Complete Ideal and n-Ideal of BN -algebras

Sri Gemawati ${ }^{\# 1}$, Elsi Fitria ${ }^{\# 2}$, Abdul Hadi ${ }^{\# 3}$, Musraini M. ${ }^{\# 4}$
\# Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau Bina Widya Campus, Pekanbaru 28293, Indonesia

Abstract

In this paper, the notion of complete ideal and n-ideal of BN-algebra are introduced and some of related properties are investigated. Also, we discuss the concept of complete ideal and n-ideal of $B N$ homomorphism and some of their properties are obtained. In addition, we gave some propositions that explained some relationships between these ideals types.

Keyword. BN-algebra, ideal, complete ideal, n-ideal, subalgebra

I. INTRODUCTION

J. Neggers and H. S. Kim [10] introduce a new algebraic structure is called a B-algebra. Furthermore, C. B. Kim and H. S. Kim introduce $B G$-algebra [6], which is the generalization of B-algebra. Some of types algebras, such that $B M$-algebra [7] and $B N$-algebra [8] are two specializations of B-algebra. The concept of homomorphism is also studied in abstract algebra. A map $\psi: \mathrm{A} \rightarrow \mathrm{B}$ is called a $B N$-homomorphism if $\psi(x *$ $y)=\psi(x) * \psi(y)$ for all $x, y \in A$, where A and B are two $B N$-algebras. The kernel of ψ denoted by ker ψ is defined to be the set $\left\{x \in A: \psi(x)=0_{B}\right\}$. A $B N$-homomorphism ψ is called a $B N$-monomorphism, $B N$ epimorphism, or $B N$-isomorphism if one-one, onto, or a bijection, respectively. Kim [8] also discuss the concept of coxeter algebra. A coxeter algebra is a non-empty set X with a constant 0 and a binary operation " * $"$ satisfying the following axioms: (B1) $x * x=0$, (B2) $x * 0=x$, and $(x * y) * z=x *(y * z)$ for all $x, y, z \in X$.

Fitria et al. [3] discuss the concept of prime ideal of B-algebra. The results define an ideal and a prime ideal of B-algebra and some of their properties are investigated. A non-empty subset I of B-algebra X is called an ideal of X if it satisfies $0 \in X$ and if $y \in I, x * y \in I$ implies $x \in I$ for any $x, y \in X$. Moreover, I is called a prime ideal of X if it satisfies $A \cap B \subseteq I$, then $A \subseteq I$ or $B \subseteq I$ for any A and B are two ideals of X. The concept of ideal also discussed in $B N$-algebra by Dymek and Walendziak [2]. They obtain the definition of ideal in $B N$ algebra is equivalent to B-algebra, but some of their properties are different. Also, the properties of kernel are obtained, such that the kernel ψ is an ideal in X. In addition, Dymek and Walendziak investigate the kernel ψ of $B N$-algebra to $B M$-algebra, such that obtained kernel ψ be a normal ideal of $B N$-algebra.

The concepts of ideals of B-algebras are discussed by Abdullah [1], those are a complete ideal (briefly c ideal) and an n-ideal in B-algebras. The results define a c-ideal and an n-ideal in B-algebra, and some of related properties are investigated. They obtain every normal of B-algebra is both c-ideal and n-ideal. Using the same ideas as previous studies [1] and [2], the concepts of c-ideal and n-ideal in B-algebras to $B N$-algebra will be applied.

The objective of this paper is to construct the concept of complete ideal and n-ideal of $B N$-algebras, and then investigate complete ideal and n-ideal of normal ideal and $B N$-homomorphism. Finally, we study relationship between these ideals types.

II. PRELIMINARIES

In this section, we recall the notion of B-algebra, $B M$-algebra, and $B N$-algebra and review some properties which we will need in the next section. Some definitions and theories related to c-ideal and n-ideal of $B N$ algebra that have been discussed by several authors $[1,2,3,6,7,8,10]$ will also be presented.

Definition 2.1. [10] A B-algebra is a non-empty set X with a constant 0 and a binary operation " $*$ " satisfying the following axioms:
(B1) $x * x=0$,
(B2) $x * 0=x$,
(B3) $(x * y) * z=x *(z *(0 * y))$,
for all $x, y, z \in X$.
A non-empty subset S of B-algebra $(X ; *, 0)$ is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$.
Definition 2.2. [8] An algebra $(X ; *, 0)$ is said to be 0-commutative if $x *(0 * y)=y *(0 * x)$ for any $x, y \in X$.
Example 1. Let $A=\{0,1,2\}$ be a set with Cayley's table as seen in Table 1.

Table 1: Cayley's table for $(A ; *, 0)$

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

From Table 1 we get the value of main diagonal is 0 , such that A satisfies $x * x=0$ for all $x \in A$ ($B 1$ axiom). In the second column, we see that for all $x \in A, x * 0=x(B 2$ axiom $)$ and it also satisfies $(x * y) * z=x *(z *(0$ $* y)$), for all $x, y, z \in A$. Hence, $(A ; *, 0)$ be a B-algebra. It easy to check that $(A ; *, 0)$ satisfies $x *(0 * y)=y *$ $(0 * x)$, for all $x, y, z \in A$. Hence, A be a 0 -commutative B-algebra.

Definition 2.3. [3] A non-empty subset I of B-algebra $(X ; *, 0)$ is called an ideal of X if it satisfies
(i). $0 \in I$,
(ii). $\quad x * y \in I$ and $y \in I$ imply $x \in I$ for any $x, y \in X$.

Definition 2.4. [1] A non-empty subset I of B-algebra $(X ; *, 0)$ is said to be complete ideal (briefly c-ideal) of X if it satisfies
(i). $0 \in I$,
(ii). $\quad x * y \in I$ for all $y \in I$ such that $y \neq 0$ implies $x \in I$.

Definition 2.5. [1] A non-empty subset I of B-algebra $(X ; *, 0)$ is said to be n-ideal of X if it satisfies
(i). $0 \in I$,
(ii). $\quad x * y \in I$ and $y \in I$ implies there exist $n \in Z^{+}, x^{n} \neq 0$ such that $x^{n} \in I$, where $x^{n}=$ $((x * x) * x) * x * \ldots * x$.

Definition 2.6. [6] A $B G$-algebra is a non-empty set X with a constant 0 and a binary operation " * " satisfying the following axioms:

$$
\begin{aligned}
& \text { (B1) } x * x=0, \\
& \text { (B2) } x * 0=x \\
& (B G)(x * y) *(0 * y)=x, \\
& \text { for all } x, y \in X .
\end{aligned}
$$

Example 2. Let $X=\{0,1,2,3\}$ be a set with Cayley's table as seen in Table 2.
Table 2: Cayley's table for $(X ; *, 0)$

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then, it can be shown that $(X ; *, 0)$ is a $B G$-algebra.
Definition 2.7. [7] A $B M$-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

$$
\begin{aligned}
& \text { (A1) } x * 0=x, \\
& \text { (A2) }(z * x) *(z * y)=y * x \text { for all } x, y, z \in X \text {. }
\end{aligned}
$$

Example 3. Let $X=\{0,1,2\}$ be a set with Cayley's table as seen in Table 3.

Table 3: Cayley's table for $(X ; *, 0)$

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

From the Table 3, we have the values in the second column satisfying $x * 0=x$ for all $x, y \in X$ (Al axiom) and they also satisfying $(z * x) *(z * y)=y * x$ for all $x, y, z \in X$ (A2 axiom). Hence, $(X ; *, 0)$ is a $B M$ algebra.

Theorem 2.8. [7] Every $B M$-algebra is a B-algebra.
Proof. Theorem 2.8 has been proved in [7].
The converse of Theorem 2.8 does not hold in general.
Proposition 2.9. [7] If $(A ; *, 0)$ be a $B M$-algebra, then
(i). $x *(x * y)=y$,
(ii). If $x * y=0$, then $x=y$,
for all $x, y \in A$.

Proof. Proposition 2.9 has been proved in [7].
Definition 2.10. [8] A $B N$-algebra is a non-empty set X with a constant 0 and a binary operation " $*$ " satisfying the following axioms:

$$
\begin{aligned}
& \text { (BN1) } x * x=0, \\
& (B N 2) x * 0=x \\
& (B N 3)(x * y) * z=(0 * z) *(y * x),
\end{aligned}
$$

for all $x, y, z \in X$,
Example 4. Let $X=\{0,1,2,3\}$ be a set with Cayley's table as seen in Table 4.
Table 4: Cayley's table for $(X ; *, 0)$

$*$	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then, it can be shown that $(X ; *, 0)$ is a $B N$-algebra.
Theorem 2.11. [8] If $(X ; *, 0)$ is a $B N$-algebra, then X be a 0 -commutative.
Proof. Theorem 2.11 has been proved in [8].
The converse of Theorem 2.11 does not hold in general.
Definition 2.12. [2] Let $(A ; *, 0)$ be a $B N$-algebra. We define a binary relation \leq on A by $x \leq y$ if and only if $x * y=0$.

It is easy to see that, for any $x \in A$, if $x \leq 0$, then $x=0$.
Proposition 2.13. [8] If $(A ; *, 0)$ be a $B N$-algebra, then
(i). $0 *(0 * x)=x$,
(ii). $0 *(x * y)=y * x$,
(iii). $y * x=(0 * x) *(0 * y)$,
(iv). If $x * y=0$, then $y * x=0$,
(v). If $0 * x=0 * y$, then $x=y$, for all $x, y \in A$.
Proof. Proposition 2.13 has been proved in [8].

Definition 2.14. [2] A non-empty subset S of $B N$-algebra ($X ; *, 0$) is called a subalgebra of X if it satisfies $x * y \in S$ for all $x, y \in S$. A non-empty subset N of X is called a normal if it satisfies $(x * a) *(y * b) \in N$, for any $x * y, a * b \in N$.

Let $(X ; *, 0)$ and $(Y ; *, 0)$ be two $B N$-algebras. A map $\psi: X \rightarrow Y$ is called a $B N$-homomorphism if $\psi(a * b)=\psi(a) * \psi(b)$ for any $a, b \in X$. The kernel of ψ denoted by ker ψ is defined to be ker $\psi=\{x \in$ $\left.X: \psi(x)=0_{Y}\right\}$. A $B N$-homomorphism ψ is called a $B N$-monomorphism, $B N$-epimorphism, or $B N$-isomorphism if one-one, onto, or a bijection function, respectively.

Proposition 2.15. [2] Let A be a $B N$-algebra and let $S \subseteq A$. Then S is a normal subalgebra of A if and only if S is a normal ideal.

Proof. Proposition 2.15 has been proved in [2].

III. COMPLETE IDEAL OF B \boldsymbol{N}-ALGEBRAS

In this section, we get definition of complete ideal briefly c-ideal in $B N$-algebra and its properties are obtained. The concept can be extended to the $B N$-homomorphism. Then, we have some of the related properties.

Definition 3.1. A non-empty subset I of $B N$-algebra ($X ; *, 0$) is said to be complete ideal (briefly c-ideal) of X if it satisfies
(i). $0 \in I$,
(ii). $\quad x * y \in I$ for all $y \in I$ such that $y \neq 0$ implies $x \in I$ for any $x, y \in X$.

Example 5. Let \mathbb{R} be the set of real numbers and let $(\mathbb{R} ; *, 0)$ be the algebra with the operation $*$ defined by

$$
x * y=\left\{\begin{array}{lc}
x & \text { if } y=0 \\
y & \text { if } x=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then, \mathbb{R} is a $B N$-algebra. Moreover, $\{0\}$ and \mathbb{R} be a c-ideal of $(\mathbb{R} ; *, 0)$.
Example 6. Let $A=\{0,1,2,3\}$ be a set with Cayley's table as seen in Table 5.
Table 5: Cayley's table for $(A ; *, 0)$

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	2
3	3	0	2	0

Then, it can be shown that $(A ; *, 0)$ is a $B N$-algebra. We can be prove that $\{0\}$ and A are ideals of $(A ; *, 0)$, and $\{0\},\{0,1,3\}$, and A are c-ideals of $(A ; *, 0)$.

Proposition 3.2. Let $(A ; *, 0)$ be a $B N$-algebra and $I \subseteq A$. If I be an ideal then I be a c-ideal of A.
Proof. Let I be an ideal of A. Let $x * y \in I$ for all $y \in I$ and $y \neq 0$, then
(i) For $I=\{0\}$, it obviously that I is a c-ideal of A.
(ii) For $I \neq\{0\}$ there exist $y \in I$ such that $y \neq 0$ and $x * y \in I$. Since I is an ideal, then $x \in I$. Thus, I is a c-ideal of A.

Corollary 3.3. Every a normal ideal of $B N$-algebra is a normal c-ideal.
Proof. Let $(A ; *, 0)$ be a $B N$-algebra and let I be an ideal of A. By Proposition 3.2 we obtain I is a c-ideal of A. Since I is a normal, then I is a normal c-ideal of A.

Proposition 3.4. Let $(A ; *, 0)$ be a $B N$-algebra and let I be a c-ideal of A. If $x \leq y$, for all $y \in I$ and $y \neq 0$, then $x \in I$.

Proof. Let $x \leq y$ for all $y \in I$ and $y \neq 0$, then from Definition 2.12 we have $x * y=0 \in I$, such that $x \in I$.
Example 7. Let $A=\{0,1,2,3\}$ be a set with Cayley's table as seen in Table 6.
Table 6: Cayley's table for $(A ; *, 0)$

$*$	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then, $\left(A ;{ }^{*}, 0\right)$ is a $B N$-algebra and $\{0\},\{0,2\},\{0,3\},\{0,2,3\},\{0,1,2,3\}$ are all of c-ideals of A. Moreover, $I=\{0,2,3\}$ be a c-ideal of A, but it is not a subalgebra of A, since $2,3 \in I, 2 * 3=1 \notin I$ and $S=\{0,1\}$ be a subalgebra of A, but it is not a subalgebra of A, since $2 * 1=1 \in S$ and $1 \in S$, but $2 \notin S$.

Example 8. From $B N$-algebra in Example 3, we have $\{0\}$ and $A=\{0,1,2,3\}$ are c-ideals of A and it can be shown that A is a normal of A, and $\{0\}$ is also a normal of A, however it does not hold in general.

As an illustration the following example is given.
Example 9. Let $A=\{0,1,2,3\}$ be a set with Cayley's table as seen in Table 7.
Table 7: Cayley's table for $(A ; *, 0)$

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	2
3	3	0	2	0

It can be shown that $\left(A ;{ }^{*}, 0\right)$ be a $B N$-algebra. Then, $\{0\}$ and A are c-ideals of A. A is a normal, but $\{0\}$ is not a normal, since $2 * 2=0 \in I$ and $1 * 3=0 \in I$, however $(2 * 1) *(2 * 3)=3 * 2=2 \notin I$.

Theorem 3.5. Let A be a $B N$-algebra and $S \subseteq A$. S is a normal subalgebra if and only if it is a normal c-ideal.
Proof. Let S be a normal subalgebra of A, it is clearly that $0 \in S$. If $x * y \in S$ and for all $y \in S, y \neq 0$, then $0 * y \in S$. Since S be a normal obtained $(x * 0) *(y * y) \in S$ and from BN1 and BN2 axioms, we get $(x * 0) *$ $(y * y)=x \in S$. Therefore, S is a c-ideal of A and since S be a normal, it clearly that S is a normal c-ideal of A. Conversely, let $x, y \in S$, since S be a normal, then $(x * y) *(x * 0) \in S$. From BN2 axiom we get $0 \in S$ and $x * y \in S$. Thus, it shows that S is a normal subalgebra of A.

Lemma 3.6. Let I be a normal c-ideal of $B N$-algebra A and $x, y \in A$, then
(i) $x \in I \Rightarrow 0 * x \in I$,
(ii) $x * y \in I \Rightarrow y * x \in I$.

Proof.

(i). Let $x \in I$, then $x=x * 0 \in I$. Since I be a normal, then $(0 * x) *(0 * 0) \in I$. From $B N 1$ and $B N 2$ axioms we get $(0 * x) *(0 * 0)=0 * x \in I$.
(ii). Let $x * y \in I$ and by (i) obtained $0 *(x * y) \in I$. From Proposition 2.13 (ii), we obtain $0 *$ $(x * y)=y * x$, such that $y * x \in I$.

Remark 3.7.

1. The intersection of two c-ideals of $B N$-algebra is a c-ideal of $B N$-algebra.
2. The union of ascending sequence of c-ideal is a c-ideal of $B N$-algebra.

Let $(A ; *, 0)$ be a $B N$-algebra. If a self-map f be a homomorphism of A, then $f(0)=f(0 * 0)=$ $f(0) * f(0)=0$ and ker $f=\{x \in A: f(x)=0\}$.

Theorem 3.8. If $f: A \rightarrow A$ be a homomorphism of A to itself, then $\operatorname{ker} f$ is a c-ideal of A.
Proof. Let f be a homomorphism of A to itself, then it is clearly that $0 \in \operatorname{ker} f$. If $x * y \in \operatorname{ker} f$ and for all $y \in$ ker $f, y \neq 0$ then

$$
\begin{aligned}
0 & =f(x * y) \\
& =f(x) * f(y) \\
& =f(x) * 0 \\
0 & =f(x),
\end{aligned}
$$

such that $x \in \operatorname{ker} f$. Thus, we get $\operatorname{ker} f$ is a c-ideal of A.
Remark 3.9. The kernel of a homomorphism is not always a normal c-ideal. Let $(A ; *, 0)$ be a $B N$-algebra given in Example 6. Clearly, c - $i d_{A}: A \rightarrow A$ is a homomorphism and the c-ideal ker $\left(c-i d_{A}\right)$ is not normal of A.

Theorem 3.10. Let $\left(A ; *, 0_{A}\right)$ be a $B N$-algebra and let $\left(B ; *, 0_{B}\right)$ be a $B M$-algebra. Let $f: A \rightarrow B$ be a homomorphism from A into B, then $\operatorname{ker} f$ is a normal c-ideal of A.

Proof. Let f be a homomorphism from A into B. From Theorem 3.8 it follows that ker f is a c-ideal of A. Let $x, y, a, b \in A$ and $x * y, a * b \in \operatorname{ker} f$, then $0_{B}=f(x * y)=f(x) * f(y)$. By Proposition 2.9 (ii) it follows that $f(x)=f(y)$ and $f(a)=f(b)$, such that

$$
\begin{aligned}
f[(x * a) *(y * b)] & =f(x * a) * f(y * b) \\
& =[f(x) * f(a)] *[f(y) * f(b)] \\
& =[f(x) * f(a)] *[f(x) * f(a)] \\
& =0_{B} .
\end{aligned}
$$

Then, we get $(x * a) *(y * b) \in \operatorname{ker} f$. Hence, it shows that ker f is a normal c-ideal of A.
Theorem 3.11. Let $\left(A ; *, 0_{A}\right)$ be a $B M$-algebra and let $\left(B ; *, 0_{B}\right)$ be a $B N$-algebra. If $f: A \rightarrow B$ be a homomorphism of A to B, then ker f is a c-ideal of A.
Proof. Let f be a homomorphism of A to B, then it is clearly that $0_{A} \in \operatorname{ker} f$. If $x * y \in \operatorname{ker} f$ and for all $y \in$ ker $f, y \neq 0_{A}$ then

$$
\begin{aligned}
0_{B} & =f(x * y) \\
& =f(x) * f(y) \\
& =f(x) * 0_{B} \\
0_{B} & =f(x),
\end{aligned}
$$

such that $x \in \operatorname{ker} f$. Thus, we get ker f is a c-ideal of A.

IV. n-IDEAL OF BN-ALGEBRA

In this section, we get definition of n-ideal in $B N$-algebra and its properties are obtained. Then, we have some of the related properties.

Definition 4.1. A non-empty subset I of $B N$-algebra $(A ; *, 0)$ is said to be n-ideal of A if it satisfies
(i). $\quad 0 \in I$, and
(ii). $\quad x * y \in I$ and $y \in I$, there exist $n \in Z^{+}, x^{n} \neq 0$ such that $x^{n} \in I$, where $x^{n}=((x * x) * x) * x * \ldots *$ x.

Example 10. Let $(A ; *, 0)$ be a $B N$-algebra given in Example 6, then $I=\{0,1,3\}$ is an n-ideal of A, since $0 \in I$ and $1 * 3=0 \in I, 3 \in I$, there exist $3 \in Z^{+}$such that $1^{3}=(1 * 1) * 1=0 * 1=1 \in I$. It follows that $\{0\},\{0,1,3\}$, and $\{0,1,2,3\}$ are n-ideals of A.

Proposition 4.2. Let $(A ; *, 0)$ be a $B N$-algebra and $I \subseteq A$. If I be an ideal then I be an n-ideal of A.
Proof. Let $x * y \in I$ and $y \in I$. Since I is an ideal of A, then $x \in I$. This shows that I is an n-ideal where $n=1$. This complete the proof.

The converse of Proposition 4.2 is not true in general.
Corollary 4.3. Every a normal ideal of $B N$-algebra is a normal n-ideal.
Proof. Let $(A ; *, 0)$ be a $B N$-algebra and let I be an ideal of A. By Proposition 4.2 we obtain I is an n-ideal of A. Since I is a normal, then I is a normal n-ideal of A.

Proposition 4.4. Every normal subalgebra S of $B N$-algebra A is a normal n-ideal.
Proof. It is directly from Proposition 2.15 and Corollary 4.3.
Theorem 4.5. Let $(A ; *, 0)$ be a $B N$-algebra. If $f: A \rightarrow A$ be a homomorphism of A to itself, then ker f is a n ideal of A.
Proof. Let f be a homomorphism of A to itself, then it is clearly that $0 \in \operatorname{ker} f$. If $x * y \in \operatorname{ker} f$ and $y \in \operatorname{ker} f$, then

$$
\begin{aligned}
0 & =f(x * y) \\
& =f(x) * f(y) \\
& =f(x) * 0 \\
0 & =f(x) .
\end{aligned}
$$

Thus, there exist $1 \in Z^{+}$such that $x^{1}=x \in \operatorname{ker} f$. Thus, $\operatorname{ker} f$ is an n-ideal of A.
Theorem 4.6. Let $\left(A ; *, 0_{A}\right)$ be a $B N$-algebra and let $\left(B ; *, 0_{B}\right)$ be a $B M$-algebra. Let $f: A \rightarrow B$ be a homomorphism from A into B, then ker f is a normal n-ideal of A.

Proof. Let f be a homomorphism from A into B. Since every $B M$-algebra is a $B N$-algebra, from Theorem 4.5 it follows that ker f is an n-ideal of A. Let $x, y, a, b \in A$ and $x * y, a * b \in \operatorname{ker} f$, then $0_{B}=f(x * y)=f(x) *$ $f(y)$. By Proposition 2.9 (ii) it follows that $f(x)=f(y)$ and $f(a)=f(b)$, such that

$$
\begin{aligned}
f[(x * a) *(y * b)] & =f(x * a) * f(y * b) \\
& =[f(x) * f(a)] *[f(y) * f(b)] \\
& =[f(x) * f(a)] *[f(x) * f(a)] \\
& =0_{B} .
\end{aligned}
$$

Then, we get $(x * a) *(y * b) \in \operatorname{ker} f$. Hence, it shows that ker f is a normal n-ideal of A.
Definition 4.7. A non-empty subset I of $B N$-algebra $(A ; *, 0)$ is said to be complete n-ideal briefly c - n-ideal of A, if it satisfies
(i). $\quad 0 \in I$, and
(ii). $x * y \in I$ for all $y \neq 0 \in I \Rightarrow x^{n} \neq 0 \in I$ for some $n \in Z^{+}$.

Proposition 4.8. Every c-ideal of $B N$-algebra A is a $c-n$-ideal of A.
Proof. Let I be a c-ideal, then $0 \in I$. Let $x * y \in I$ for all $y \neq 0 \in I$, since I is a c-ideal, then $x \in I$. It follows that A is a complete n-ideal of A.

V. CONCLUSION

In this paper, the notions of c-ideal and n-ideal of $B N$-algebra are defined and some of their properties are obtained. Furthermore, we define a c - n-ideal in $B N$-algebra and we have every c-ideal of $B N$-algebra is a c - n ideal.

REFERENCES

[1] H. K. Abdullah, Complete Ideal and n-Ideal of B-algebra, Applied Mathematical Sciences, 11(2017), 1705 - 1713.
[2] G. Dymek and A. Walendziak, (Fuzzy) Ideals of BN-Algebras, Scientific World Journal, (2015), 1-9.
[3] E. Fitria, S. Gemawati, and Kartini, Prime Ideals in B-Algebras, International Journal of Algebra, 11(2017), 301-309.
[4] Y. Huang, Irreducible Ideals in BCI-algebras, Demonstratio Mathematica, 37(2004), 3-8.
[5] K. Iseki and S. Tanaka, Ideal Theory of BCK-algebras, Mathematica Japonica, 21(1976), 351-366.
[6] C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Mathematica, 41(2003), 497-505.
[7] C. B. Kim and H. S. Kim, On BM-algebras, Scientiae Mathematicae Japonicae Online, 2006, 215-221.
[8] C. B. Kim, On BN-algebras, Kyungpook Math, 53 (2013), 175-184.
[9] H. S. Kim, Y. H. Kim, dan J. Neggers, Coxeter Algebras and Pre-Coxeter Algebras in Smarandache Setting, Honam Mathematical Journal, 26(2004), 471-481.
[10] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik, 54 (2002), 21-29.
[11] A. Walendziak, BM-algebras and Related Topics, Mathematica Slovaca, 64(2014), 1075-1082.
[12] A. Walendziak, On BF-algebras, Mathematica Slovaca, 57(2007), 119-128.

