximum, minimum turning points of the curve.
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Il. DERIVATION OF EXTENSION TO FOURIER SERIES
Using integral by part theorem,

Jusxvsde=ux[vxde—u'*[[vsdexde+u" = [[[ vedx~dxxdx+-- (3)
If F(x) = P(x) * cos(x) ,then substituting u = P(x) and v = cos(x) in Equation (3),
[ F(x) * dx = P(x) * sin(x) + P'(x) * cos(x) — P"(x) * sin(x) — P"""(x) * cos(x) + - 4

f F(l " x) «dx = P(Lxx)*sin(l*x)+P' (Ixx)*cos(Lxx)—P'" (Ixx)*sin(l+x)+-- (5)

l
= J(x) * sin(l * x) + K(x) * cos(l * x), (6)
where J(x) has same degree as P(x) but K(x) has one degree less than P(x). Same can be applicable for F(x) = P(x) *
sin(x) also. Since we could get separate polynomials P(x) with any degree r, one can find k;, V 1 <1< (r+1) sucha
way that if interval is between x; and x; where x; is the starting pointand x; is the finishing point, then
yril %* P(l * xf) —P(*x,)=0 (7
If x; = —x, then all even degree co-efficient of P(l *xf) — P(l*x,) will be zero and hence it is enough to find §+
1 variables. Hence,
§+1 k;

= * P(l * xf) —P(l*x;) =0, then (8)

=1

ffnzlijll ky*P(l*x)*cos(n*lxx)*xcos(m*x)*dx=0,V0<m<o, 0<n<o, m+*n and (9)

f_"nzlijll ky*P(l*x)*sin(m*l*x)*sin(m*x)*xdx =0V 0<m<o, 0<n<ow, m#n and (10)
if P(x) isof odd degree r, we need to multiply with [ = x to make it as even. Hence

r 3 r.3
22k, P(l * xf) * (l * xf) —P(lxxs)*(*x,) = OZZE ky * P(l * xf) * (xf) —P(l *x,) * (x,) =0,(11)

=1

r 3
f_"an:f ky*P(l*x)*cos(nxl*x)*xcos(m=*x)*dx =0V 0<m<o, 0<n<o, m#*n and (12)

r 3
f_"n f:f ky*P(l*x)*sin(m*l*x)*sin(m#*x)*dx =0V 0<m<o, 0<n<ow m#n and (13)

The property shown in Equation (9),(10),(12) and (13) can be used like Fourier series to find another series. To prove this, Let
us start with, if PCOSX(x) = (a*x+ b) *cos(x), PSINX(x) = (c *x + d) * sin(x), with interval —m and m since
P(x) isof degree 1, Let us find using the property in Equation (11)

Yo lx P(Lxxp)x(x;) —P(Uxxg)*(xg) =0 (14)

kix(@*m+b)sm—(ax—nm+b)s—nm+k,*x(a*x2*m+b)sm—(a*x2*—m+b)x—m=02xbx*m*
(k1+k2) = O,k]_ = _kzlf k]_ = _1, then kz =1. Hence,
f_nn(PCOSX(Z*n*x)*Z*x*cos(m*x)—PCOSX(n*x)* x*cos(m*x))*dxz 0 (15)

and ffn (PSINX(Z*n*x)*2*x*sin(m*x)—PSINX(n*x)*x*sin(m*x))*dx =0 (16)
VO<m<ow 0<n<o, m+#n.

A. Derivation with Polynomial Continuous Function
Hence using this property in the equation (15) and (16), if f(x) is periodic between —g and 2 then we can put a

series like Fourier as given below:
f(x) = (ag*x+by) + XY= ((an * x + by) * cos (Z*nzn*x) + (cp * x + dy,) * sin (2*n:n*x)) 17
where
L
a, = L% «[% (f(Z * X) * 2 % X * COS (ann*x) — f(x) * x * cos (z*nzn*x)) * dx, (18)
2
L
8 2 . AxNATT*X . 2H¥N*TTRX
Cp =13 % f_zé (f(Z *X) * 2 % X * sin (T) — f(x) * x *sin (T)) * dx, (19)

14
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=5 f_ée (612 %x) = Gy(x)) * dx

where G,(x) = f; dx * fc (dx ¥ F(x) * cos (Z*n*n*x)>,

dn =225 [2, (622 * 1) = G,()) * dx
where GZ(X) = f; dx * fc (dx *f(x) * sin (2*n*rr*x)>’
_%*ffg (f2*x)*2%x—f(x)*x)*dx,

by = L% * fi (G5(2 % x) — G5(x)) * dx where G3(x) = [ dx * [ (dx » f(x))

In similar way, for quadratic function, it will have same k; = —1 and k, = 1.
f(x) = (ag*x?>+by*xx+cy) +
Yo (a, *x*+ b, *x+cn)*cos(

Yo (dy xx?+ en * X + f,,) * sin (Z*n*”*x)

where a, = L_3 * f_z <f(2 * X) * COS (4*n*n*x) f(x) * cos (Z*n*”*x» * dx,

dp = L% * f_% (f(Z * x) * sin (4*n*n*x) f(x) *sin (2 nm*x)) *d

b, = E * fé (G1 (2+*x)— G, (x)) * dx where G,(x) = <dx * f(x) * cos (Zm*mx)),
(dx * f(x) * sin (Z*n*n*x)),

Z*n*rr*x)
L

e, = E * fz (G,(2 * x) — G,(x)) = dx where G,(x) =

c, = (—an * g) + <L—3 * f_2£ (G3(2 xx) — G5(x)) = dx)
where G5(x) = f; dx * fc (dx * f(x) * cos (Z*n*mx»,

fo = (—dn * L—:) + <i—36, * fi (G4(2 % x) — G, (x)) = dx)

2¥NKTT*X

where G,(x) = f; dx * fc (dx * f(x) * sm(
@ ==+ % (F(2+2) = f(x)) * dx,
by = L% * f_EE (65(2 *X) — Gs(x)) * dx where Gg(x) = fcx (dx * f(x)),

2 L
Co = (—ao * LE) + <L£3 * 71 (Go(2 * %) — Ge(x)) * dx)
2
where G4(x) = f; dx * fcx (dx * f(x))
Or we can subtract % from x?2 co-efficient directly to get c,, f, independent of a,, d,

1= a0 (1 £) 15 1)
Zmﬂ(%”(xz_§)+bn*x+QJ*cm(ﬁ%¢z)+
Zn=1 (d" * (xz - g) tepxx+ fn) * sin (z*n*”*x)

where a,, = g « f% (f(z % X) * COS (4*n*n*x) f(x) * cos (Z*n*rr*x)> * dx,
d, = i f (f(z * X) * sin (4*n*n*x) f(x) * sin (2*n*7‘r*x)> * dx,

L3

15
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(22)

(23)

(24)
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(28)
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(34)
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b, = i—s * fi (G1(2 *x) — Gy (x)) * dx where G(x) = fcx <dx * f(x) * cos (Z*n*n*x)), 37)

L

e, = i—s * f_z (G,(2 * x) — G,(x)) = dx where G,(x) = fcx <dx * f(x) * sin (2*n*n*x)>' (38)

L

L

Cp = i—s * f_zé (G3(2 * x) — G3(x)) * dx (39)
2

where GS(x) = f; dx * J‘Cx (dx " f(x) % COS (2*1127[*)()))

L

fo = i_g x [ (642 % x) = Gy (x)) * dx (@0)
2

where G,(x) = f; dx * fcx (dx « f(x) * sin (Z*nzn:*x))‘

L

ay = % * f_Zg (F(2*x) — f(x)) = dx (1)
2
L

by = L% « [7 (Gs(2 * x) — Gs(x)) = dx where Gs(x) = fc" (dx * £(x)), 42)
2
L

Co = L% «[7 (G6(2 * x) — Gg(x)) = dx where Gg(x) = f; dx * fcx (dx * () “3)
2

In general, for degrees of r =2+, and r = 2 s — 1, We can find k,, by solving following matrix:
1 4 9 16 o (s+1)2 k, 0
1 16 81 256 - (s + 1) ks |=|o0 (49)
1 é'z*s—z 5'2*5—2"'42*5—2 (s +1)%2 Koin 0

ky 0
For degree 3and 4, s = 2 we get (1 41 é) <k2> = (0) On solving we get k; =5, k, = —8, k3 = 3. Similarly,
for degree 5 and 6 we get k; = -2, k, =9, k; = —14, k, = 7. To get the k,,, we can go with the concept of having (e* +
e™™ — 2)% in taylor series will start with x2*5, if f(x) = e* + e~ then the co-efficients of e™** + e™™** = co efficents
of f(m = x )which leads to X7, (km * f(m * x)) will be 0 upto x?*5~2, But this will have constant co-efficients also and
to remove constants, we can write two terms as M * (e* + e ™* — 2)S*1 + N x (e* + e™* — 2)S where M & N will remove

x xy 2 x xN 2*S+2 x X\ 2*S

the constants.Since e* +e™ —2 = (eE - e‘E) , M x (eE - e‘E) + N * (ef - e‘E) , using binomial function

expansion, we can get the constant coefficient at the midpoint as M * =151« (2xs +2)C(s + 1) + N * =15 %« (2 *s)C(s +
XN 2%S+2

1) =0. This leads to M = % and N = (2 s+ 1) using binomial function expansion, (S";l) * (eE — e‘E) +

x XN 2%S
(2*s+1)= (ei - e‘E) . We can get

— _1s-m+1 _ m2 _1s-m+1 (2xs+2)! 2
km =-1 : (2 Fst Z)C(s m+ 1) * 2+(s+1) 1 * (s—m+1)!*(s+m+1)!  2x(s+1)’

On simplifying further we get,

m2x(2xs+1)!
(s—m+1)!*(s+m+1)! (45)
This is applicable for having degree of 2 xs — 1 and 2 *s. We can extend Fourier series for any degree as given below:
For even degree of 2 *r,

f@) = o= (SRlo my *x™) + (46)

e (2 (i ) s (2552 )

km — _1S—m+1 *

Coxr

s (Z;f:l ((2,2;;0 b, * x™) * sin (Z*nzn*x») where

C2x1
L

Apir, = fi dx * < kg, * f(m * x) * cos (M))) 47)

L
2

16
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Brur, f 2 dx (Sh Jo + £ )+ s (22) ) (48)
. qr-m+1 m2x(2+r+1)!
km = —1 * (r-m+1)*(r+m+1)! ’ (49)
2x1r+1
Corr = f dx * (B2 ke x (mx x)¥7) = m me1 Ky xm?TH (50)
For second co- eff|C|ent we need to make double integral

L

Apop_q, = 2 %7 * f_zé dx * ( r+11 kg * Gy (m = x)) (51)
2

where G,(x) = fcx (dx * f(x) * cos (Zmzﬂ)) and

by 1, = =2 %7 * fz dx * (Z“’l ko * Gy (m x)) (52)

where G,(x) = f (dx * f(x) = sin (Z*n*n*x)),

For third co-efficient, we need to make triple integral and we need to subtract the first term as it will be increased by 2

degree and hence it will not be zero.
(2*7r)*(2#r—-1)

Azsr—2, = —Qgup, * CC * m + (53)

((Z*r*) 2xr—1)= f2 dx * (X k *G3(m*x))>

where G;(x) = fd dx * fc (dx * f(x) * cos (Z*n*mx» with another constant cc and
(2*r)*(2*r—1)

bZ*r—Zn = _bZ*r *CC* (2+ T+2) (2#7+1) (54)
((Z*T*) *(2xr—1) % fZ dx * (Xniy km*G4(m*x))>
where G,(x) = f dx * fc (dx * f(x) * sin (Z*n*mx)) with same constant cc and
» [2*T+3 N
cc = fz dx * ( r+1 * x2 * (m * x)z r) - W ;;11 km * mz r+3 (55)

And so on. Or we can have the polynomial

n
iB (x) = x2 7 = ¥y Ly x xFT T« (g) and Y312 ky, % iB, (m * x) is the polynomial (56)
such a way that triple integral, fifth integral, seventh integral up to 2 =1 + 1 integral are zero. For example, to find [, we
need to take triple integral, to find [, we need to take fifth integral and so on. To find [, we can use the following recursion,

((M(k 0)) —Xkzi 1, » (M(k, n))) where (M(k,n)) =(2(*2::—;)n))!!)* T ks m2 et (57)

l _ 1
k™ (Mkk))
2+7+2

x XN 2*T
Since we have arrived k,, by (TH) (ez —e 2) +@2*xr+1)= (eE - e_E) = (rle) x(e¥—e ¥ =2)"t1 ¢+

R*r+1)*(e*—e*—2)" on expandlng, using tailor series, the co-efficient of x**" =2xr+1 and x2"*2 =

* * - - = o n
(Hz)l(%“) and so on, then equating coefficient of x2*7*2 with iP,(x) = X2 =Y L x x P« (g) one can get
_ rx(r+2)x(2xr-1)
L, = — (58)
and [, * % will be another polynomial with r. and equating coefficient of x?2
Couyr = f dx * (Zr+1 m * lPro(m * x)Z*r) J‘z dx * (Zr+1 m * (m * x)Z*r) (59)
2
— LZ*H—l r+1 2xr+1 _ | £ Zartl
- zz*r*(Z*r+1) * Xm=1 km ¥ M =(2x)t= (2) ’
— @ (- r+1 m2(r+k-n)+1
be = 5y * (M, 00) = B521 1+ (M) where (M(k,w) = G220 s BT Ky, (60)
Hence For even degree of 2 *r,

@) = 2= * (ZELo amy * 1P, (0) + (61)

17
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* (Z;’le (( Lo Qm, * iPrm(x)) * COS (2*n*n*x)>> +
* (Z ((Zz*r by, iPTm(x)) * sin (Zm*n*x))) where

- " . .
lPro(x) — xZ*r _ ;:1 ln % xZ*r 2xn (_) 'lPTm.H(x) - lPrm’(x)'

2

b = (M(—ik)) (M0, 0)) = EX2E by + (M)
= et ((M (k,0)) = XkZ7 L, * (M(k, n)))
where (M(k,n)) = %* AL e+
b = LT ot
Cour = f dx % (X2y fen * P (m * x)*7) = fz dx * (X7 kyy * (mo* x)%T)
= % £TH e mZTH = (2% 7)! % (g)z*rﬂ'

—fz dx * (T2 ko * cfm(m * x))

cfo(x) = f(x) 008 (2E) g () = [ cfin(0) * lx

—:V dx * (Zhi2y ke * 5fin(m * X))

o) = £(x) *sin (B=5), $fanaa 00 = [ sfin0) * dx

Hence For odd degree of 2 «r — 1,

fe) =+ (z,%:rl Ay * 1P, () +

C2x1

C2xr

(Zn 1((Z%?H,amn*iR%KX))*cos(”nf”x)>)4-
(Zn 1 ((Zz*r iPrm(X)) * sin (Z*ng))) where

: X 2% L\" i :
By (X) = X7 = By Ly X2 (2) iR, () = iR, (),

lk:

2 *1r+1

2

(M(Ilck)) ((M(k 0)) — Xkt 1, « (M(k, n)))
« (M, 0)) = 523 1, < (M(k,m)) )

WheI‘e (M(k, n)) = M * :'n+=11 km * m2*(r+k_n)+1

@x(r+k-n)h
1r—m+1 % m2x(2+r+1)!

b = — (r—m+Dis(r+m+1)!

Couy = f dx * (Zr+1 m * lP (m * x)Z*r) fz dx * ( r+1 m * (m * x)Z*r)
2

_ LZ*T“ Zr+1 2T+ = (2 1) (E)Z*r+1

- zz*r*(z*r+1) rm - T3 ’

= fz dx * (T2 ko * cf(m * x))when m > 1

cfolx) = f(x) # €05 (X5), Cfpya (1) = J)7 Cfin(x) + dx

= fz dx * (X0 ke * Sfrn(m = x))when m > 1

SFo(x) = £00) = sin (B5), S fonea () = [ sfin ) * dx

a, = f2 dx * (X0 ky * cxfi(m * x)) multiplying by x for first term

cxf, (x) _f(x)*Z*T*X*coS(%)

18
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= fz dx * (X0 kp * sxfi(m * x)) multiplying by x for first term (81)

sxfi(x) = f(x) * 2% 7 *x*sin (Z*nzn*x) (82)
This is not only applicable for cos or sin functions but for any Orthogonal periodic functions, i.e.) V1 <k <r +1,
L L

fi dx x (Vi (k * x) %V (k * x)) = 0 when n # m and, f_i dx * (Vp(k * x) x Vy(k*xx)) = 1
2 2

B. Derivation with Polynomial Discrete Function
For discrete functions also, we can use similar way but instead of [ f we need to consider ) f. Let F(x) = P(x) =

cos (w + k * n) + Q(x) *sin (M + k * n) and if P(x) and Q(x) is of polynomial with
degree r and F(x) 3V 1<x < ((r+1)*L) then

Let G(x) = X7-, F(r) (83)
Then we need to find

o1 K * G(m = L) =0 (84)
Since summation will be existing for all polynomial degree, we cannot reduce further as we did in integral of k,, co-
efficients. For degree r we get following matrix to be solved
1 2 3 4 T+l kq 0
/1 4 9 16 (r+1)2\ \ /o\

1 8 2764 - (r+1)*

\1' A :-- (r+1)/\r+1/_\/

(e* —1)" in taylor series will start with x™ and hence if f(x) = e* then the co-efficients of e™* =co efficents of f(m =*
x) leadsto X7 (km * f(m = x)) will be 0 upto x"~1, terms, since summation will not have a constant term, we can ignore
the constant term and hence k,,, obeys the binomial distribution and we get,

k= =171 ((r+1)C0m)) = —17"™ 1 « O e (r = m + 1)) (86)
For example, when r =1, k; = -2, k, = 1 and when r=2, k; = 3, k, = -3, ks = 1 and so on. For degree 1,
Let F(x) 3V 1<x<(2xL), then

F(x) =(ag*x+by) + Y74 <A(n) * (a, * x + by,) * cos (% + k = n)) + (87)

u . n*T*(2%x—2+p)

n=1 (2 * (€ * x + dy) * sin (7@“)% + k * n))

whereif k 2 2% and v w c integer then, p =0,
if L is odd,then u and v are %, elseif L is even,then u =§ and v =§— 1
if k = zZwl and Vw cC integer then, p=1, u=0,and v=_L—-1
_ 1 _L 2+w—1
A(n) = prCTr— when n = 2 and k # —
A(n) =2 V when n qtg or k = Z*V;_l,
_ (Go(2xL)=2%Go(L))
— % , (88)
Go(x) = X5, (F() , (89)
G1(2%L)—2%G1 (L)
n=—(1 . L (90)
n*Tx(2%1r—2+p)
G(x) = (F(r) * COS (W + kx n)) , (91)
Go(2%L)—2xGo (L)
= (ZL—ZZ) , (92)
. *x(2%17—2+p)
) = B (FO) 510 (M2 1)) )
b= ey« (L4 D+ (slart)oants(e)) (94)
G3(x) = =1 (Z =1 F(T)) or, (95)

19
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G3(x) = XFey (k=T + 1) *F() , (96)

by = —ay * (L + 1) + 2ED 200 (97)
*Tx (241 —24p)

Ga(x) = Y=t ( M F(r) = cos (% +k* n)) or , (98)

Gy(x) = X4 ((x—r+1) * F(r) * cos (%+k*n)) , (99)

dy = —cp » (L +1) + EE2EW) (100)
. *TT* (2% —2+p)

Gs(x) = Ties (ml F() »sin (MEET2D 4 n)) or | (101)

Gs(x) = ¥¥.y ((x —7r+ 1) F(r) * sin (W + e n)) (102)

We can also write the same with difference of —a, * (L + 1) and —c, * (L + 1) tothe x coefficient as written below
F(x)=(ag*(x—L—1)+by) + (103)
Yr_, A(n) *((an *(x—L—1)+b,) *cos(%+k*n)) +

(p+1)=L

g} (2*(cn*(x—L—1)+dn)*sin(w+k*n))

whereif k # 222 and V w < integer then, p =0,

if L is odd,then u and v are % elseif L is even,then u =§ and v =§— 1

ifk = 2 andvw c integer then, p=1, u=0, and v=L—-1

1 L 2xw—1
A(n)—m when Tl—; and k # 2 )
A(n) =2 ¥V when n ig or k = Z*V;_l,
Go(2*L)—2%Gy(L)

ap = (OL—ZO) , (104)
Go(x) = XF, (F() , (105)

L= (Gl(Z*L)L—ZZ*Gl(L)) ’ (106)
G (x) =X% F(r) * cos (w + k * n) (107)

1 r=1 (p+1)*L 4
¢, = (GZ(Z*L)L—ZZ*GZ(L)) ’ (108)
Go(x) = By (F(r) +sin (BEEIZD 4 gy ) (109)

2 r=1 (p+1)+L ’
by = (63(2*L)L—22*G3(L)) (110)
G3(x) = X5 -1 (Z’r’;l F(r)) or , (111)
G3(x) =Xy (k=T + D) *F() , (112)
b, = W#M (113)
Go(x) = X1 ( M, F(r) = cos (% + k n)) or , (114)
Ga () = Zi-s ((x—r+ 1) « F(r) « cos (“E 2D 4 ) *n)), (115)
d, = (GS(Z*L)L—ZZ*Gs(L)) ’ (116)
Gs(x) = Y=t ( M, F(r) sin (%&im + k * ﬂ)) or , (117)
Gs(x) = Y2, ((x —r+ 1)« F(r) *sin (% +ko* n)) (118)
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at, one also can simplify G(2 = L) — 2 = G(L), using following identity.
H(x) = X¥oq h(r), then H(2 *L) =2+ H(L) = ¥21 41 h(r) — Zroy (")

Similarly, for quadratic series, Let F(x) 3 Vv 1 <x < (3 *L), then
F(x) = (ao * (P1(x)) + by * (Pz(x)) + Co) +

(Go(3%L)—=3%Go(2xL)+3*Go(L))
ao =

ooy A(n) * ((an 5 (L)) + by * (p2(X)) + €) * cos (WEZEZID) n)) +

(p+1)=L

(2 (A * (02 (0) + €0 * (9200) + f) + sin (PEEE2D) gy n))

(p+1)=L

whereif k # 222 and V w integer then, p =0,
if L is odd, then u and v are %, elseif L is even,then u =§ and v =§— 1
if k = zw-l and V w c integer then, p=1, u=0,and v=L—-1

p(x)=x2+(2-3xL)xx+Q2*L*+3+L+3), py(x) =2+x—(3*x(L+1)),
A(n) = 21 when n =% and k # 22,
cos= (kxm) 2 2

A(n) =2 V when n ig or k =

2xw—1
2

’

1]

2xL3

Go(x) = X¥ey (FM)

_ (61(3*L)—3%G1 (2xL)+3%G1 (L))

n 2%L3

AOE (F(r) « cos (P 4 e n)) :

dy

(p+1)*L
_ (G2(8%L)=3%Go(2%L)+3*Go (L))
- 2+L3

)

(p+1)+L

G,(x) =X (F(r) * sin (M + k= n)) ,

by

_ (63(3*L)—3xG3(2+L)+3%G3(L))
- 2xL3 ’

G3(0) = Tes (T (FO)) o7,
Gs(x) = Xfoy (k—r+ D *F(D) ,

bn

_ (64 (3*L)=3%G4(2%L)+3%G4 (L))
- 2+L3 ’

64 = i (32 (P s cos (2522 ) o

(p+1)*L

(p+1)*L

Gy(x) =27, ((x—r+1)*F(r)*cos(w+k*ﬂ)> ,

n 2+L3

_ (G5(3*L)—3+G5(2*L)+3+G5 (L))

’

Gs(x) = ¥*_, ( m, (F(r) * sin (%+k *7r))> or ,

Gs(x) =XF4 ((x —r+ 1) *xF(r) =sin (w + k* n)),

0

n 2xL3

(p+1)=L

= (Ge(3*L)—3%Gg(2+L)+3%Gg (L))

2+L3

Go) = T (Zhon (21 (;’(r)))) or,
Go) = 5

(x—-r+1)*(x—1r+2)
2
_ (G7(3+L)—3%G7(2%L)+3%G(L))

* F(r)),

’

21

(119)

(120)

(121)
(122)
(123)

(124)
(125)
(126)

(127)
(128)
(129)
(130)

(131)

(132)
(133)

(134)

(135)
(136)
(137)
(138)
(139)
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G7(x) = X3-1 | T ( =1 <F(r) * COS (% + k * n))) or, (140)
G,(x) = ¥, (W + F(r) * cos (W +kx n)) (141)
£ = (Gg(3*L)—3*(;i22:),*L)+3*G8(L)) ’ (142)
G(x) = 51 | L= ( r=1 <F(r) * sin (%ﬁm + k= n))) or , (143)
Gs(x) _ ,rCZI ((x—r+1);(x—r+2) . F(r) % sin (n*n;(Jer*lr)—*i+p) +ko* n)) (144)

Also please note that, one also can simplify G(3 * L) — 3 = G(2 * L) + 3 * G(L), using following identity.
if H(x) =X7=1 h(r), then HB3*L) =3+ H@2* L)+ 3« H(L) = X}y h(r) =2+ X725, 4 h(r) +
L, h(r) (145)
Like the same way that was done in integral to find for any degree r, we can find for discrete functions also if F(x) 3 Vv 1 <
x < ((r+1)=L) asfollowing:

1

Fx) = (((zrnzo Gy * sPrm(x>))) + (146)
1 u r n*Tx(2*x—2+p)

r * ( n=1 ((Zm:o A(n) *Am, * Sprm(x)) * COS (—(p+1)*L +k* T[))) +

1 v r . (nrmx(2xx=2+p)

Cr*( A (( ho 2% by, % 5B, (x)) *sin (—(pH)*L +k*n)>>

whereif k # 222 and V w integer then, p =0,

if L is odd,then u and v are %, elseif L iseven,then u =§ and v =§— 1

if k = 2*“2/_1 and Vw c integer then, p=1, u=0, and v=L—-1

1 L 2xw—1
A(n) = prCTr— when n = 5 and k # S
A(n) =2 V when n qtg or k = Z*V;_l,
(x+r—-1)! (x+r-n-1)!

sP,(x) = (;‘_1’)! o~ Zh= b x %,Sﬂmﬂ(x) =sP, (x+1)—sP, (x), (147)

and Y7Lk, x sk, (m * x) is the polynomial such a way that its first cumulative sum,

second cumulative of first cumulative sum and sum up to r — 1 cumulative sum are zero.

. _ (x+r-n-1)!
Also please note that if S(x,n) = o TT—r then
_ (x4r-m-2)t _
Sx+1,n)—-Skx,n) = DD — S(x,n—-1),
-n)!
and Y% -1 S(m,n) = irom! S(x,n+1)

(x—D)!(r-n+1)!
To find [; we need to take first cumulative sum, to find [, we need to take second cumulative
of first cumulative and so on. To find [, we can use the following recursion

Iy = m* ((M(k, O)) D Y (M(k,n))) where (M(k, n)) =31 k¥ &T;j—m (148)

Since we have arrived k,, by (e* — 1)"*1, on expanding, using tailor series, the co-efficient of x"*! =1 and x"*2? =

T*D and then for S(x) = _Getraa)t , cooefficient of x™1 = L and x™*2 = —— and so on. With this one can prove
2 (x=1)!(r+2)! (r+2)! 2%(r!)
that [; = —% *(L+1) and [ * (r:]t)! will be another polynomial with » and L and by equating coefficient of x™ one can
get ¢, = X7y kpy * % = L"*1. Hence we can write
1
F(x) = ot ((( =0 Amy * sPrm(x))>> + (149)
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LTl? * ( Y ((anzo A() * Ay, * sPrm(x)) * COS (M + k= n))) +

(p+1)=L
1 . *T(2%X—2+p)
e (B (B0 2+ 570) 50 (552 1)
where if k # w1 and V w C integer then, p =0,
if L is odd,then u and v are %, elseif L iseven,then u =§ and v =§— 1
if k = 2*‘421—_1 and V w C integer then, p=1, u=0,and v=_L—-1
1 L 2xw—1
A(n)—m when Tl—E and k +# T ,
A(n) =2 V when n ;tg or k = Z*V;_l,
(x+7r-1)! (x+r-n-1)!
sh,(x) = (;C_Jrlr)!(r)! — 3 * %,sﬂmﬂ(x) =sh, (x+1)—sph, (x), (150)
1 _ (m*L+r+k-n—1)!
k= (M(k,k)) * ((M(k, 0)) - Zﬁ:i ln * (M(k, n))) where (M(k, Tl)) = Z:n:l km * m , (151)
Ky = =17 ((r+ 1DC(M)) = —17"™H « T r-m+1), (152)
amn = (erj:ll km * Cfm(m * L)) ’ (153)
*T*(2%S—2+p)
cfo(x) = Biey F(s) # cos (M2 g kw ), s () = T2y cfin(s) (154)
bmn = (Z;;:ll km * Sfm(m * L))' (155)
. *TT*(2%S—2
sfo(x) = By F(s) xsin (“EEEER e )5 (1) = 2oy $fin(S) (156)

This is not only applicable for cos or sin functions but for any Orthogonal periodic functions, i.e)V 1 <k <r +1,
Yh_y (Vulk *x) % Vy(k xx)) =0 when n#= m and, ¥k (Vu(k*xx) *V(k*x))=1and V;(x) 3V 1<x<
(r + 1) = L. For making high smoothness function while scaling to this series, we can treat when r = 0, instead of cos(0 *
x), we have to use cos(2*m*x) and sin(0*x) as sin(m * x) since (x — 1) xsin(mr*x(x—1))=0V 1 <x <
(2 * L + 1) and derivative of (x — 1) * sin(m * (x —1)) =0 when x =1 and itis 2 * L, when x = (2 * L + 1). Hence we
can add d x(x — 1) =sin(m = (x — 1)) to the curve and derivative at (2 =L+ 1) of this curve = derivative of the
curveat (2*L+ 1)+ 2=*d L = derivative of the joining curve at 0. using this we can get the value of d.

C. Derivation with Polynomial Discrete Function for 2 Dimension

Same discrete function can be applied to 2 dimensions also, For degree 1, Let F(x,y) 3V 1<x<(2=*
L),and 1 <y < (2 M), then

F(x,y) = (((P(accoo, becy,, ceco,, decgy, X, y)))) + (157)
(chzl (A(n) * P(accno, bcey,, ccep,, decy,, X, y) * CCX(n, x))) +

(vac=1 (B(m) * P(accom, bccy,,, cccy,,, decy,,, X, y) * CCY(m, y))) +

(szfﬂ (chzl (A(n) * B(m) * P(accnm, bcey, ,cccp,  decy, ,x,y) * CCX(n,x) * CCY (m, y)))) +

where P(a,b,c,d,x,y) =a*x(x—-L—-1D)*(y—-M—-1D)+bx(x—-L—-1D)+cx(y-M-1)+d,
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CCX(q,x) = cos (—q*n*(z*x_zw") + k* n) ,

55X (g, x) = sin (

(Px+1)*L
q*m*(2*¥x=2+py)

(Px+1)*L +kox T[) !

CCY(q,y) = cos (q*rr*(Z*y—2+Py) + 1% T[) ,

(py+1)=M

SSY(q,y) = sin (M+ l* n) ,

ifk #

2xWy—1

(py+1)M

and V w, c integer then, p, =0,

. . L-1 . . L L
if L is odd,then u, and ug are - elseif L is even,then u, = 3 and ug = 77 1,

ifk =

25wy —1

2xWy—1

and V w, c integer then, p, =1, u. =0, and u4=L—-1,

and V w, C integer then, p, =0,

. . M-1 . . M M
if M is odd,then v, and v, are 5 elseif M is even,then v, = Py and v, = P 1,

if | = 2970 and v w, C integer then, p, =1, v, =0, and v, =L—-1,

_ 1 _ L 25wy—1

A(q) = ot when g = 2 and k # —

A(q) =2 V when ¢ ;tg or k = Z*WZ"_l ,
_ _ M 2*wy—1

B(q) = prvCTTR— when q = . and I # —

B(q) = 2 V when q ;&% orl = Z*WZ—y_l
_ Geexy(2%L,2%M) =24 Gy (L, 2%M) =25 Gecxy (24L,M) +4%Gecxy (LM)

aACCry, = Zumz )

Gccxy(pv q) = ;1/:1 ( 2:1 F(x,y) * CCX(n,x) * CCY(m;}’)) ,
Gesay (2#L,2%M) =25 G sy (L,2% M) = 2% G sy (2L, M) 445G oy (LM)
L2xM?

Gesy @ @) = T3, (T2, F(x,y) * CCX(n,x) + SSY (m,y))
Gscary(2#L,2%M) =25 G ey (L, 2+ M) 2% G ey (2L, M) 445G ey (LM)
L2+M?

Gsexy(P, @) = ?;:1 ( 5:1 F(x,y) * SSX(n,x) = CCY (m, }J)) )
Gosay (251,24 M) =2 Gy (L,2#M) = 2% Gy (25 L,M) + 4% Gy (LM)
L?xM?

Gssxy(P, @) = ;I;=1 ( z=1 F(x,y) » S§X(n, x) * SSY(m;}’)) )
_ Geex(2%L,2%M)=2%G ey (L,2%M)—2%Goox (2%L,M) +4%G o (L,M)

becy, = Zum )

Geex (D, q) = ?1:1 ( P Li(@—x+1)*F(x,y)* CCX(n,x) * CCY(y,m)) ,
 Gesx(24L,24M) =25 G sy (1,24 M) =25 Ggy (241, M) + 4% Gsy (LM)

bcsy, = 22 )

Gesx(p,q) = 5:1 (25:1 (p—x+1)«F(x,y) *CCX(n,x) * SSY(m,y)) ,
G (241,25 M) = 24 G oo (L, 24 M) 2% G o (24 L, M) 445Gy (L, M)
L2xM?

Gsex (P, q) = 5:1 ( P L (@—x+1)*F(x,y) * S5X(n, x) CCY(m,y)) ,

_ GSSX(Z*L,Z*M)—Z*GSSX(L,Z*M)—2*GSSX(Z*L,M)+4*G55x(L,M)
bssy, = FERYE )
Gssx(p,q) = 3:1 ( P L (@—x+1)*F(x,y)* S5X(n,x) SSY(m,y)) ,
_ Geey(2+L,24M)=2+G oy (L,25M) = 2+Gcy (25L,M) +45Gcy (LM)
CCCp, = TS
Geey @, @) = T0oy (Z02y (@ =y + 1)+ F(x,y) * CCX(n,x)  CCY(m,y))
 Gesy(2#L,2+M)=2+Ggy (L,2+M) —24G sy (2L, M) +4+Gegy (LM)
CCSm,, = D
Gesy @ @) = By (E0es (4 =y + 1)+ F(x,y) * CCX(n,x)  SSY(m, ),
Gscy(2+L,26M) = 25Ggcy (L,2+M) = 2+Gscyy (2L, M) + 44 Gy (LM)
L2+M?

acsy,, =

1]

)

ascy, =

assm, =

)

)

ascm, =

’

’

CSC,, =

1]

24

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)
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Goey @, @) = 25y (Z02y (@ =y + 1)+ F(x,¥) * SSX(n,x) * CCY(m,) ) |

CSSp, = Gssy(Z*L,Z*M)—Z*Gssy(L,Z11\2’131;2*6553;(2*L,M)+4*Gssy(L,M) ’ (169)
Gosy @ @) = By (E0es (4 =y + 1)+ F(x,y) * SSX(n,x)  SSY (m,y) ) ,

decy, = Gcc(Z*L,Z*M)—Z*Gcc(L,z11\243;*6“(24.1\4)+4*GCC(L,M) ‘ (170)
Gee@, @) = X0y (Z0oy (0 — X+ 1) (g =y + 1)+ F(x,y) * CCX(n,x)  CCY(m, ) ,

desy,, = Gcs(2*L,Z*M)—2*Gcs(L:Z’;1:131;2*GCS(Z*L,M)+4*GCS(L,M) ‘ (171)
Ges @, @) = 0oy (B0ey (0 — X+ 1) % (g =y + 1) x F(x,y) * CCX(n, )  SSY(m, ) ,

dscy, = Gsc(Z*L.Z*M)—2*Gsc(L‘Z*;I;’IzI;j*GSC(Z*L,M)+4*GSC(L,M) ’ (172)
Goe® @) = 2oy (Z0ey (p—x + 1) (@ =y + 1)+ F(x,y) * SSX(n,x) * CCY(m,3)) ,

dssy, = Gss(Z*L.Z*M)—Z*Gss(L‘Z*;I;’Izn;z*Gss(Z*L.M)+4*G55(L,M) ’ (173)

Gos (@) = Ziy (Z0ey (P =2+ 1) % (@ =y +1) * F(x,) * SSX(n, x) » SSY (m, y))
For making high smoothness function while scaling to this series, Like we did for 1 dimension, we need to do for 2
dimensions also; (a,  (x = 1) + by + (y = 1) + ¢+ (x = 1)+ (y — 1) + ) * sin(m « (x — 1)) = €5 (222D

and (ay * (r =D +by* =Dty x (=D x(y =1 +dy) #sin(ms (v = D) » 5 (D) 4

(axxy*(x_l)+bxxy*(y_1)+cxxy*(x_1)*(y_1)+dxxy)*5in(”*(x_1)*(y_1))
. CS nxmw*x(2*xx—2+p)
< (p+1)*L )
(@yxy * (X = 1) + byry * (¥ = 1) + €y x (x = D)+ (y = 1) + dyyy, ) * sin(m = (x — 1) * (y — 1))
*Cs(n*r[*(Z*x—2+p))

(p+1) =L

where CS = cos or sin, and gradient derivative of x direction, y direction at top edge=0 and gradient derivative of
bottom edge should be equal to difference of next curve top edge gradient derivative with gradient derivative of current curve
bottom edge, gradient derivative y direction, x direction at left edge=0 and gradient derivative of right edge should be equal to
difference of next curve left edge gradient derivative with gradient derivative of current curve right edge and the gradient
derivative of x and y direction of extreme top left corner point=0 and the gradient derivative of x and y direction of extreme
bottom right corner point should be equal to gradient derivative of x and y direction of next curve extreme top left corner point
- gradient derivative of x and y direction of current curve extreme bottom right corner point.

D. Derivation with Sign Discrete Function
Since finding cumulative sum for higher dimensions or even for single dimension is cumbersome, we can simplify by
making orthogonal functions. For example for Polynomial of single degree can be written to find orthogonal of

S(xX) =x—ay— Y%, (an % COS (% + k n)) (174)
N\ . n*mx(2xx—2+p)
n=1 (bn * sin (—(p+1)*L +k* n))
if k +# zwl and V w C integer then, p =0,
if L is odd,then u and v are %, elseif L iseven,then u =§ and v =§— 1
if k = Z*V;_l and V w C integer then, p=1, u=0, and v=L—-1

We need to find co — efficient a,, and b,, which satisfies
2L (24X —2+p) —
2 S(r) * cos( DL +k * n) =0 and
2 S(r) «sin

nxx(2xx—2+p)
n*Tx(2%x—2+p)
S(x) * cos (—————

DL + k * 7'[) = 0 then
(p+1)*L
S(x) * sin(

+k* n) and
N*1T* (25X —2+p)

(p+1)+L + ko 7T) are orthogonal,
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using orthogonal property, we can find a, and b,, as below:

a, = A(n) * Y224 S(r) = cos (% + k * n), and (175)
b, =2 Y22L S(r) = sin (W + k * 7'[) = 0, where (176)
if k +# zZwl and V w C integer then, p =0,
if L is odd,then u and v are %, elseif L iseven,then u =§ and v =§— 1
if k = Z*M;_l and V w C integer then, p=1, u=0,and v=_L-1
An) = when n =% and k iw,

cos2 (k=) 2 2
A(M)=2V whenn #= or k = 221,
2 2

Also interestingly after substituting a,,, we get
Sr)=1v1 <r < Land S)=-1V (L+1) <r < (2%L)
Hence,if F(x) 3 V1<x<@2x*L)and S(r) =1V 1 <r < Land Sr)=-1V (L+1) <r < (2xL), then

n*x(2xx—2+p)

F(x) = (apg*S(x) + by) + XV _; (A(n) * (a, *S(x) + by) * cos( + k * n)) +(177)

(p+1)*L
n=1 (2 * (cp * S(x) + dy) * sin (%+ k * T[))
ifk # 22 andvw c integer then, p =0,
if L is odd,then u and v are %, elseif L iseven,then u =§ and v =§— 1
ifk = 2 andvw c integer then, p=1, u=0, and v=L—-1
1 L 2¢w—1
A(n) = pver— when n = 5 and k +# a
A(n) =2 ¥V when n ig or k = Z*V;_l ,
a, = ﬁ * N2 <F(r) * §(r) * cos (% + k= n)) , (178)
. <F(r) #S(r) = sin (FEEE 4 je n’)) , (179)
_ 1 24 n*Tx(2%x—2+p)
by =5+ X5 <F(r) * COS (—(p+1)*L + k * n)) ) (180)
d =1« y2:L ( F(r) * sin (M +k % n) (181)
n T g 471 (p+1)+L ’
S =1VvV1 <r < Land Sr)=-1V (L+1) <r < (2xL) (182)

E. Derivation with Sign Continuous Function
Similarly for continuous function, using this property, if F(x) is periodic between —% and % then
S(x) =Sign(x) =1V x =0 and S(x) =Sign(x) =—1 VvV x <0. Then We can put a series like Fourier as
given below:
f(x) = (ag*x+by) + Y= ((an * S(x) + by) * cos (MTH*X) + (¢ * S(x) + dy,) * sin (M%*x)) (183)
where S(x) = Sign(x) =1V x =0 and S(x) =Sign(x) =—-1V x <0,

L
a, = % *[2 (F(Z x71) *S(2*71) * cos (4*71*:*”)) and (184)
2
L
a =5+ [% (FQ+*7)*S(2+7)) and (185)
2
L
cp = % * f_Zé (F(z *7) * S(2 %) * sin (4*71*:*”)) and (186)
L
by =2 [, (F(2 +7) x cos (*20) ) and (187)
2
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L
by = ﬁ * f_zé (F(2*71)) and (188)

L

L
d, = % *[2 (F(Z *7) * sin (Mn*nw))) (189)
2

G. Derivation with Exponential Geometric Discrete Function
In similar way, we can extend not only for polynomial or sign functions, but also for exponential geometric functions
for both discrete and continuous functions as given below. Let us take example of discrete functions.

FG) = 25 (((Shnmo my * 1)) + (190)

1 _ nxTx(2%x—2+p)
i S

1 -1 . nx*(2%x—2+p)
z*< et <(Z¥n=02*bmn*rm(x ))*Sm(WJrk*”)))

whereif k # 22 and V w < integer then, p =0,
if L is odd,then u and v are % elseif L is even,then u =§ and v =§— 1
if k = 2*":—_1 and Vw cC integer then, p=1, u=0,and v=_L—-1
1 L 2xw—1
A(n)—m Whenn—z and k +# 2 B
2xw—1

A(n) =2 V when n i%orkz S
where r, = 1 and having unique r of 1, values of geometric powers for m other than 0.
if Go,(q) = Z;‘ii)(*;*w (F(x)), then Go,(q) is also a geometric series having same

1,1 values of geometric powers except for r, = 1 whichis r* L

Since Geometric series has a property of Y7, (cooq * Go, (q)) =0
L
where ¢, is the co — efficient of x9 in [[}_; (x - (rp) ) Hence one can get coefficient a,
Yg=0 (Cooq*Goo(q))

Zg=o (C°°q>
to get the co — efficient of a,,

if Gm,(q) = Z,(Cq:“;i);;*” (F(x)) * (Tm'("'l)), then G, (q) is also a geometric series having same

ag, = where ¢y, is the co — efficient of x? in [T;_, (x - (rp)L) (191)

L
(r—p) values of geometric powers except for :ﬂ =1 whichis r* L
m

m

-
Since Geometric series has a property of Z <Cm0q * G, (q)) = 0 Hence one can get coefficient a,
q=0

Sheo (cmoq*amo(q)>
U, = ———F——

0 ZZ:O (Cqu)
to get the co — efficient of a,

L
where Cmo, is the co — efficientof x7 in [I},—y and p=m (x - (:—:1) ) (192)

nxTx(2%x—24p)

. _ v(g+1)+L —(x—
if G, (@) =X\ 2iiqen) (F(x)) * (1~ *Y) * cos (W +k * T[),
then G, (r) is also a geometric series having same

L
(:—p) values of geometric powers except for :—m = 1 whichis r * L Hence
m m

2% =0 (emgGmn @)

a =
i =0 (¢mq)
Similarly to get the co — efficient of b,,, we need to apply sin instead of cos ,Hence

_ 2*22:0 (Cmq*Hmn(Q)>

n Zg=0 (Cmq)

L
where ¢, is the co — efficient of x in [[}=0 and p=m (x - (:—:l) ) (193)

L
by, where ¢, is the co — efficient of x in [[}-gand pem (x - (rr_:l) ) (194)
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nxTx(2xx—24+p)

_ yv(g+1)+L —(x-1 .
Hmn(q) - Zx=1+(q*L) (F(x)) * (rm @ )) * sin (W + k * TI)
Hence we can generalize the exponential geometric powers also as given below:

1 -
FG) = 25 (((Smo my * 1)) + (195)
1 _ *T*(2%X—2+D)
z*< et <(Z:”=° A * g, +73n*7) x cos (LT + k *”)>> *

1 -1 . nx*(2%x—2+p)
z*< et <(Z¥n=02*bmn*rm(x ))*Sm(WJrk*”)))

where if k # M;—_l and V w C integer then, p =0,

if L is odd,then u and v are %, elseif L iseven,then u =§ and v =§— 1
if k = Z*M;_l and V w C integer then, p=1, u=0,and v=_L—-1

1 L 2sw—1
A(n)—m whenn—; and k ;tT'

2xw—1

’

A(n) =2 V when n i%orkz 5
where r, = 1 and having unique r of 1, values of geometric powers for m other than 0.

S0 (€mg *Gmn (@) _ . _ L
A, = W where ¢y, is the co — efficient of x9 in [[}-0ana p=m (x - (i) ) (196)
1)*L —(x— n*Tx(2%x—2+p)
G (@) = 200y (FGO) % (D) % cos (REEEED 4 farr)
2g=0(Cmq*Hmy (@) L
bm, = qoz(rmqfcrn;) where ¢y, is the co — efficient of x? in [Tj—oand p=m (x - (:—”) ) (197)
q=0\"Mgq m

(q+1)+L —(x— . (nxmx(2xx—2+p)
Hmn(q) = qu=+1+(q*L) (F(X)) * (Tm < 1)) * S1n (W + k * TC)

To find appropriate geometric terms 7, of the data, one can go with finding the Geometric series of s exponential terms
with data of (s + 1) = L values for L periodic states. This will have property of co-efficients as given below.
tnssel = Zp=0 Cn, * Un, Where v, =1 and vy, = tui(s—p)er ~ Zy=o Cpy * Up, (198)
_ ¥hoy tna(s—p)+L*Vpq

where ¢, =
Pq Z!ﬁ=1(qu)2

Using this, one can obtain the following values

L
Cno — Zn=12n+s*L , (199)
_ TheitniseL 200
Ung = tna(s-neL ==, (200)
Thoy Lnt(s—1)«L*Vnq

Cp, =——— 55— 201
™ 251=1 (an)z ( )

And so on.Once we getall ¢, , we can again rewrite to the following form
bnassL = Zi:o Cn, * Un, — Cpy * Uy = Zi:o knr * tpire, Where kns =1, (202)

Then, as per geometric series properties, roots of the following equation with variable x
will be the geometric terms 1, for the series.
=0 kn, * x™ = 0 having s roots (203)

H. Derivation with Exponential Geometric Continuous Function
As we did in the discrete geometric series, we need to take same way for continuous series, but integral [ instead of
summation ).

FQ) =25 (ZELy Qg * 1*) + (204)
b (5 (53 o ) - con(22)) )
%* (Z%o:l ((23;20 bmn * rmx) * sin (Z*nzn*x)))

where 1, = 1 and having unique r of , values of geometric powers for m other than 0 then
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L
Gm, (@) = f_Z£ (F(q * x)) * (1,79"%) * cos (Z*n*Lﬂ) * dx will have a geometric series of g
2

L —L
having both (T—p)z and (T—p) % values of geometric powers except for ‘m — 1 whichis L

Tm Tm m
L

L ol
and since it has both (T—p)z and <Tﬂ)z , we need to find co — efficient by

Tm ™

L L
- 1\ _ ()2 m)?
multiplying (x + ;) <(rm) + <Tp) ) Hence
Zr:1 m *Gmn( )
A, = % where ¢y, is the co — efficient of (xq + x%) (205)
q=1\mq
L L
. 1 1 ™\2 m \2
in (x + ;) * | ITy=oand pem (x + ;) - ((é} + (;) > and
L
Gmn(q) = f_zé (F(q * x)) * (rm—q*x) * COS (Z*n*:*q*x) * dx )
2
Zril m *Hmn( )
b, = % where ¢, is the co — efficient of (xq + x—lq) (206)

L
in (x + i) * ;=0and p#m (x + i) - <(:_:1)§ * (:_:>2> and

L
Hmn (@ = f_ZE (F(q * x)) % (1, ”9*%) * sin (Z*n*r:*q*x) * dx
2

L

To find appropriate geometric terms r,, of the data in continuous functions, we need to go only with same discrete approach
of finding roots as explained in (198) to (203).

If in case, 7, values are not unique either in discrete or in continuous method, Then it will be combination of both
polynomial and geometric powers and one can find combining both the methods those were explained above.We need to find
the highest repeater say d, of the r,, and we need to multiply with the polynomial with degree d. First we need to eliminate
by multiplying r,,™* and then with cumulative sum or multiple integrals with the combination of k,, as explained in the
polynomial approach to find the polynomial co-efficient.

1. Derivation with Matrix Harmonic Discrete Function

In similar way, we can extend not only for polynomial, sign or exponential functions, but also for matrix harmonic
functions for both discrete and continuous functions as follows. This is applicable to any square matrix, Let us take example of
discrete functions with 2 X 2 matrix to prove the concept.

Let C,(x) = cos (Z*n%*(x—l)) (207)

S, (x) = sin (M (208)
_ a, *Cn(x)+a2 *Sn(x)a *Cn(x)+a *Sn(x)
M) = (o L0 a5 0100+ g 5o ) (209)
_(by x Cp(x) + by * S, (x)bs * Cp(x) + bg * S, (x)
Bn(x) = (b; * Cp(x) + bi * Sn(x)b: * Cp(x) + bg * Sn(x)>' (210)
(€1 % Couy(X) + €3 * Spun (X) €5 % Cpugy (X) + Cg * Spun ()
A8 = (G0 0t oo S Con ) + e S ) (e
_ dl * CZ*n(x) + dz * SZ*n(x)d * CZ*n(x) + d6 * SZ*n(x)
B = (G e S Cona) 4 g S (212)
and AB, (x) = A,,(x) * B,(x) (213)
BA, (x) = B, (x) * A,,(x) then (214)
YE o An(x) * Ap(x) = (88) when n # m (215)
YL o An(x) * Ap(x) = (88) whenn # m (216)
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YL, A, (x) * B, (x) = (gg) when n # m (217)
00
Y=o An(x) * An(x) # (00) (218)
YL ) By(x) xB,(x) # (88) and hence one can transform like following (219)
Let Fy(x) 3V 1<x<(L), Let Fp(x) 3V 1<x<(L), (220)
FN(x) _ NaO L—1 Nan L-1 an
(o) = (Dao +T A (o )+ T B () (221)

To get this series, using (213) and (214) we need to solve 8 variables of B for a given A matrix
To minimize number of equations and variables, for sxs matrix, we can go with following approach
Let B = A~ + I, * V which will reduce half of the variables
directly to the equations for each s variables of each row of Vmatrix, where
I is the Identity matrix and V is a vector and

rth cell of vector V as V, = YX5_; Vy, * Ok, (x,1),
Oy, is the unique orthogonal function. For 2x2 matrix, we can write

10) <Vv1 * Co(x) + Vy, * Sn(x)> then

B=4 +(01 Vs * Ca(x) + Vy, x Sp(x)

_ Vy. * Cp(x) + V. *S,(x)0
— a1 v v
B=at+ (0 ) + Wy - 500)
on solving these 4 variables and multiplying common terms, we get
bj=K+*a,—M=+a,, bp=K+*ag+M=*a3, by=—K=*L+*az, by=—K=*L=*a, (222)
bs =—K=xLx*as, bg=—K*L*ag, b =L*a;, —M=*as, bg=Lx*a, + M *ag (223)
K=a,*a,—a,*as, L=ag*xag—a;xas, M =(a,*a,+a,*ag) —(az *as + a, * ag) (224)
and hence we get the following series
Fy(x) Nq L-1 Nan L-1 an
(FD (x)) (D +T A = (o) +3E B+ (") where (225)
F(Jc))
ag
226
(%) g (229)
(kan> _ (Zx 1 (ag * Fy(x) + az * Fp(x)) * Cu(x) + (ag * Fy(x) + ay * Fp(x)) * S, (x)) (227)
lan Yie1 (as * Fy(x) + a; FD(x)) * Cp(x) + (ag * Fy(x) + ag * Fp(x)) * Sp(x)
Ng, B (az * as + a, * ag + a,% + ag?) x k, n— (@ *xazt+a;*xas+azxa; +a,xag) *lg,
Dy, ) (@ *as +a; *ag+ a; *as + ag * ag) * kg, — (1> + a,° + az *as + as * ag) * Iy,
(228)
(kbn> _ (Z:Lc=1 (by * Fy(x) + b3 * Fp(x)) * Cp(x) + (by * Fy(x) + by * Fp(x)) * Sn(x)> (229)
by, Yi=1 (bs * Fy(x) + by * Fp(x)) * Cp(x) + (be * Fy(x) + bg * Fp(x)) * S, (x)
(an> _ ((b3 % bg + by * be + b,” + bg”) x kyy — (by * a3 + by % by + by * by + by * bg) * l,,n) (230)
Dy, (by * bs + by % bg + by * bs + bg % bg) * ki, — (by> + by” + bs * bs + by * bg) * I
Cn(x) = cos (M (231)
S, (x) = sin (M (232)
_ (a1 x Ca(x) + ag * Sp(x)as x Cp(x) + ag * Sn(x)>
1) = (a2 L0 1 e 5100w o000 £+ 5200 (223)
_ (b1 Cu(x) + by x Sp(x) b * Cp(x) + bg * Sn(x)>
B = (5r (0 4 by o S0+ .00 1 by e 5,00 (22)
by=Kxa,—M=*ay, bp=K*ag+M=xa;, b3 =—K=*Lx*az, by=—K*L=*a, (235)
bs =—K=+*L=xas, bg=—K=*Lx*as, b=L*a; —M=*as bg=L*a,+M=*ag (236)
K=a *xa,—a,*az L=asxag—a,*xas, M= (a; xa, +a, xag) — (az *as + a, * ag) (237)
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J. Derivation with Matrix Harmonic Continuous Function
In similar to the discrete function, the same property applies for continuous functions. Let us take the example of

continuous functions with 2 X 2 matrix. Let Fy(x), Fp(x) are periodic between —% and % then

FN(x) _ NaO %) Nan [*%) an
(s (x)) = (Dao T A0+ (") T B+ (") where (238)
f L () » dx\
( ) | (239)
\f ACOR!
k f ((ay * Fy(x) + az * Fp(x)) * Cy(x) + (az * Fy(x) + a, * Fp(x)) * Sp(x)) * dx
(lan ) (240)
f ((as * Fy(x) + a7 * Fp(x)) * Cp(x) + (ag * Fy(x) + ag * Fp(x)) * Sp(x)) * dx
Ng,, _ (a3*a5+a4*a6+a7 +a8)*k (al*a3+a2*a4+a3*a7+a4*a8)*lan 241
Dg, ) (a1*a5+a2*a6+a7*a5+a8*a6)*k L@t a? tazxas+a,xag) x g, (241)
k, f ((by * Fy(x) + b3 % Fp(x)) * Cy(x) + (by * Fy () + by * Fp(x)) * Sy (x)) * dx
<l ") = (242)
o f ((bs * Fy () + by % Fp(x)) * Cal(6) + (b * Fy (x) + by * Fp () Sy (6)) * dx
(an> ((b3*b5+b4*b6+b7 + bg* ) *kp, — (by *x az + by * by + by x by + by * bg) * 1, , > (243)
Dy, (by * bs + by * bg + by * bs + bg * bg) * ky,, — (by* + by° + b3 * bs + by * be) x 1,
Co(x) = cos Z*n*n:*(x B (244)
S, (x) = sin (M (245)
_ (G * Cn(x) + az * Sp(x)as = Cp(x) + ag * Sn(x)>
M = (a2 L C0 1 e 51004 C.06) £+ 5100 (248)
_ bl * Cn(x) + b2 * Sn(x)bs * Cn(x) + b6 * Sn(x)>
B = (5 (0 4 by« 20, « .00 by e 5,000 (247
bj=K*a,—M=+a,, bp=K+*ag+M=*a;, by=—K=x*L=xaz, by=—K=*L=x*a, (248)
bs =—K=xLx*as, bg=—K*L*ag, b =L*a;, —M=*as, bg=Lx*a, + M *ag (249)
K=a *xa,—a,*az L=asxag—a;xas, M= (a; xa, +a, xag) — (az *as + a, * ag) (250)
and one can get for both continuous and discrete harmonic functions by, if
FN(X)) _ (GN(X)> . .. Fy(x) _ Gy&)
<FD o) = \6,00) then, harmonic property is @ o0 (251)

K. Derivation with Combined Functions for both Discrete or Continuous of Matrix, Exponential, Sign, Polynomial
Functions
We can also combine, all the functions with matrix harmonic functions for both discrete and continuous functions as

follows.
Fy(x) _ Nao o Nan o an
(o) = (Dao + 3 A+ (p )+ 3 B+ () (252)
N,
Here A, (x), B,(x) are same matrix as when we used to find harmonic functions, but instead of treating, (Dar> as
ar

constants, we need to consider them as the combined functions. Then we need to find co-efficient of combined functions with
the same approach of first we need to eliminate by multiplying r,,™* and then with cumulative sum or multiple integrals with
the combination of k., as explained in the polynomial approach to find the polynomial co-efficient. Since Sign functions are
orthogonal, we can just multiply Sign function to get co-efficient of Sign functions. Thus we could get all the co-efficient of
combined functions. Since A,(x), B,(x) has 8 unknown variables where in 2 will go for scaling and other 6 unknown
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variables will decide the multi-variant of functions such as stock market, gold rate and environmental conditions.

I11. DERIVATION OF HIGH PRECISION CURVE
A. Derivation of Coil Curve for Discrete Functions
Let us assume a function like
_ (a0 @0) +b@=(a®)?)  (axp?+beq?)
f(x) - (C(x)*(p(x))z+d(X)*(q(X)) ) (C*p2+d*q2) Then (253)

((2*a*p*p'+a'*p2+2*b*q*q’+b'*q2)*(c*p +d*q2))—((a*pz+b*q2)*(2*c*p*p’+c’*p2+2*d*q*q’+d'*q2))
f (x) - (c*p2+d=xq?)?

(254)

((p*q*(Z*(b*c—a*d)*(p*q’_p’*q)+(b’*c+a’*d—b*c’_a*dr)*p*q)))+((a’*c—a*c’)*p4+(b’*d—b *d’)*q‘*)
B (cxp?+dxq?)?

ifwesolve a’xc—axc’'=0and b'*d—b*d =0, weget a=Vcand b =W +=d where V and W are constants,
then this function will have maximum or minimum at p =0 or ¢ = 0 => p(x) = 0 or q(x) = 0. Also one can prove that

if c(x)* (P(x))2 +d(x) * (q(x))2 # 0, then f(x) is continuous, which means, c(x) * (p(x))2 +d(x) * (q(x))z can be 0
only when 2, — 222 This leads o if ¢(x) * d(x) > 0, then ®@)°

(at) (a0)
(P(x))z +d(x) * (q(x)) # 0 when c(x) *d(x) > 0. On  substituting a(x) =V xc(x) and b(x) = W *d(x), let  us
rewrite f(x) to another form.

~——= will never exists as it is negative. Hence c(x) =

(aG)+R+(p()’ +b(@)+5+(a))°)
X) = X) =
f) = fox) (a(x)*T*(P(X))2+b(x)*U*(q(x))z)
if (a(x) *b(x) *T +U) >0, then f(x) is continuous and also has maximum value and minimum value when p(x) =
0 or q(x) = 0 respectively. Let fi(x) has values of gmax gminN

then (255)

as  maximum  and =——as minimum
gmaxD gminD

between xLow and xHigh.
On considering a(x) = 222 _ £ (x), b(x) = f,(x) — gmmN . and T,U are positive constants, then (a(x) * b(x) *

gmaxD
T «U) > 0 between xLow and xHigh.
Let f(x) has values f el o maximum at Xmax and 222 ag minimum
fmaxD fminD

at Xmin between xLow and xHigh.
Then p(x) = x — Xmin, q(x) = x — Xmax is the minimal polynomial satisfying p(x) = 0 and q(x) = 0. Hence,

((gmaxN_f1 (x))*R*(x—Xmin)2>+<(f1 (x)_gmi'nN) *S*(x—Xmax)2>

gmaxD gminD

fo) = =

gmaxD

(256)

-fi (x)>*T*(x—Xmin)2>+<(f1 (0)-Z mi."N)*U*(x—XmaxV)

gminD

when x = Xmin, f(Xmin) = %, hence S = A * fminN and U = A * fminD where A # 0 and

R
when x = Xmax, f (Xmax) = T hence R = B * fmaxN and T = B * fmaxD where B # 0 and hence

gmaxD gminD

((gmam—ﬁ(X)>*B*fmaxN*(x—Xmin)2>+<(f1(x) ‘gmmN)*A*fminN*(x—Xmax)z)

fo) = —— . (257)
((gmz;u—ﬁ(x)>*3*fmaxD*(x—Xmin)2>+<(f1(x) ZZizD)*A*fminD*(x_xmax)2>
% = %, then minimum error solving will be (258)
. 2
yan (M - K(x))2 +(N - L(x))2 + (Z(x) * (M * L(x) — N * K(x))) = 0, where
Z(x) will decide the deviation of curve and we can assume 0 for less computation
. _ gminN gmaxN .
Let us assume, approximately f;(x) = average of gminD ' gmaxD then approximately
fNo(x) (B*fmaxN*(x—Xmin)2)+(A*fminN*(x—Xmax) )
fO( ) T fDo(x)  (BxfmaxD+(x—Xmin)2)+(A*fminD*(x—Xmax)?2) By using (258) leads to (259)

K = fNy(x),L = fDy(x),M = (B * fmaxN * (x — Xmin)?) + (4 * fminN * (x — Xmax)?),
= (B * fmaxD * (x — Xmin)?) + (A * fminD = (x — Xmax)?) on solving using (258) we assume
B = A =1 orformoreaccurarcy,weget B =N1% D2 —D1*ND, A=D1%N2— N1+ ND where (260)

32



Sankaralingam Lakshmanaraj et al. / IIMTT, 66(11), 13-51, 2020

N1 =YXah (£Ny(x) * fMaxN + fDy(x) * fMaxD) = (x — Xmin)?,

x=xLow

D1 =YW (£N,(x) * FMinN + fDy(x) * fMinD) * (x — Xmax)?,

x=xLow

ND = Y*1i" " (fMaxN * fMinN + fMaxD * fMinD) ((x — Xmin) * (x — xMax))z,

x=xLow

N2 =YHgh (fMaxN? + fMaxD?) * (x — Xmin)*,

x=xLow
D2 = Yot (FMinN? + fMinD?) * (x — Xmax)*, then
If we solve f;(x) interms of f,(x) from the equation reference(258), (257), we get

( gma"N*B*(x—Xmin)z)+(D*gmmN*A*(x—Xmax)2)

— gmaxD gminD
fl (X) - (C*B*(x—Xmin)2)+(D*A*(x—Xmax)?2) (261)
where C = (—fy(x) * fmaxD) + (fmaxN),D = (fy(x) * fminD) — (fminN)
to simplify let us also consider, gminN, gminD, gmaxN, gmaxD
assame as fminN, fminD, fmaxN, fmaxD. Then, we can rewrite,
((fﬁi’;ﬁ—fom)*B*fmaxzv*(x—xmn)z>+((fo - Fp) A4S ml’"N*@—Xmax)z)
fikx) = . (262)
((}fczzzg—fo(x))*B*fmaxD*(x—Xmin)2>+((f0(x)—%)*A*fminD*(x—Xmaxﬂ)

Hence f;(x) will have maximum and minimum other than Xmax and Xmin because when x =
Xmax and x = Xmin, f;(x) = %
Hence Let us take derivative of f;(x) to see when it approaches x = Xmax and x = Xmin

(A*B*K*((;zz);g—fo (x))*(fo ) —;rgﬁzg)*L—f’(X)*M*K)>

') = , . (263)
((;rngig—fo(x))*B*fmaxD*(x—Xmin)2+(f0(x)—;zzzg)*A*fminD*(x—Xmax)Z)
where K = (x — Xmin) * (x — Xmax),
L =2 * (fmaxN * fminD — fmaxD * fminN) * (Xmax — Xmin),
M= (fmaxN+fminD—fmaxD+*fminN)?
- (fmaxD*fminD) ’
On dividing K% = (x — Xmin)? * (x — Xmax)? on Numerator and denominator, we get,
fmaxN inN
(o) (roo-faie)
fmaxD 0 fminD
A*B*< (x—Xmax) (x—Xmin) L_f,(x)*M
= 5 (264)
fmaxN _ fminN
fo() foX)—F = \
%*B*fmaw*(x—x?ninﬂ( 0(:_X£1";;;’D)*A*fminu*(x—Xmax)

Hence f;'(x) will have maximum and minimum other than (x = Xmax) and (x = Xmin) because when x =

_ , ’ _0 f'max'N f'min'N .
Xmax and x = Xmin, f; (x) = 5 and approaches (Fmax'D) min'D) respectively, and we can take f;(x) to take next
maximum and minimum value. Hence compute f;(x) for all values except when x = Xmax and x = Xmin. Get the

. .. . MaxN . MinN ..
maximum and minimum of the rest of the values. Let it has values of ;1MZiD as maximum and ;1 = as minimum at
1 1

MinD
when x = x;max and x = x;min, and let

g1H = gzzg — (), 9.L = f,(x) — ;ﬁzg,le = (x — x;max)?,x,L = (x — x;min)?, andif  (265)
we get By, A, using (258),(258)(260) then
) = e )
fil = 20— fiG, AL = £ (o) = 0, then (267)
fz(x) — fiH*fiMaxN*x1L*By+f1 L*fi MinN+xqH*Aq (268)

fiH*fiMaxD*x1L*B1+f1LxfyMinD*x1 H*Aq
Here we won’t be able to compute values for taken maximum and minimum values at Xmin, Xmax, x;max, x;min and so
on. Hence compute values of f,.(x) for all x except for already found maximum and minimum locations, and Let
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2 N2 fe-1yMaxN
Xl = (x = xg-ymax)", x¢-pl = (x = xg_pmin)", fe-nH = T———5 = fr2) (), frr-1)L
fa-nMax
_ f (x) _ f(r_l)MmN
-1 f(r_l)MiTLD’
We need to get B(,_q), A—1) using (258), (260) then
£.00) = f(r—1)H*f(r—1)MaXN*x(r—1)L*B(r—1)+f(r—1)L*f(r—1)Ml:nN*x(r—1)H*A(r—1) and (269)
far-)H*f r—1)MaxD*x(r_1)L*B(r_1)*f (r—1) L*f (r—1) MIND*X (r_ 1) H*A(_1)
fo(¥) = f(x) (270)

Recursively repeat until either one value or two values are left out, If it is left by one value then that is the constant function.
If there are two values left, then it is average of these two values. If in case, there exists same maximum or minimum for more
than one location,
then minimal polynomial satisfying p(x) = 0 and q(x) = 0 will be [[%2; (x — xMax,) and [[}=; (x —xMin,)

respectively, and then we need to apply this to the equation and you will get following recursive relations. Let,

m— 2
xg-nH = ]_[tzq v (x — xg_pmax;)’, (271)
N(y— ) 2

xo-pl =TT (x = xg_pymin,)’, (272)
_ fa—1MaxN _

fo-vH =7 = ao far-1(0), (273)
_ _ fr-1MinN

fo-nl = fo-u() -7 =050 (274)

We need to get B(,_y), A-—1) using (258), (260) then (275)

£.0x) = f(r—1)H*f(r—1)MaXN*x(r—1)L*B(r—1)+f(r—1)L*f(r—1)Ml:nN*x(r—1)H*A(r—1) and (276)
far-1)H*f r—1)MaxD*x(r_1)L*B(r_1)+f (r—1) L*f (r—1) MIND*X (r_ 1) H*A(—1)

fo(x) = f(x) (277)

Once we found all f,.(x) functions using this recursive relation, then,

we need to obtain reverse recursion to get as following
_ f@)MaxN

9o = e far+n (), (278)
_ f@r)MinN
9L = foan () — F (ryMinD’ (279)

I H*f(yMaxN*x ) L*¥B )+ g () L*f () MInN *x () H*A
£(x) = 0@ MBI/ @) O A® o nhd (280)

g(r)H*f(T)MaxD*x(T)L*B(T)+g(r)L*f(T)MinD*x(T)H*A(T)
_ _ goHxfoMaxNxxoL*Bo+goL*foMinN*xoH*Ag
fo(x) = f(x) = JoHx* foMaxD*xqL*Bo+goL* foMinD«xqHxAg (281)
The same function can be extended for multi-dimension also, Let there are d dimensions, and then minimal polynomial
satisfying p(x;, x5, X3,...,%4)? = 0 and q(x;, x5, x3,...,%4)% = 0 will be

m, L, (xg — x;Max,)?) and [Th; C%, (xs — xsMin,)?) respectively. Hence Let,

mep_ 2
xepH = Ht;; D (Zg=1 (x5 — x(r_l)smaxt) ), (282)
N(p— . 2
xe-nl =5 (B4 (% = 2gon,ming)’), (283)
_ f@-1pMaxN
fe-nH = fr—nMaxD fa-1) (X1, %2, %3,..., Xq), (284)
We need to get B,_q),A-—1) using (258),(260) then (285)
= _ fa-pMinN
f(T’—l)L - f(T’—l) (xll le x31 ey xd) f(r_l)MinD' (286)
fr = O, xa, %3, .0, x0) (287)
fo= f(r—l)H*f(r—l)MQXN*x(r—i)L*B(T—l)+f(1'—1)L*f(r—1)Ml:nN*x('r—1)H*A(r—1) and (288)
far-1)H*f (r—1)yMaxD*xX(r_1)L*B(r_1)+f (r—1) L*f (r—1) MIND*X (1) H*A(_1)
fo = fo(xy, x2,%3,...,%q) = (X1, %2, X3,..., Xq) (289)

Once we found all f;.(xq, x5, x3,...,x4) functions using this recursive relation,
Recursively repeat until either one value or two values are left out, If it is left by

one value then that is the constant function. If there are two values left, then it is
average of these two values and we need to obtain reverse recursion to get as following

fryMaxN
gnH = Tooman for+1) (X1, X2, X3,..., X4), (290)
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fryMinN
9L = farr1 (1, X2, %3, Xa) — f(:)m, (291)

fr = fr(xy, X2, %3, ..., X4g) ' (292)
— IHS @MaxXN*X(r)L*B 1) + G () L*f () MIRN X () H*A(r)

fr , and (293)
9H* [ yMaxD *x () L*B )+ g (r)L*f ) MIinD*x () H*A ()

fo = fo(xX1, %2, %3,..., Xa) = f(%1,X2,X3,...,Xq) (294)

fo _ goH=*foMaxN=xoL*Bo+goL*foMinN*xqH+*Ag (295)

T goH*foMaxDxxoL*By+goL*foMinD*xoH*A
Let us explain the concept with single dimension, Let the function be, f(x) = [vV25 — x?|
Let us take discrete values from this continuous function as fy(x) = f(x) = f(=5) =0,f(—4) =3,f(-3) =
4,f(0)=5fB)=4f4)=3f(5)=0
Here maximum is at 0 with value of 5 and minimum at both —5,5 with value of 0
B, = 6876157, A, = 439192749 using the equation reference (276) We need to calculate values other

than —5,0,5 for the following function.
_ (5—fo(x)*5%6876157*((x+5)*(x—5))? _ _ __ 2784843585 _ _
fix) = (5=fo(x))*1%6876157((x+5)*(x=5))2+(fo (x)—0)*x1x439192749%(x~0)? Then fi(=4) = (%) = 1097598693 11(73) =

2200370240 4. . ..
f13) = 2392808759 Since only two values are left, we need to take average of the maximum and minimum value. So f,(x) =
2784843585 ,2200370240

1109’5946"32T43928°8789, if in case it is left by one value, then f,(x) = leftvalue, Hence using the equation reference (280), we
need to recur back as following methods.

x
L) 2784843585 2200370240 2784843585 | 2200370240
B (igggggg;gg _ 11097594—6932 4392808789 , 2700370240 « ((x + 4) * (x — 4))2 + (110975946932 4392808789 _ 121708;7854;34568953) » 2784843585 x ((x + 3) * (x — 3))2
- 2784843585 2200370240 2784843585 | 2200370240
(igggggg;gg _ 11097594—6932 4392808789 , 4392808789 » ((x + 4) * (x — 4))2 + (110975946932 4392808789 _ 121708:7854;34568953) £ 11097594693 * ((x + 3) * (x — 3))2
2200370240 * ((x + 4) * (x — 4))? + 2784843585 * ((x + 3) * (x — 3))?
4392808789 * ((x+4)* (x—4))2+ 11097594693 * ((x + 3) * (x — 3))?
() = (5= f1(x)) * 5 % 6876157 = ((x + 5) * (x — 5))? _
folx) = (5 — fi(x)) * 1% 6876157 = ((x +5) * (x — 5))% + (fi(x) — 0) * 1+ 439192749 x (x — 0)2
=1

_ (3952734741 * ((x + 4) * (x — 4))? + 10540625976 * ((x + 3) * (x —3))?) * 5 * ((x + 5) * (x — 5))?
T (3952734741 % ((x + 4) * (x — 4))% + 10540625976 * ((x + 3) * (x — 3))2) * ((x + 5) * (x — 5))2 + (64 * ((x + 4) * (x — 4))2 + 81 * ((x + 3) * (x — 3))2) * 439192749 * x2
We also need not to calculate B, , A, and assumed to be 1, then, same transformation will lead to
320

_ ((5=fo (X)) *5+((x+5)*(x=5))? AN — _ 27 s oy _ 320
fG0) = ((5—fo () *1x((x+5)*(x—5))2+(fo (x)—0)#1+(x—0)2 ,Then fi(=4) = f1(4) = 7 Ji(=3) = /) = 73

320, 27

. . L. — .
Since only two values are left, we need to take average of the maximum and minimum value. So f,(x) = % if in

case it is left by one value, then f,(x) = leftvalue, Hence using the equation reference (280), we need to recur back as
following methods.

320 et BT w
= BTy 320« (x + 4) * (x — 4)2 + (BT =59 %27+ ((x +3) * (x — 3))?
fikx) = @4_2_7 @+2
B BTy a3 (x4 ) % (x— )2+ (BT =2y a7 4 (x4 3) * (x - 3))?
320 * ((x + 4) * (x — 4))% + 27 * ((x + 3) * (x — 3))?
T 7B ((x+ M) x (x—4))2 + 7 # ((x +3) * (x — 3))?2
£o() = (5= fu(0)) * 5% ((x + 5) * (x - 5))?

G = fi(x)) * 1+ ((x +5) * (x = 5))% + (fi(x) = 0) x 1 * (x — 0)?

=f(x)
B (45% ((x+4) * (x —4))2+ 8% (x +3) * (x —3))) * 5 ((x + 5) * (x — 5))?
TASH (D) (x—4)2+ 8 (x+3)x(x =3 *Lx((x +5) * (x —5))2 + (320 * ((x + 4) * (x — 4))2 + 27 * ((x + 3) * (x — 3))2) * 1 * x2
Hence We could transform discrete values or even the continuous function to another continuous function. Since this
function have maximum or minimum at every point, this will be of coily nature.
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B. Derivation of Continuous Harmonic Curve for Discrete Function
Similar way to get smoothness of the function we need to go with following identities,
. _ _ (aG)*R+(Ip(x)D+b()*S*(lq(x)])
if ) = /ol = (erep@brberu-taD) (296)
then this function will not have any maximum or minimum when p = 0 or when q = 0 . Similarly

(atosR(p)*+p@)s+(a@D)
if f(x)=folx)=
=1 (aGTx(p@)* +p@U=acoD)

then this function will have maximum or minimum when p = 0 but not when g = 0 . To find whether the given point is
having maximum or minimum, we can go with the principle of direction between points, If neighboring point has the same
direction, then this point will not have maximum or minimum, If neighboring point changes the direction or horizontal, then
there is atleast one chance of maximum or minimum value presence. If in case, minimum or maximum value happens to be at
the beginning or end of the location, we can assume that it changes it direction. The same concept can be extended for multi-
dimension also, Let there are d dimensions, and then minimal polynomial satisfying if the direction at neighboring points
changes at  maximum and  minimum locations, p(xq, x5, X3,...,%4)? =0 and q(x;, x3, X3,...,%q)% = 0 will
be [T, 4, (xs — x;Max,)?) and [[, L, (x, — x;Min,)?) respectively. If in case one of the value do not change,
then |q(xy, x5, X3,...,x4)| = 0 will be [T, (X%, |(xs — x;Min,)|). If both of the values do not change their directions,
then |p(Cxy, Xz, %3,-.., Xa)| = 0 and |qCey, X, %3, xq)| = O will be T2y By |(xs — xsMax)]) and [Ty (Xéey (e —
x;Min,)|) respectively. Hence Let,

(297)

M(p— p
X-nH =TI (Z8=y (x5 — Xgr—1y;max,|)™) where p, =
2 if neighboring points direction change, else p, = 1, (298)
N(p— . p
xe-pl = 11,277 (Bd=r (Ixs = Xgrony;ming|)™) where p, =
2 if neighboring points direction change, else p, = 1, (299)
_ f(.,-_ yMaxN
fae-nH = f(r_i)—MaxD = for—1) (%1, %2, %3,.., Xa), (300)
We need to get B(._q), A-—1) using (258), (258)(260) then (301)
= Any arbitrary value, which will decide the degreeof coil or smoothness,
fr—-pMinN
fe-nl = forn Cevs 2, X0 %0) = 72000 (302)
fr = (%0, %2, X3, ..., Xa) (303)
f = f(r—1)H*f(r—1)M‘7-XN*x(r—1)L*B(r—1)+f(r—1)L*f(r—1)Ml:nN*x(r—1)H*A(r—1) and (304)
fa-0Hf r-1)MaxD*x(r-1)L*B (r—1)+f (r—1)L*f (r—1) MIND*X (1) H*A(r—1)
fo = fo(xy, x2,%3,...,%q) = (X1, %2, X3,..., Xq) (305)

Once we found all f,.(xq, x5, x3,...,x4) functions using this recursive relation, recursively repeat
until either one value or two values are left out, If it is left by one value then that is the constant
function. If there are two values left, then it is average of these two values and we need to obtain
reverse recursion to get as following

fayMaxN
9t = @ — for+1) (X1, X2, %3, .., Xa), (306)

- f@ryMaxD
_ frMinN
g(r)L - f(r+1) (xl' X2, X3y0eny xd) - f(r)MinD' (307)

fT :ﬁ”(xlﬂx2ﬂx3!"'!xd) (308)

— IOHS MaxXNX(r) LBy + 9 () L () MInNX(r)H*A(r)

= _ and 309
ﬂ g(r)H*f(T)MaxD*x(T)L*B(T)+g(r)L*f(T)MmD*x(T)H*A(T) ( )
fO = fO(xl' X2, X3, lxd) = f(-'xlleIxSl rer lxd) (310)
fo — goH*foMaxNx*xgL*Bg+goL*foMinNx*xoHxAg (311)

goH+*foMaxD+*xyL*By+goL*foMinD*xoH*Ag
Let us explain the smoothness concept with single dimension with the same function, f(x) = |v25 — x2|
and take same discrete values from this continuous function as fy(x) = f(x) = f(=5)=0,f(—4) =3,f(-3) =
4,f(0) =5,f3) =4,f(4) = 3,f(5) = 0. In this function only there is direction change at 0 and there are no other points
have direction changes. B, = 367909, A, = 1015509 using the equation reference (276) We need to calculate values other

than —5,0,5 for the following function.
£i(0) = ((5—f0(x))*367909+5+|((x+5)*(x=5))|
1 ((5=fo (%))*367909% 1% ((x+5)*(x—5)) |+ (fo (x)—0)*1015509+1+(x—0)2 '’
7358180

f3) = 10611217’ _ o
Since only two values are left, we need to take average of the maximum and minimum value. So f,(x) =

16555905
27683397

Then fi(=4) = fi(4) = Ji(=3) =
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7358180 16555905
w, if in case it is left by one value, then f,(x) = leftvalue, Hence using the equation reference (309), we

need to recur back as following methods.

fi(x)
7356180 7358180 _ 16555905 7358180 16555905 16555905
Jasaiee L2080, 16555905 7358180 16555905
(Topriary — 20611217 - 27683397y 4 10611217 » |((x + 4) * (x — 4))| + (10611217 27683397 _ 22222 « 27683397 + | ((x + 3) * (x — 3))|
7358180  |((x +4) * (x — 4))| + 16555905 * | ((x + 3) * (x — 3))|
T 10611217 * |((x + 4) * (x — 4))| + 27683397 * |((x + 3) * (x — 3)))|
) = (5= f1(x)) * 367909 x5 * |((x + 5) * (x — 5))|
Jol) = 5 T ) 367909+ 1+ [((x + 5) * (x = 5))| + (F, (x) — 0) = 1015509 = 1 % (x — 0)2
=f®

_ (9139581 * |((x + 4) * (x — 4))| + 24372216 * [(x +3) * (x = 3))|) * 5 * |((x + 5) * (x — 5))|
T (9139581 * |((x + 4) * (x — 4))| + 24372216 * |((x +3) * (x =3P * L+ [((x +5) * (x = 5| + (4 * [((x +4) * (x = 4)| + 9 = |((x + 3) * (x — 3))|) * 1015509 * 1 * x2
Also let us not calculate B,, A, and assumed to be 1, then, same transformation will lead to

_ (5=fo(R)*5+|((x+5)*(x=5))| _ay = _15 oo oy _20
1109 = Gy isy s Go-ora—oe e D =AW =10 AED =AG) =1

20 15
. . o St e
Since only two values are left, we need to take average of the maximum and minimum value. So f,(x) = 132“, if in

case it is left by one value, then f,(x) = leftvalue, Hence using the equation reference (309), we need to recur back as
following methods.

15 15
BB 204 (G +4) 4 (x—4))|+(13 L2515+ |((x +3) * (x - 3))|
JAGE — .
+
& 211)*13*|((x+4) (x—4))|+(13 1y 110)((x +3) * (x - 3))|
=20*|((x+4> Co— )] +15 % [((x +3) = (x = 3)
13+ |((x+4)*(x—4))|+11#|((x+3) * (x —3))|
) = (5—f1()) *5*|((x+5) * (x = 5))|

G- * 1+ |((x+5) * (x =5+ (fi(x) = 0) * 1 % (x — 0)?

(9#[((x+4)*(x—4)) [ +8*| ((x+3)*(x—3)) N*5*| (X +5)*(x—5))|
(951 ((x+4)* (x—4)) | +8%|((x+3)(x=3)) ) L%| (o +5)* (x—=5)) |+ (4| ((r+4) (x4 | +3%| (x+3)x (x—3)) )+ L#x 2

=f(x) =

C. Derivation of High Smooth and High precision Harmonic Curve for Discrete Functions

Since finding A, B is time consuming, let us go back and change the foundation equation as per reference (255),

Let fN;(x), fD;(x) has positive values or zero between xLow and xHigh. On considering a(x) = gN;(x),
b(x) = gD,(x) and T,U are positive constants, then (a(x) * b(x) * T = U) > 0 between xLow and xHigh.

N . N ..
Let f(x) has values f el s maximum at Xmax and f min ~as minimum

at Xmin between xLow and xHigh.
Then p(x) = x — Xmin, q(x) = x — Xmax is the minimal polynomial satisfying p(x) = 0 and q(x) = 0. Hence,
_ ((gNl(x))*R*(x—Xmin)z) ((ng(x))*S*(x—Xmax)z)
fO(x) - ((gNl(x))*T*(x—Xmin)z) (gD1())*U*(x— Xmax)z) (312)
when x = Xmin, f(Xmin) ==, hence S = A x fminN and U = A * fminD where A # 0 and

when x = Xmax, f(Xmax) = g, hence R = B * fmaxN and T = B * fmaxD where B #

fmaxD

/\

:IM

0 and hence

((gN1(x))*B*fmaxN*(x—Xmin)2)+((gD1(x))*A*fminN*(x—Xmax)z)
fO(x) = ((gNl(x))*B*fmaxD*(x—Xmin)2)+((gD1(x))*A*fminD*(x—Xmax)z)

Now we can group (gN,(x)) * B = fN;(x), (gD, (x)) * A = fD;(x) and hence there is no need to compute 4,B . Let us

rewrite f,(x) as fraction of functions < NoG) _ 5Pt gNot) _ fNO(x),
gDo(x) |gDo ()] fDo(x)
fNo(x)
folx) = —"—"=

((le(x))*fmaxN*(x—Xmin)2)+((fD1(x))*fminN*(x—Xmax)z)
fDo(x) ((le(x))*fmaxD*(x—Xmin)2)+((fD1(x))*fminD*(x—Xmax)z)

(313)

which leads to (314)
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fN(x) _ (fminD+fNo(x)— fminN+f Do (x))*(x—Xmax)? (315)
fD1(x) - (fmaxN+fDy(x)—fmaxD+f No(x))*(x—Xmin)?2

;ngx; will have values other than Xmax and Xmin because when x = Xmax, and x = Xmin, ’;ZIEX; pe
1 1

compute values other than Xmax and Xmin and find the next maximum and minimum values and so on. Like we did in
above subsections, we can extend for multi-dimensions. Let there are d dimensions, and then minimal polynomial satisfying if
the direction at neighboring points changes at maximum and minimum
locations, p(xy, x5, X3,...,x4)% = 0 and q(x;, X5, X3,...,%4)% = 0 will

be [T, %, (xs — xsMax,)?) and [T, L, (xs — x;Min,)?) respectively. If in case one of the value do not change,
then |q(xq, x5, X3,...,x4)| = 0 will be [T, (X%, |(xs — xsMin,)|). If both of the values do not change their directions,
then |p(xy, x5, %3,...,x4)| = 0 and |q(xq, x5, X3,...,x4)| = 0 will

be [T, (B4, |(xs —staxt)D and [T, %, |(xs — xsMin,)|) respectively. Hence Let,

Here Hence

r— p
Xe-nH = ( Y (Zs 1 (lxs x(r—l)smaxtl) t) where p, =
2 if neighboring points directlon change,else p, =1, (316)
n r— . p
Xe-nl = ( Y (Z =1 (lxs _x(r—l)smlntl) t) where p, =
2 if neighboring points directlon change ,else p, =1, (317)
[Ny = fNp(x1,%2,%3,...,Xa), fDr = fDr(1, %, X3,..., Xq) (318)

Ny _ Fa—pMnDfN 1)~ f rmyMinN*fD(r—1))*X(r-1)H and (319)
oy (fr—1)yMaxN+fDr_1y=f (r—1)MaxD*fNr_1))*X(r_1)L

fNo _ fNo(x1,%2,X3%a) _ fN(X1,X2X3,%d) (320)
fDg fDo(x1,X2,X3,.uXd) fD(x1,X2,X3,..Xq)

Once we found all f,.(xq, x5, x3,..., x4) functions using this recursive relation, recursively repeat

until either one value or two values are left out, If it is left by one value then that is the constant
fMaxN fMinN

and we need to obtain

. ... fMinD
function. If there are two values left and assume then itis ——

fMaxD’ fMinD fMaxD

reverse recursion to get as following

N. fN *f o yMaxN*xL+fD *f o yMinNx*xH
fNr _ T+ (1) &) T+ (1) k &) and (321)
fDr fN(@r41)*f (yMaxD*x@)L*B )+ fD(r11)*f (ryMinD*x(r)H
fNo _ fNo(x1,X2,X3,%a) _ fN(X1,X2X3,%Xd) (322)
fDg fDo(X1,X2,X3,.Xd) fD(X1,X2,X3,m0, xd)‘
m _ fN(l)*f(O)MaxN*x(O)L+fD(1)*f(O)MlnN*JC(O)H

(323)

fDg - fN(l)*f(O)MaxD*X(O)L*B(O)+fD(1)*f(0)Mi‘n.D*JC(O)H
Let us explain the optimal smoothness concept with single dimension with the same function, f(x) = [V25 — x?|

and take same discrete values from this continuous function as Lo — (x),fN (=5)=0,fNy(—4) =
fDo(x) 1 0 0

3,fNy(=3) =4,fNy(0) =5,fNy(3) =4, fNy(4) = 3,fNy(5) = 0. In this function only there is direction change at 0 and
there are no other points have direction changes.Hence using the equation reference (315) We need to calculate values other
than —5,0,5 for the following function.

fNa() _ ((Fo())*(x=0)? Then fME8 _ [N _ 8 [fN(=3) _ fN@®) _ 9
1) ((5=fo())*|((x+5)*(x=5))| fDi(=4)  fD1(#) 3’ fDi(-3) fDi(3) 4
Since only two values are left, we need to take SMinD , TNy f, if in case it is left by one value,
fMaxD fDa(x) 3
then %ﬁxi leftvalue, Hence using the equation reference (321), we need to recur back as following methods.

[N _ (FN2(0)s8+(| =)= (D +(£D2(0)+0+ (=)= (et D) _ 32+((x=3)+(x+3)D+27+( =)D o g
fD1(x)  (fN2(0))*3x(|(x=3)*(x+3))+(FD2 () *x4x(|(x—4)x(x+4)])  12x(|(x—3)*(x+3)])+12%(|(x—4)*(x+4)])
fNo(x) (fN(0) *5 % (I(x = 5) * (x + 5)]) -
fDi(x)  (fNy () * 1* (J(x = 5) * (x + 5)[) + (fD1(x)) * 1+ ((x = 0)?)
_ (B2 (J(x=3)* (x +3)D) +27 * (|(x —4) * (x + 4)D)) * 5% (J(x — 5) * (x + 5)|)
(B2+(x =)+ x+3)D+27+((x =D * (x+ D)D) * L+ (I(x = 5) * (x +5)) + (12 % (J(x = 3) * (x +3)) + 12 % (|(x = 4) * (x + D) * L+ ((x — 0)2)
If in case, we have approximated with normal polynomial method, then, it would have been termed as
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f(x)z—3*(x+5)*(x+3)*(x)*(x—3)*(x_4)*(x_s)

2016
4x(x+5)*x(x+dH)xx)*x(x—3)*(x—4)x(x—5)
* 2016
Sxx+5)xx+)*x+3)*x(x—-3)*x(x—4)x(x—5)
* 3600
+4*(x+5)*(x+4)*(x+3)*(x)*(x—4)*(x—5)

2016
“3*x+5)*xx+4)xx+3)*x)*(x—3)*x(x—5)
2016

Let us compare each functions approximations from the following table

X |Actual Normal Errorin Coil Error in |Continuous| Errorin | Harmonic | Errorin
Value Polynomial| Polynomial | Function Coil Function |Continuous| Function | Harmonic
| /25 — x2] Function | Function Function Function Function

0.5 149749 149629 |0.0120 [4.9859 |-0.0110 4.9797 |0.0048 ©4.9790 |-0.0041
1.0 4.8990 14.8571 |-0.0418 14.9405 |-0.0416 4.9173 |-0.0183 14.9145 |-0.0155
1.5 4.7697 14.6973 [-0.0724 14.8532 |-0.0835 4.8074 |-0.0377 14.8011 |-0.0314
2.0 4.5826 4.5000 [-0.0826 4.7015 |0.1189 14.6395 |0.0570 @4.6284 |-0.0458
2.5 4.3301 4.2732 |-0.0570 4.4425 |0.1124 14.3929 |-0.0627 @4.3769 |-0.0468
3.5 3.570 [3.6191 [+0.0484 [3.3274 +0.2434 3.6220 |-0.0513 [3.5888 |-0.0181
45 21794 [1.9138 |0.2657 [0.9054  +1.2740 [1.8972 [+0.2822 [1.8725 [+0.3070

You can note that harmonic function achieved from my method is more accurate than normal polynomial function,
Hence we could transform discrete values or even the continuous function to another continuous smooth function.

D. Derivation of High Smooth Orthogonal Matrix Harmonic Curve for Continuous Functions

To transform continuous functions without taking discrete values, Let there are d dimensions, and then minimal
polynomial satisfying points at maximum and minimum
locations, (|p(xq, x5, %3,...,x2) )% =0 and (|q(xy, x3, x3,...,x4) )V = 0 will
be [T, %4, (xs — xsMax,)Pt) and [T, (X%, (xs — xsMin,)Pt) respectively. p, = 1 When f’ # 0, and p, =
2 When f"+0and f'=0, and p, =3 when f""#0,f" =0 and f'=0 and so on, We need to take maximum or
minimum by solving all the points of f'(x) = 0 and also to consider the beginning point and ending point for maximum or
minimum value. If in case minimum and maximum happened to be beginning point or ending point and it is not part of the
points of f'(x) = 0 then we can assume that p, = 1 Since f' # 0. Let us go with following identity,

((fmaXN—fl(x))*B*fmaxN*(x—Xmin)Z>+((ﬁ (x)—m)*A*fminN*(x—Xmax)z)

fmaxD fminD
Fa) = - (329
((;ZgiD—fl(x))*B*fmaxD*(x—Xmin)2>+((ﬁ(x)—;zlizD)*A*fminD*(x—Xmax)2>
which can be written as matrix as below
foGOY Z (_P(X)R(x)) fi(x)
(1 )_ 00 P(x) * (1 ) where (325)

P(x) = B * fmaxN * (x — Xmin)? — A * fminN * (x — Xmax)?
2 . 2
Qx) = (fmaxN * B (x — Xmin)z) - (M * A* (x — Xmax)z)

fmaxD fminD

R(x) = —(fmaxD * B * (x — Xmin)?) + (fminD * A * (x — Xmax)?)

Let A=L* fminD and B = K * fmaxD, f,(x) = ;N‘)Eg,fl(x) = % then
Do D1

fNo(x) _ (—Po(x)Ro(x) " <fN1(x)>
(fpo(x)> (00t 2o0) (o) ehere (326)
Py(x) = K * fmaxN = fmaxD * (x — Xmin)? — L x fminN * fminD * (x — Xmax)?

Qo(x) = K * (fmaxN? = (x — Xmin)?) — L * (fminN? = (x — Xmax)?)

Ry(x) = =K * (fmaxD? x (x — Xmin)?) + L = (fminD? * (x — Xmax)?) which leads to

fu () (=Py(x)Ro(x) *<fNO(x)>
(ful(X)>_(Qo(x) Po(x)) oo () (327)
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now get maximum and minimum of this function and substitute back, then you will get

Fro\ _ (~Po@)Ro(0)\  (—PLGORy @)Y _ (fivy @)
(fuo(x)> = (0t i) a0 Pl(x))*(f;(x)) and so on, Hence (328)
o\ (s (—B-(ORA(x) fr (%)

(fDZ(x)> = ( % (0,00 P09 >) * (fuu(x)> where (329)

P,(x) = K, * f,maxN = f,maxD = (x — X,min)? — L, * f,minN = f,minD * (x — X,max)?
Q,(x) = K, * (fymaxN? = (x — X,min)?) — L, * (f,minN? = (x — X,max)?)
R,(x) = =K, = (f,maxD? x (x — X,min)?) + L, * (f,minD? * (x — X,max)?)

? is the arbitrary value which will decide the degree of smoothness, and (330)
(fN,,<x)> _ ( . <—Pv_r_1(x)Rv_r_1(x))> ) (fNO(x)> (a1
va(x) =0 Qv—r—l(x) Pv—r—l(x) fDo(x)

Here also, we can apply the same technique when there is no maximum or minimum found
as we did for discrete transformation. Hence for multi — dimension,

(fzvo(xl,xz,x3,....xd)> B < - (—Pr(xl,xz,x3,...,xd)RT(xl,xz,x3,...,xd))> . (332)
fDo(xl' X2, X340y xd) B =0 Qr (xll X2, X3, 00y xd) Pr(xli X2, X344, xd)

(fNu(XI'XZ'XS' v 'xd)
fDu(xI'xZ'x3'--'rxd)
P, (x4, X5, %3,...,%q) = K, * fymaxN * f,maxD * (x(r_l)L) — L, * fyminN * f,minD * (x(r_l)H)
Qy(x1, %3, %3,...,%x5) = K, * (ﬁ,maxN2 * (x(r_l)L)) — L, * (fvminN2 * (x(r_l)H))

R, (X1, X5, %X3,...,%q) = —K, * (fsmaxD2 * (x(r_l)L)) + Lg * (f,,minD2 * (x(r_l)H))

) where

? is the arbitrary value which will decide the degree of smoothness, and (333)
mey— p . FNp(x1,%2,%3,0%q)
xo-nH =TI, (L, (Ixs — xg—1,max,|)"™) whereif f, = W (334)
p.=1When f,' #0, p,=2 When " #0 f'=0, p,=3 When £"" #0,f," =0 f.' =
0 and so on,
N(r— 3 D 3 f r(x 1 X2,X3 00X )
xo-nl =TLTY (B4 (Ixs — xg_ny,ming|)"*) whereif f, = W (335)
p.=1When f,"#0, p,=2 When f,"#0 f,'=0, p,=3 When £, #0,£," =0 f.'=
0 and so on,

— s—1 _PS—T—l(xll X2, X3,4 1) xd)Rs—r—l(xlt X2, X3y eeny xd)

X1, X2, X3, -, X,
(fNS( 1 X2, X3 a) _ r=0< ) + (336)
Qs—r-1(x1, %2, X3,..,Xg) Ps_p1(X1, %2, %3,...,Xg)

fDS(xp X2, X3,.-0,Xq)

fNO(xlv xZ! X3, . 'de)

fDO(x]J xZ' x3l sy xd)
Thus we could transform both discrete and continuous multi-dimensional functions to another smooth functions.

E. Derivation of High Smooth and High Precision non Orthogonal Matrix Harmonic Curve for Continuous Functions
Since finding A, B is time consuming, to transform continuous functions we can go with the identities (314), (315),
_ fNe(x) ((fN1(x))*fmaxN*(x—Xmin)2)+((fD1(x))*fminN*(x—Xmax)z)
fO(x) T fDo(x) ((fN1(x))*fmaxD*(x—Xmin)2)+((fD1(x))*fminD*(x—Xmax)z)
fN1(x) _ (fminDxfNo(x)—fminN«fDy(x))*(x—Xmax)?
fDi(x) (fmaxNx+fDo(x)—fmaxDf No(x))*(x—Xmin)?

which leads to

which can be written as matrix as below.

fNo(x)\ _ (fmaxN * (x — Xmin)?fminN * (x — Xmax)? . FN;(x) .
(fDo (x)) - (fmaxD * (x — Xmin)? fminD * (x — Xmax)2> (fD1 (x)) which leads to (337)
Ny (x)\ _ (fminD * (x — Xmax)*> —fminN * (x — Xmax)? . fNy(x) . )
(fD1 (x)) - (—fmaxD * (x — Xmin)?fmaxN * (x — Xmin)? ) (fDo (x)) and as a recursion, getinto  (338)
(fNr(x)) _ (f ming_y,D * (x = Xmax_1))” ~fming_y)N = (x - Xmax(r—n)z) . <f N(r—l)(x)> (339)
fDr(x) —fmaxg_yD * (x — Xmin(r_l))zfmax(r_l)N * (x — Xmin(r_l))2 fD-1)(x)

and after substituting back the recursion, we get
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. 2 . 2

(fNO(x)> - (fmax(r_l)N * (x — Xmm(r_l)) fming._q)N * (x - Xmax(r_l)) > . <fNu(x))
= =4

foo(x) " fmax_y)D * (x — Xmin(r_l))zfmin(r_l)D *(x — Xmax(r_l))2 f,, (%)

Here also, we can apply the same technique when there is no maximum or minimum found
as we did for discrete transformation. Hence for multi — dimension,

(fNO(xl,xz,xg,,...,xd)) _ (e (fmax(r_l)N * (xg—pL) fming_1)N * (x¢-1)H)
fpo (X1, %2, X3, ..., X4) "= \fmax_yyD * (xr_pyL) fming_1yD * (x¢r_p)H)
fNu(xlerprr-'-'xd)
(fDu(xlﬂxZ'x3"'-'xd)
(st(xl,xz,x3,...,xd)> =2 <fmin(s_r_1)D * (x(s—r—l)H) —fming_,_q)N * (x(s—r—l)H)
fps (X1, %2, X3, ., Xg) I —fmaxg_r_1yD * (x(s_r_l)L)fmax(s_T_l)N * (x(s_r_l)L)
ng(xpxz'xs'---:xd)
(fDo(xl'xZ'x3""'xd)> and
xqg-nH = e (L, (Jxs — x(r_l)smaxtDpt) where if f,. = Iy (Ca Xy s Xa) (343)

t=1 fpr(x1,%2,%3,..%q)

p.=1When f,' #0, p,=2 When £," #0 f'=0, p,=3 When £"" #0,f," =0 f.' =

(340)

) + (341)

) where

) «(342)

0 and so on,
N(r- . 14 . N (X1,X2,X3,.Xq)
x(T—I)L = Hti1 Y (Zg=1 (lxs - x(r—l)smlntl) t) where if fr = W (344)
p.=1When f,' #0, p,=2 When £," #0 f'=0, p,=3 When £"" #0,f," =0 f.' =
0 and s oon

We need to take maximum or minimum by solving all the points of f’(x) = 0 and also to consider the beginning point and
ending point for maximum or minimum value. If in case minimum and maximum happened to be beginning point or ending
point and it is not part of the points of f'(x) = 0 then we can assume that p, = 1 Since f' # 0. Thus we could transform
both discrete and continuous multi-dimensional functions to another smooth functions.

F. Derivation of High Smooth and High Precision Polynomial Curve for Continuous Functions
Since keep on finding maximum and minimum for continuous function will be time consuming, we can minimize
computation using following technique.
if L(x,m,d) = (22;01 Ay * (X — xm)s) * ]_[;,’=0 and p=m (x - xp)d then L(x,,m,d)=0V r, 0<r <n and r # m,
but L(x,,,m,d) #0, L'(x,,m,d) =0V r, 0<r <n and r #m, but L' (x,,,m,d) #0, (345)
L'(x,,m,d) =0V r, 0<r<nandr+m, but L"(x,,,m,d) # 0 andsoonupto (d — 1) derivative.
We can get these co — efficients by equating the derivatives for the following generalized function
_ d
f(x) = Xm0 ((Zg:ol A * (x — xm)s) * HZ:O and p#m (x - xp) ) (346)
Let us explain the concept by taking degree d = 2
if L(x,m) = (am + by, * (x — xm)) *[Ip=0 and p=m (x - xp)z then L(x,,m)=0V r, 0 <r <n and r #= m,(347)
L(xp,m) = am * [Ip=0 and p=m (x - x,,)2 Andalso L'(x,m) =0V r, 0<r<mnand r #m,
' 2 1
L' (%, m) = ( ;I:o and p=m (x — xp) ) * <bm +2%a,* (Z;Lo and p=m E))

Hence we can get if f(x,) and f'(x,)3v0 < r < n has values as following.
2
f(x) = Xm0 ((am + by * (x — xm)) * Hg:o and pzm (x - xp) > where (348)
: by = f'(xp) * H;:o and p=m - ;(349)

— n R —
am = f(xm) * Hp:o and p¥m (xm_xp)Z ’ Xm—Xp

2% Qy * e
(xm_xp)z m Zp—o and p#m

Hence in general we can obtain co efficients by equating the derivatives for the following generalized function

£ = ey (S48 @y G = 1n)%) * Tmo ana o (5= 3,)") (350)
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G. Derivation of High Smooth and High Precision Polynomial Harmonic Curve for Continuous Functions
Like the same way as polynomial curve for the continuous function, instead of computing

_ d .
fl)=Xr_0 ((Z?:ol A * (X — Xm)¥) * [15=0 and p=m (x - xp) ), we need to go with (351)

gl(x) + f(X) * gZ(x) + (QS(x) + f(X) * g4(x)) * ( %:0 (25:0 ams * (X - xm)s) * HZ:O and pxm (X - xp)d) =

- d
(gs(x) + f(X) * gG(x)) * ( 77’ln:0 (Zg:g 2 bms * (X - xm)s) * H;:O and pzm (X - xp) ) (352)
Which will have same number of variables as we did in polynomial curve and
once we found all the variables a,,, bin,

d
Let LT(x) = Yh-o (zg=0 A, * (X — xm)s) * H;‘=O and pem (x — xp) and

—em d
Let RT(x) = Y-, (T4z572 by, * (x — Xm)¥) * [Ip=0 and pem (x - xp) then
_ 9s(x)*RT(x)—g3(x)*LT (x)—g1 (x)
fO) = g R ga 0T 00,0 (353)
Let us explain the concept by taking degree d = 2,c =0, g,(x) = g3(x) = g¢(x) = 0,9,(x) =

ga(x) = gs(x) =1
if f(x)+f(x) = < m=0 (am * HZ:O and p#m (x - xp)2)> = Ym=o (bm * H;l:o and pzm (x - xp)z);

then when x = x,,, (354)
n 2

f(xm) +ap, * f(xm) * (Hp=0 and pzm (xm - xp) ) =

b, * ( p=0 and p=m (xm — xp)z) and on taking derivative (355)
! 2 !
f'Ctn) + ap * (Hg:o and pm (xm - xp) ) * <f () + 2 % f(x) * (Z;l:o and p#m ﬁ)) (356)
2 1

= bm * (Hg=o and p#m (xm - xp) ) * 2% <ZZ=O and p¥m m) (357)

once we solve a,,, b,, viathese two linear equations, one can get
_ =0 (bm*ng:o and p=m (x_xp)z)
fl) = —= - ;
(1+Zm:0 (am*npzo and pzm (x-2xp) )
f’(xm)—Z*f(xm)*(Z;}:o and p:mﬁ) 2*(f(Xm))2*(Zg=o and p$mﬁ)
Ay, = - — > and by, = — o Z
f (xM)*(Hp=0 and p=m (xm_"p) ) f (xm)*(np=0 and p#m (xm_xp) )
This will have solution if f'(x,,) # 0, but having solution even if f’'(x,,) = too. We need to adjust g, where 1 <k <
6 functions so that we can get proper solution for a,,, b, . For the above example, Instead of gs(x) =1, Let us
consider gs(x) = Y=o (bm * HZ:O and pzm (x - xp))'

if f(x)+ f(x)* < m=0 (am * HZ:O and pzm (x - xp)2)> = Ym=o0 (bm * H;:o and p#m (x - xp)s);

) where (358)

(359)

then when x = x,, (360)
2

f(xm) + am * f(xm) * (H;:O and p=m (xm - xp) ) =

by, * (]'[;=0 and pem (Xm — xp)3) and on taking derivative (361)
! 2 !
f (xm) + Am * (H;Zo and p#m (xm - xp) ) * <f (xm) + 2= f(xm) * (Zz=0 and p#m xml—xp>> (362)
3 1

= by, * (HZ:O and p#m (xm - xp) ) * 3 * <Z;=O and p#m x—xp) (363)

once we solve a,,, b,, viathese two linear equations, one can get
_ Ym=o (bm*l_[;l:o and pzm (x_xp)s)
fx) = — .
(1+Zm=0 (am*np=0 and p#m (x—xp) )
£ Gem)=3+f Gem)*(Zh=0 and pem ymcas
a, = ( Pl and p#m x,, Xp> . and (365)
(f’(xm)—f(xm)*<22=o and p:mm))*(n;zl:O and p#m (xm_xp) )
2 1
2+(f (xm)) *(Zg=0 and pa:mm)

(fl(xm)_f(x’")*(zzﬂ and p#mﬁ))*(ngﬂ and p=m(xm_xl')3)

) where (364)

b,

(366)
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Thus we could change the denominator by adjusting gs(x). Instead of changing whole degree, Even we can just change only
to the denominator where it is becoming zero to have both variables to right function.To make this generalized let us have the
shorten version as below.

f(x) + f(x) * ( =0 (ZS 0 Amg * (x— xm)s) * HZ:o and pzm (x - xp)d) = (367)
( =0 (Zd sm=2 ms * (x - xm) ) * HZ:O and pzm (x - xp)d)

Which will have same number of variables and ¢,, depends upon the value of f’(x,,).
Once we find all the variables, Aing) bms, we can get

f(X) — Zm 0 (zd s bms*(x—xm)s)*n;',l:o and pxm (x_xp)d

1+(2;ln 0(25 Oams*(x_xm)s)*l_[;:O and p#m(x_xp)d)
Let us explain the concept by taking degree d = 2,c,, =0 or —1 if

f(x) + f(x) ( (am * H =0 and p#m (x - xp)z)) =

2
=0 ((bm +cp * (x — xm)) * ]_[;,l=0 and p=m (x — xp) ), (369)
then when x = x,,,

fem) + am * f(xp) * (H;:o and p#m (xm - xp)z) =

(368)

b, * ([T Xy — X %) and on taking derivative (370)
p=0 and pzm P g
! 2 r 1
f (xm) +am * (H;l:o and p#m (xm - xp) ) * <f (xm) + 2% f(xm) * ( g:o and p*m xm_xp>> (371)
2 1 2
= bm * (HZ:O and p¥m (xm - xp) ) * 2% ( ;)1:0 and p#m ,_, ) + Cm * (ngo and p*m (xm - xp) ) (372)

once we solve a,,, b,, viathese two linear equations, one can get
=0 ((bm"'cm*(x‘xm))*ng:o and p=m (x‘xp)z)

f) = - - .

(1+Zm:0 (am*npzo and pzm (x_xp) ))

if f'(x,,) nearing 0, then a,, =0, (374)

1
m = f(on) * HZ:O and p#m

where (373)

(xm—xp)z '
’ 1 1
= f'(xm) * Hg:o and p#m m — 2% by * Z;:O and p#m Xm—2p (375)
otherwise if f'(x,,) nearing + oo, then ¢, =0, (376)
0, = FGem) =24 Cem)* (Z; 0 and pxmm) = 2*(f(xm)) (Ep 0 and Pimﬁfml—xp) (377)

! Gem)* (Hp 0 and p#m (xm—xp) ) f (em)* (Hp 0 and pzm (xm—xp) )
Hence without finding maximum and minimum but at the same time, we could get alternate high precision and smooth curve
at random points. Also we are able to get a solution even if f'(x,,) = too.

IVV. DERIVATION OF FASTER SMOOTH OR DECORATIVE TRANSFORMATION TECHNIQUE
A. Derivation of Simple Polygonal Curve
Here even though the accuracy is great, computation time to calculate the values are higher. Hence Let us go with the
identity, s,(x) = x —r + |x — r| which will behave like s,.(x) =0 when x <r and s,(x) =2*(x —r) when x > .
Then we can write a discrete function if f(x)3v0 < x < (n — 1) has values as following.

fO)=f(O)+ (f(1) = f(0)) *x + X7=f ar * (x =7 + |x —7|) then (378)
f(m—=1) = f(0) + (f(1) = f(0)) * (m_1)+2r1ar*(2*(m_1_r)) (379)
fm) = £(0) + (f(1) = £(0)) * (m) + E7" @, * (2% (m — 1)) (380)
fm+1)=fO0)+ (D)= fO)*(m+ 1+, ap* (2x(m+1-1)) (381)
on calculating f(m —1) —2* f(m) + f(m + 1) will lead to 2 * a,,

am = f(m_l)_z*fz(m)+f(m+1) hence (382)
F) = F0) + (FQ) = £(0) * x + Tpz3 LEEDZIOVCID , ( — p |x — 7)) (383)

This function will be linear in between integer values and hence will look like a polygonal curve.
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B. Derivation of Smooth Quadratic (Parabolic) Curve
To make the polygonal curve to be smooth, let us take the curve as the following

s.(x) = (x — 7 + |x — r|)? which will behave like s,(x) =0 when x < and s,(x) =4 * (x —r)? when x >r .
s.'(x) =0 when x <r and s,'(x) = 8% (x —r) when x = r. Then we can write a discrete function
if f(x)aV0 < x < (n— 1) has values as following.

(x-r+]x-7])?

fO)=fQO)* (L+kx(xx(x—1)))+ (F(Q) = F(0)) * (6 + 1% (x* (x = 1)) + X72F a, * (384)
We get following pattern
a=0CB-2+k+2+«Dxf(0O)—2xQ+D*f(DH+f(2) (385)
a,=-2+xQ2-k+D*xf(O)+T7+2«Dxf(1)—-4=+xf2)+f(3) (386)
a3 =2+ Q2-k+D*fO)=2x(A+D*f()+7*f(2)—4*f(3)+f(4) (387)
from when r = 4, a, it follows the following pattern
a=f)—4xfr-D+7«f(r-2)+

BxNZE (D fr—s)+ (=D *2x (44D f(D) - 2—k+D~*f(0) (388)

and if we need to generalize with one formula Vr, then we can assume,
a,=—a_1—f(r—2)+3xf(r—1)—-3*f(r)+f(r+1) and (389)
a1 =—a —f(r—2)+3*f(r—1)—3*f(r)+ f(r + 1) and which leads to (390)
fED)=A+2«xk=2+xD)*f(0)+2+1xf(1) (391)
f(=2)=6x(k=D*f(0)+2x1xf(1) (392)
and to generailize for multi — dimension, we can equate the following functions
x2+lx(xx(x—1)) = (X_HLX_TDZ + Sin(:*r) #[* (x*(x—1)) when r =0 (393)
1+ kox (o (x — 1)) = EErl I (k=1 (x * (x = 1) =3 %) (394)
when r = —1 and hence we can write in general as following
FO) = Tpcd @ « (ST | SOy (e x (x - 1)) (395)
— ¥t 4 (B (k= 1)+ (x * (x = 1)) = 3%x)) where
a,=—a_1—f(r—2)+3xf(r—1)—-3*xf(r)+f(r+1) and a4 =1, (396)
fED)=Q+2xk=2«D)*xf0)+2+1xf(1) (397)
f(=2)=6x(k=Dxf(0)+2x1xf(1) (398)

For discrete function, if we know f(—2),f(—1) and f(1) # 0 using above method f(—1) = (1+ 2%k —2 1) = f(0) +
2% 1% f(1), f(=2) =6 (k—1)* f(0) + 2 L * £(1) we can compute [ = ZLEDTSOD=/E)

4x(f (1))
k = D=3 O ('11:’;2;(“ W-TONCED) ang For continuous function, we get optimal k, I by taking integral

at the interval and find by least error matching values. In similar way, For Multidimensional functions,
if f(xy,2x2,%3,...,%4)3V0 < x, < (ng —1)V1 < s < d has values for d dimensions, same can be written as
following. Let

(x-r+1+|x-r+1])? in(m+(r—1))
T(x,r) = (S MECD o x (xx (x = 1)) (399)
sin(m*1)

+ (D (k= 1)+ (x+ (x = 1)) =3 +x)) then
X5 X3, .0 2%g) = B0, ( D N (zﬁ;gg (202 (axgra * Ty T(xd,rd))))) where (400)
Ay Ta = =gy (tg = Dag — fa(ra —=2) + 3= fu(ry = 1) = 3 = fu(ry) + fa(rg + 1) and a,,0, =1, (401)

fa = f(x1, %2, %3,...,%q) (402)
fa(=1) = A +2xkg =2 1) * f3(0) + 2% 1y * f3(1) (403)
fa(=2) = 6% (kg — lg) * fa(0) + 2 = I * f3(1) (404)

This function will be smooth since it is parabolic curve in between integer intervals and at integer interval, the slope is same
since s,'(x) = 0 . For continuous functions we can compute kg4, l; using least error method after taking integral at the
intervals.

C. Derivation of Faster Smooth Quadratic (Parabolic) Curve

Here also there are more computation needed to get co-efficient. Instead of s.(x) = (x —7)?, if we get s, (x) =
(x—7r)x(x—7r+1)=> (Curvel) or = (x —r) => (Curve2) or =1 => (Curve3), then computation terms will be
reduced. Let us assume, u =x —r, 0 <a < b < 1,then
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kxu?+lx(u—a)?+m=x@w—>b)?2=nx@w)*@u+1) => (Curvel),
kxu?+1l+x(u—a)?+mx@w—>b)>=nxw) => (Curve2),
kxu?+1*(u—a) +m=(u—>b)>=n => (Curve3), then, on solving each co-efficient, we get
(b—a)x(@a+b+2xaxb)xu*—(bx(u—a))*+(ax(u—>b))>=2+x(b-—a)xaxbruxu+1)=> (Curvel),
b-—a)x(@+b)xu*—(bx(u—a))*+(axu—>b))>=2%(b—a)xax*bx+u=> (Curve2),
(b—a)*xu®>—b*((u—a))*>+ ((u—>b))?=(b—a)*ax*b=> (Curve3), (405)
where u=x—17r, 0<a<b<l1
Then to make the polygonal curve to be smooth, let us take example of curve with (Curvel) as the following
If Tx)=x+|x|, 0<a<b<1then
__ (b—a)x(a+b+2+axb)*(T(x—1))%—(b*T (x—1r—a))?+(a*T(x—1—b))?
Sr(x) - 16x(b—a)*a*b
(b—a)*(a+b+2*axb)*(x—1)?
4*x(b—a)*axb

when x = (r+a) and x < (r + b), s.(x) =

will behave like following,

when x > r and x < (r + a),

(x=1r)*x(x—-1+1)

sy(x) =0 when x <7, s.(x) =

_ (b—a)*(a+b+2+axb)*(x—1)?—(b*(x—r—a))?
sr(x) = 4x(b—a)*axb
b) .

when x = (r +

s/ (x) =0 when x <r, s./'(x) = (b_a)*(zizr:j;;::*b;*(x_r) when x >r and x < (r + a),

—Q)* xaxb)*(x—1)—(b2*(x—1—
e e (sza()" 0D when x> (r +a) and x < (r +b), 5,/ (x) = when x > (r + b) .

For monotonous incremental curve, all slope should be positive, then at interval x = (r +a) and x < (r + b), (b —

2+b? 2 1 . 2xb?
a)x(@a+b+2xa*xb)—b*>>20,a<—— a<=, b>-, ifa=——
2*b+1 3 2 2+xb+1

g, then curve will have minimum turning points.
Then we can write a discrete function if f(x)3v0 < x < (n — 1) has values as following.
) =£0)+ (f(1) = f(O)) *x + ke * (x * (x — 1)) + X72F ay * 5,(x) (406)

((b—a)*(a+b+2xaxb))*(T(x—1))?—(b*T (x—r—a))?+(a*T (x—r—b))?
Where s,(x) = Tor(b—ayeath

2x(x-1)+1

5'(x) =

then the slope is a straight line and if b =1,a =

Tx)=x+|x|, 0<a<b<1 a< ;ijl Then we get following pattern (407)
a =f0)=2xf(D)+f(2)-2%k (408)
from when r = 2, a, it follows the following pattern
a,=—fr—=2)+3«xfr—1)=-3+xf()+f(r+1) (409)
and if we need to generalize with one formula Vr, then we can assume,
fED)=2xf0)—1+xf(D)+2+k (410)
f(=2)=2xf0)=3+xf(1)+6+k (411)
and to generailize for multidimension, we can equate the following functions

k*(xx(x—1)) sin(m*r) 2xkex(x*(x—1))

varoy - T Gy 1) when =0 (412)
1 =sr(x)—%*(x2+3*x) when r = —1 (413)

and hence we can write in general as following
sin(m*(r—1)) "

— kx(xx(x—1
F) = Z058 ap (5,00 + Tl e 2+ TECT 1)) (414)

(FD)-r(0)
—3pd ap+ (D (62 4+ 35 ) )

((b—a)*(a+b+2+axb))*(T(x~1))2—(b+T (x—7r—a))?+(a*T (x—1—b))?
Where s,.(x) = Tor—a)earb

sin(mw#r)

Tx)=x+|x], 0<a<b<1l a< zizbjl and we get (415)
a,=—f(r—=2)+3«xfr—1)-3+xf(r)+f(r+1) and g, =1, (416)
f(-1)=2%f(0)— 1% f(1) + 2 %k (417)
f(=2)=2xf(0)—-3xf(1)+6x*k (418)

If we notice, we won’t be able to get optimal k as we did in previous methods from f(—1), f(—2) .But we can get by least
error method by assuming a, = 0 and taking the optimal parabolic curve. By this, we will get
k = IP28 F () =F(0)=(f (1)=F (0))*x)
720 (ex(x=1))2
interval and find by least error matching values. Please note that if we have considered other curves, then k = 0 and
a, =f(r—1)—2=f(r) + f(r + 1) if we have taken with (Curve2),

=) For continuous function, we get optimal k,a, b by taking integral at the
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a, = —f(r) + f(r + 1)if we have taken with (Curve3).
In similar way, For Multidimensional functions, if
f(x,x2,%3,...,%4)3V0 < x, < (ng —1)V1 < s <d has values for d dimensions, same can be written as
following.

JUCHECTE SRNE RPNy (...2233;; (T2 (502 (augra+ T, s(xd,rd))))> (419)

Where s(x,7) = s,(x) + t,.(x) and
(ba—ag)*(ag+ba+2+xagxb))*(T (xq=ra))*=(ba*T (Xa—Ta—aq)) > +(ag*T(xa—ra—ba))?

sr(*a) = 16%(bg—aq)*aq+bq
__sin(mx(rqg—1)) 2¥kg*(xg*(xqa—1)) sm(n:*rd)
b0 = s Cham—raon ] )= T, F a3 xa)
Tx)=x+x|, 0<a<b<1 ac< 22bb+1 and we get if (420)
fa(x) = f(xq,x5,x3,...,%4), then (421)
AxyTa = —fa(ra —2) + 3% fa(ra = 1) = 3 * fa(ra) + fa(ra + 1) and a,,0, =1, (422)
fa(=1) = 2% fa(0) = 1% fa(1) + 2 * kg, (423)
fa(=2) = 2% f3(0) =3+ fa(1) + 6 x kg4 (424)

This function will be smooth since it is parabolic curve in between integer intervals and at integer interval, the slope is same
since s,'(x) = 0 . For continuous functions we can compute kg4, a, b using least error method after taking integral at the
intervals.

If in case, we do not have values at equal intervals, then also we can use the same approach, but scaled with the
distance as follows. If T(x) =x + |x|, 0 < a, < by < X(r11) — X, then

sy (%)

_(br—an) = (o = xg-p) * (@ + b)) + 2% ap x b))+ (T(x = %)) = (% = xr1y) * (b * T(x — % — @,))* + (% — Xr1)) * (@ * T(x — x, — b;))?
- 8% (x(r+1) - xr) * (x(r+1) - x(r—l)) * (br - ar) * Ay * br

will behave like following,
(br—ar)*((xr_x(r—l))*ar+br+2*ar*br)*(x_xr)2

2*(x(r+1) _xr)*(x(r+1) _x(r—1))*(br_ar)*ar*br

(br_ar)*((xr_x(r—1))*ar+br+2*ar*br)*(x_xr)2_(br*(x_xr_ar))z
s-(x) = when x = (x-+a,) and x < (x,-+ b,), s, =
r( ) 2%(X(r41) %) * (X (r4+1) =X (r—1))*(br—ar)*ar*by ( r T) ( r T) r

(x=xp)*(X—X(1—1))
O \when x > (x, + by)
Car+1) =X * (X (r+1) =X (r-1))
br—ap)*((Xyr—X(r—1))*(Qr+by)+2*ayr*by)*(x—x.
ST’(X)ZOWhen XSXT, ST’(X)=(T r)*((xr (r 1))(r ) r*br)*( )
(x(r+1)_xr)*(x(r+1)_x(r—l))*(br_ar)*ar*br
(br=ar)*(Cer=X(r=1))*(@r+by) + 2+ar+by) +(x=xy) = (br**(x=2r—ay)) ,
when x > (x,- +a,) and x < (x,- + b,), s,/ (x) =
(x(r+1)_xr)*(x(r+1)_x(r—l))*(br_ar)*ar*br ( T r) ( T T) T ( )

when x = (x, + b,) .

sy(x) =0 when x < x,, s.(x) = when x = x, and x < (x, + a,),

when x = x, and x < (x, + a,),

se'(x) =

2xx—(Xr+X(r-1))

)= Xr)* (X (r+1)—X(r-1))
For monotonous incremental curve, all slope should be positive, then at interval x > (x, + a,) and x < (x, +

2%by?
b.), (b — a;) * ((%r — X(r—1)) * (@r + by) + 2 x @, xb.) — (Xp — X(r—1)) * b,> 20, a, < m

, then the slope is a straight line and if b =x4.)—x,,a=

a, <
2 ) br (xr_x(r—l))’ if a = 2*br2
2+ (X=X (r-1)) 2 2%by+(Xr—X(r-1))
2+ (X(r41)—%r)2
2¥X(r41) " Xr—X(r-1)
Then we can write a discrete function if f(x)3for xo < x, <x3 <...<x,V1<r<(n-—1) has values as
following.
f@) = fxo) + (f () = F(x0)) * () + K * ((x = x0) * (¢ = x1)) + ZP=F @y *50(x) (425)
Where ST(X) — (br—ar)*((xr— x(r—1))*(ar+br)+2*ar*br)*(T(x_xr))2
8*(X(r+1)=%r)*(X(r+1) =X (r-1))*(Pr—ar)*ar*by
_(xr_x(r—l))*(bT*T(x_xr_ar))z+(xr_x(r—1))*(aT*T(x_xr_br))z

8 (X(r41) ~Xr)* (X (r+1) ~X(r—1))*(br—ar)*ar*by

, then curve will have minimum turning points.

X—Xo

T(x) =x+Ix|, 0<a, <b. < X41)—Xp, A < #ﬁ;)) and we get (426)
ay = f(x2) = (f (x0) + (f (1) — f(x0)) * ((x2 x°)) +kex ((xz = %) * (X2 — x1))) (427)
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_ F(r=1rr+1)*f(xy_2)+F(r=2,r,r+1)*f (Xr—1)

a, (428)
F(r=2r-17)
+F(r=2,r=1r+1)*f(xy)+F(r=2,r=1,r)*f (Xr+1)) when r > 1. where
F(r-2,r-1r7) ’
F(u,v,w) = (f(x))? * f(x) + (FOe))? * f () + (F (ew))? * £ () (429)
—((F D) * f ) + (FOw))? * £ () + (F (a))? * f(xw)),
k = TPZ6 (F ()= (%0) = (F (x1) = F (x0))* (X —=%0)) *((¥r—X0) ¥ (Xr—%1)) (430)

TPZg ((er—2x0)*(xr—%1))?

This kind of smoothing with Quadratic(Parabolic) curve can be used to find approximate roots of the equation, if the root lies

between the given range of points. Since derivative is linear, this can be also used to find approximate turning points of
maximum and minimum between range of points

D. Derivation of Faster Smooth Polynomial Curve
Same concept can be extended to higher degree of polynomial also, For Cubical curve, if we get s,.(x) = (x — 1) *
x—r+D*xx—r+2)=> (Curvel)or=(x —1r)*(x —r+ 1) => (Curve2) or (x —r) => (Curve3d)or=1=>
(Curve4), then computation terms will be reduced. Let us assume, u = x — r, then
Exu?+1«ud+mcu—-102%+n+x@w—-1D3=p*x@)*w+1)*w+2) => (Curvel),
Exuw?+1+xud+mr@u—-1D%24+nx@w—-1D3=p*@)*x@w+1) => (Curve2),
kxu?+1xud4+mx@u—12%+n*@w—1)2>3=px* W) => (Curved),
Exu?+1+xud+mx+@uw—1%+n*@w—1)>%=p => (Curve4), then, on solving each co-efficient, we get
Txu?—ud+2x(u—1)%+2x (u—1)°3= @) *(w+1)*(u+2) => (Curvel),
3xul —uwr+ (u—1)%+ (u—13%= () * (u+1) => (Curve),
2xu? —ud+ (u—1)%+ (u—1)3% = (u) => (Curvel),
3xur—2xud+3x(u—1D2+2x(u—-1)°>=1=> (Curved),
Let us expalin the concept by taking parameters from (Curvel).
If T(x)=x+ ||, then s.(x) = —(T(x—r))3+7>!=(T(x—r))2+2:«;§3T(x—r—1))2+2=iﬂ(T(x—r—1))3
when x > r and x < (r + 1), s.(x) =

will behave like following,
x=1)**(7=(x-1))

sr(x) =0 when x <7, s,.(x) = -

(x—r)*(x—-1r+1)*(x—7+2)
6
s/ (x)=0when x <r, s./(x) =

*(Xx—=1)2+6%(x—
WWhean(r+l).

Then we can write a discrete function if f(x)3v0 < x < (n — 1) has values as following.
f)=fO)+ (@)= fO)*x+(f(2) =2+ f(1)+f(0)) * (@) (431)

+hx(xx(x—1D*(x—2))+ ?;zzar*ST(X)
- — 3 « _ 2 " o 2 . o 3
Where s,(x) = (T(=1))3+7+(T(x=1))2 +2%(T (x=1—1))2 +2%(T (x-1—1))

when x> (r+1) .
(x=1)*(14-3*(x-1))

. when x =>r and x < (r +1), s,'(x) =

T(x) = x + |x|, and we get * ,
a; ==f(0)+3*f(1) =3*f(2)+f(3) -6k, (432)
a,=f(r—3)—4xf(r—2)+6*xf(r—1)—4*f(r)+f(r+1) when r > 2 and, (433)

xx(x—1)

Kk = p i (F)=f(0)=(f (D)= (0))*x—=(f(2)=2+f (D) +f(0))*(—5—))*(x*(x—1)*(x-2))
IPIG (er(x—1)*(x-2))?
Please note that if we have considered other curves, then, k = 0 and,
a,=—f(r—2)+3«f(r—1)—=3xf(r)+ f(r + 1) if we have taken with (Curve2),
a,=f(r—1)—2xf(r)+ f(r + 1) if we have taken with (Curve3),
a, = —f(r) + f(r + 1)if we have taken with (Curve4)
If in case, we do not have values at equal intervals, then also we can use the same approach, but scaled with the distance as
follows. If T(x) = x + |x|, then

(434)

sr(x) =
(1) =%r) 2= r=X(r—1))* r=X(r—2)))*(T(x=27))3 (e (r—1) X (r—2) =2#%p)* (X (r4 1) =X7) 2 + 25 (X =X (r— 1)) ¥ (X =X (r—2))* (T (X =%7)) +
8+(X(r+1)=%r) 2+ (X (r41) =X (r—2))* (X (r41) X (r—1))* (X (r41) = X1) 8+ (X (r+1) = Xr) 24 (X (1) ~X (r=2))* (X (1)~ X (r=1)) (X (1) —%r)

(xr_x(r—l))*(x'r_x(r—z))*((x(r+1)_xr)*(T(x_x(r+1)))2+(xr_x(r—1))*(xr_x(r—z))*(T(x_x(r+1)))3
8x(X(r+1)=*r) 24 (X (r+1) =X (r-2))* X (r+1) =X (r-1))* F(r+1) %)
sy(x) =0 when x <,
sp(x) =

will behave like following.
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((x(r+1)_xr)2_(xr_x(r—l))*(xr_x(r—z)))*(x_xr)3
1) =X 2 (X4 1) =X (r-2))* X r4 1)~ X (r—1)* F (1) =%r)
((Oer—1) +%(r—2) =202 ) * (X (r41) = %) 2+ 25 (=X (r 1)) * (Xp =X (= 2) ) * (X —X7)?
1) =22 (X 1) =X (r—2))* (X r+1) =X (r— 1)) * X (r+1) = %r)
(X =29 )% (X=X (r—1))*(X—X(r—2)) when x = (r+ 1) .
1) =Xr)* (X 1) X r—1))* X (r+1) ~X(r-2))
s.'(x) =0 when x <,
s'(x) =
((x(r+1)_x'r)2_(x'r_x(r—1))*(x'r_x(r—2)))*3*(x_xr)2
1) =X 2 (X4 1) =X (r-2))* X (r 1) =X (r—1)* F (1) =%r)
((r—1) FX(r—2)=2%X7) * (X (r41)=Xr) 2+ 20 (X =X (r— 1)) * (X=X (r—2)) #2* (X —X1)
1)~ Xr) 2 (X (r41) =X (r-2))* (X (r+1) ~ X (r—1)* X (r+1)=%7)
5,/ (x) = (x=2p)* (X=X (r—1)) + (X =xp) ¥ (X=X (r—2)) + (X=X (- 1)) * (X —X(r—2))
Er+1)=2r)* (X (r41) X (r—1))* (X (r+1) ~X(r-2))
This curve will have minimum turning points and monotonous incremental curve. Using this curve, we can write a
discrete function if f(x)3afor x, < x, < x3 <...<x,.V1 <r < (n—1) has values as following.

when x > r and x < (r + 1),s,.(x) =

when x >r and x < (r+ 1),

when x > (r+1) .

F) = f(xo) + (F(x) = f(xo)) * (G0 + (435)
F(F () = (F (o) + (F () = F () * (ZZ2)))) * o

e ((x = x0) * (X — x1) * (x — %)) + X723 ap * 5.(x)

Where s, (x) = ((x(r+1)_Zr)z_(xr_x(r—1))*(xr—x(r—2)))*(T(x—xr))3
8 (X(r41) = Xr) ¥ (X(r41) =X (r—2))*(X (r+1) =X (r—1))* (X (r+1) =%7)
(((x(r—l)‘*'x(r—z)—2“951”)*(95(r+1)—xr)z+2“(xr—x(r—1))*(951”—x(r—z))*(T(X—xr))2
8+ (X(r+1)=%r) 2+ (X (r+1) =X (r—2)) * (X (r+1) =X (r—1)) * (X (r+1) ~%7)

+ (=X (r—1))* =X (r—2))* (X (r+1) =X ) (T (X=X (4 1)) 2+

8%(X(r+1)=Xr) 2 * (X (r4+1) ~X (r—2))* (X (r+1) X (r—1))* (X (r+ 1)~ %Xr)
+ (=X (1)) * r =X (r—2))*(T (X=X (r41)))°

8%(X(r+1)~Xr) 2 ¥ (X (r+1) =X (r-2))* (X (r+ 1) =X (r—1))* (X (r+1)~%r)

+

2*br2

T(x) =x+Ix|, 0<a, <b. <Xxp41)—Xp, A < Tt G and we get (436)
@y = f(x3) = (F (x0) + (F(x1) = f(xo)) * (=) + (437)

(x—x0)*(x—x1)
(x2—x0)*(x2—x1)

+(f () = (F (o) + (F () = F(x0)) * (CE D) +

theox ((x = x0) * (x —x1) * (x — x3)))
_ Fr=27r=17rr+1)+f(xy_3)+F(r=3,r=1,r,r+1)*f (xr—2)+ (438)
T F(r=3r-2r-1r)
+F(r=3,r=2,7r,r+1)*f(Xyp—1)+F(r=3,r=2r—1r+1)*f (x;)+
F(r=3,r=2,r-1,r)

+F(r-3,r=2,r-1,r)*f(x
¢ ) S@re1) \hen r > 2, where
F(r=3,r-2r-17)

F(t,u,v,w) = (f(x))* * Gw,v,w) = (f(x))® * G(w, w, 1) + (439)
+H((f () * Gw, t,w) = ((f () * G(w, £, 1)

G, v,w) = (Fe))? * f(0) + (F(e))? * £ () + (f Gew))? * f () (440)
—((F o)) * f () + (Fw))? * f(00) + (F (x))? * f (X)),

k = 2728 (F o) =1 (0) = (f (¥1) —F (%0 ) ¥y = X)) *(Xr) + (441)

Z?:_& (Cer—x0)*(xp—x1)*(Xr—x2))?
B3 (062~ (f o)+ (f (¥1)—F (ko)) (CEA) e X (v,
TPZG (Cer=x0)*(xr—x1)*(Xr—%2))?
Xr = (0 — %) * (% — 21) * (X — X3)
The same also can be extended to multidimensional as well as continuous functions. Thus we could transform to a
polynomial curve with high smoothness and at the same time, less computations even for unequal distant points.

where

E. Derivation of Faster Smooth Geometrical Curve
Same concept can be extended to Geometric series also, For having 2 geometric powers p* —1 and g* — 1 or
p* * cos(u*x) —1 and p* * sin(u * x), Transformation curve is given below.
log(q) x p* = log(p) * q* — log(q) + log(p) or u * p* * cos(u * x) — log(p) * p* * sin(u * x) — u.
And to get monotonous incremental curve with turning points, Let me explain with the concept of values at unequal
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x+|x|

intervals which can be applied to equal intervals also. Let us take locations as  x,_q, X, X,41, If T(x) = = and
S(x) = log(q) *p* —log(p) * q* —log(q) + log(p) or u*p”* * cos(u * x) — log(p) * p* * sin(u * x) —
u, then we need to solve k,l from 2 equations namely, k * S(—a,.) + L *S(=b,) =0 and S(x,_1 —x,) + k * S(x,_1 —
Xr —ay) + 1% S(x_1 —x- — b)) =0, subjectto 0 < a, < b, < X417y — Xp
Then if V,(x) =S(x —x.) +k*S(x —x, —a,)+1%S5S(, —xy—b,), then U,.(x) = V.(T(x)) is the curve with
monotonous incremental turning points. To find co-efficient, we need to solve these 3 equations, Vy(x,1n) * ko +
Vo(Xrins1) * k1 + Vo(pyniz) * ky + Vo(Xrine3) = 0, by substituting —1 <n < 1.

i i Uo (x)—Up (Xo) -2 Up(x)
Then our solution will be = + — —OTT 0700y 4y —=— where
fO) = fCxo) + (FCe) = fx)) * (G ooy T 2=t @ * T~

ar = f(Xxr-2)) * ko + f(xr—1)) * k1 + f (X)) * k2 + [ (Xrs1))-

This kind of smoothing with having 2 geometric powers curve can be used to find find approximate turning points of
maximum and minimum because its derivative will be form a * p* — b *q* =0 or a * p* * cos(u * x) — b * p* * sin(u *
log(a)-log(b) tan_l(%)

x) = 0, which will have solutionas x = ———— or x =
log(p)-log(q)

Similarly for geometric series with 3 geometric powers, p* —1,q* — 1 and v* — 1,0r p* * cos(u * x) — 1,p* *
sin(u * x) and g* — 1, Transformation curve is given below.

S(x, K1, K3) = Ky * (log(v) * p* — log(p) * v* — log(v) + log(p)) + Kz * (log(v) * q* — log(q) * v* —
log(v) +log(q)) or

S(x, K1, K3) = Ky = (log(q) * p* * cos(u * x) — log(p) * ¢* — log(q) + log(p)) + Kz * (log(q) * sin(u *x) —u*q*
+u).

And to get monotonous incremental curve with turning points, Let me explain with the concept of values at unequal

intervals which can be applied to equal intervals also. Let us take locations as x,_y, X1, X, Xppq HIf T(x) = lel, and

Then, we need to solve K, K, L,,L, from 3 equations namely, S(x, — Xy41,L1,L2) = 0,S(xr—q1 — %, Ky, K3) + S (%1 —
Xry1,L1,L2) =0 and S(x,_, — x, Ky, K)) + S(%_5 — X414, L4, L) = 0, assuming any one of the variable, say K; =
1. Then if V.(x) = S(x —x,, K, K3) + S(x — x4, Ly, Ly), then U,.(x) = V(T (x)) is the curve with minimal monotonous
incremental turning points. To find co-efficient we need to solve these 4 equations, Vy(x,4n) * ko + Vo(Xpyns1) * ki +
Vo(Xrinaz) * ko + Vo(Xrines) * k3 + Vo(%y4nea) = 0, by substituting —2 < n < 1. Then our solution will be

F@) = £ o) + (F(r) = F (x0)) * G2y 4 (F(xz) = £ (xo) = (F (1) = f(%0)) * (i =00 =

Up (x)—U1(x1) -2 Ur(x) _
(7111(,(2)_”1(,{1)) + 2755 ar * 7%(;(”1)) where a, = f(X¢—3)) * ko + f(X(r—2)) * k1 + f(Xxr-1)) * ka2 + f(x(ry) * k3 +

fxaen)-

The same also can be extended to multiple geometric powers or combination of polynomial and geometric powers and
also for multidimensional discrete as well as continuous functions. To find appropriate geometric powers of the data in
continuous or discrete functions, we need to go with approach of finding roots as explained in (198) to (203). Thus we
could transform to a geometrical curve with high smoothness and at the same time, less computations even for unequal distant
points. This might be useful where there are high fluctuations such as stock market or gold rates. Since most of the cubical
equation has one real root and 2 complex roots, cubical geometric power will suit high fluctuation functions such as stock
market or gold rates.

F. Derivation of Decorative Polygonal Curve
I have found one method to get a decorative curve with out much computation needed to find a,. Let us have the
following identity.Let a; < a, < a3 <...< a,,0 < (a, — a;) < 1 for having e edges and Let,

T(x) = Téy ks * (Ix = asl) and X, ks = 0,Z6, ks * a5 = 0,T(m) # 0,5(x,r) = -0 (442)
then this curve will have the following property
S(x,r) =0 when x <r+a, and S(x,v) =0 when x > r + qa,. (443)
for example when e = 3 it will have triangular edges and we get following identity (444)
T(x) = (a3 —az) * (Ix —a; ) + (a1 — a3) * (|x — az|) + (az — a;) * (|x — as]) (445)

Since we need to solve only 2 equations to find k, when e > 3, k, has multiple solutions which will define the degree of
polygons with positive and negative edges. Then we can write a discrete function if f(x)3aVv0 < x < (n — 1) has values as
following.

f(x) = X725 (f(r) * S(x,7)) and one of the example as triangular polygon is (446)
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T(x) = (a3 — az) * (|x — a1]) + (a; — a3) * (|x — a;|) + (a; — a;) * (|x — a3]) (447)
for symmetric, we can consider a; = —0.5,a, = 0.0,a; = 0.5

T(x) = 0.5* (|x + 0.5]) — (|x|) + (0.5) = (Jx — 0.5]),T(0) = 0.5, which leads to (448)
S(x, T') _ (|2*x—2*r+1|)—(|2*x;2*r|)+(|2*x—2*r—1|) and hence (449)
f(x) — ;1;3 (f(r) % (|2*x—2*r+1|)—(IZ*x;Z*r|)+(|2*x—2*r—1|)) (450)

Here we get straight forward the co-efficient as f(r) and no computation needed at all. But this curve is of polygonal nature
and decorative in between integer intervals because at equal distance, it falls to 0.i.e) at —r — 0.5, —r + 0.5 In similar way,
For  Multidimensional discrete  functions, if  f(xq, x5, %3,...,%4)3V0 < x, < (ng —1)V1 <s <d has values
for d dimensions, same can be written as following.

JICHENE SRR ) i (-..z?:;é (z?;;& (Zhsy s ra) * T S(xd,rd))))) where  (451)

(|12#x=2xr+1])—(|2*x=2*7|)+ (| 2%x—2%1r— 1|)

Six,r)= (452)
Here there is no computation needed at aII But this curve is of polygonal nature in between integer intervals and also
decorative in between integer intervals because at equal distance, it fallsto 0 at —r — 0.5, and —r + 0.5

G. Derivation of Decorative Smooth Quartic Curve

Let us have a function, T(x) = D@ D-(@rxrt): (|(2*x DD=(@x=DACEDI g 0y — T — 1),

Here S(x,r) = S'(x,r) =0 when x <r and S(x,r) = S (x,7) =0 when x > (r+1) .Then we can write a
discrete function if f(x)3vo0 s x < (n— 1) has values as following.

f(x) =Xr23 (f(r) = T(x —r)) where (453)
T(x) = Bt )@= 1)+ ((2ex+1)e (|(2*x DY)=(@x=D*(|@=x+1)])) (454)

Here, there is no computation needed at all. It WI|| be smooth, Since it is quartic curve in between integer intervals and at
integer interval, the slope is same since T'(x) = 0 at both the edges and hence, it will be a decorative curve. For continuous
functions,if f(x)3v0 < x < (n — 1) we can compute as following.

f(x) =X"22 (a, * T(x — 1)) where (455)
T(x) = (2*x+1)*(2*X—1)*(((2*x+1)*(|(22*x—1)|))—((2*x—1)*(|(2*X+1)|))) (456)
(T =) rax)
= fn_l((T(x ) which reduces to (457)
a, =25 [T ((F(0) * T(x = 1)) * dx) (458)

In similar way, For Multldlmensmnal discrete functions, if f(xq,x5,%3,...,%4)AV0 < x, < (ng —1)V1 < s < d has
values for d dimensions, same can be written as following.

ey, X355, %) = Brisy (-..z:‘:;& (z:‘;;& (T s ra) * T T(xd—rd»))) where  (459)
T(x) = @xx+1)*(2rx—1)*(((2*x+1)* (I(Z*x DN)-((2xx-1)*(|(2*x+1)]))) (460)

and there is no computation needed at all. It will be smooth, Since it is quartic curve in between integer intervals and at
integer interval, the slope is same since T'(x) = 0 at both the edges and hence, it will be a decorative curve. For continuous
functions, Like we did in single dimension, we need to take integral to compute at the interval.

V. COMPARISON WITH STANDARD ORTHOGONAL TRANSFORM FUNCTIONS
Fourier series of periodic function with L periodicity and obtaining L * (r + 1) terms have error magnitude

where as polynomial function with degree r having same L = (r 4+ 1) terms have error magnitude of—-—= and sign

Lx(r +1) (T+1)

functions have error magnitude of

2*L*2r+1)' Also Exponential geometric functions have error magnitude

where 1 < ¢ and Harmonic functions have error magnitude of

. Also we could get series of variable
cxLx(r+1) L2x(r+1)

amplitude at different intervals which is not possible with normal periodic functions.

VI. COMPARISON WITH STANDARD CURVE FUNCTIONS OF HIGH PRECISION OR SMOOTHING AND
DECORATIVE FUNCTIONS
This series will be able to transform multidimensional discrete functions to a continuous coiled or smoothness rich function
and coiled function will always be within the maximum and minimum value of any range. Instead of cubical curve which is
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currently in use with matching nearby slopes, we could get alternate high precision and smooth curve at random points with
parabolic function itself without needing of near by points of f'(x,,) slope to match current slope. Also we are able to get a
solution even if f'(x,,) = too.
VII. REAL-WORLD APPLICATIONS

A. Application on data reduction techniques

Sign functions can be used to compress photos which gives 20% more than Jpeg with similar noise ratio. Exponential
geometric functions and harmonic functions can be used to compress audio. Combination of Polynomial, Exponential,
harmonic and Sign functions can be used to compress multimedia. Combination of Polynomial, Exponential, harmonic and
Sign functions can be used to encrypt Digital data. Combination of Polynomial, Exponential and Sign functions can be used to
transmit multiple format of waves with same digital band and frequency. In smooth techniques, harmonic conversion can be
used to compress multimedia since color, sound and animation will not exceed the ranges and Quadratic or polynomial
conversion would be able to scale freely since this is a high smooth curve.

B. Application on prediction analysis with Extension to Fourier series

Exponential functions and harmonic functions can be used to predict Stock market, Gold rates, Economic growth.
Combination of Polynomial and Sign functions can be used to predict any repetition functions like weather report, malaria,
dengue outbreak etc.

C. Application on prediction analysis with Extension to High Precision Smooth Techniques

It is enough to take first few highest maximum and lowest minimum value to get more optimized continuous function
with less error rate with harmonic function. Harmonic conversion can be used to compress multimedia since color, sound and
animation will not exceed the ranges and Quadratic or polynomial conversion would be able to scale freely since this is a high
smooth curve.Exponential functions and harmonic functions can be used to predict Stock market, Gold rates, Economic
growth. This method also can be useful in finding roots of the equation and maximum, minimum turning points of the curve.

VIIl. CONCLUSION

Thus | have extended the Fourier series to a combination of polynomial, geometric, sign and harmonic functions.
Consequently, the nature of these functions finds application in data reduction techniques without compromising the fidelity
and integrity of the function. Apart from extension to Fourier series, the high precision techniques written by me here also
allow to transform any multidimensional discrete or continuous function to a continuous coiled or high smoothness or
decorative function as well as help to find roots and maximum, minimum turning points. | have demonstrated the efficiency of
the extension in terms of precision error, compression ratio and implementation complexity while applying it to real-world
problems such as faster live streaming, prediction of stock market data, and storage of medical imaging data.
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