Complete Ideal and n-Ideal of BN-algebras

Sri Gemawati^{#1}, Elsi Fitria^{#2}, Abdul Hadi^{#3}, Musraini M.^{#4}

[#]Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau Bina Widya Campus, Pekanbaru 28293, Indonesia

Abstract. In this paper, the notion of complete ideal and n-ideal of BN-algebra are introduced and some of related properties are investigated. Also, we discuss the concept of complete ideal and n-ideal of BN-homomorphism and some of their properties are obtained. In addition, we gave some propositions that explained some relationships between these ideals types.

Keyword. BN-algebra, ideal, complete ideal, n-ideal, subalgebra

I. INTRODUCTION

J. Neggers and H. S. Kim [10] introduce a new algebraic structure is called a *B*-algebra. Furthermore, C. B. Kim and H. S. Kim introduce *BG*-algebra [6], which is the generalization of *B*-algebra. Some of types algebras, such that *BM*-algebra [7] and *BN*-algebra [8] are two specializations of *B*-algebra. The concept of homomorphism is also studied in abstract algebra. A map $\psi : A \to B$ is called a *BN*-homomorphism if $\psi(x * y) = \psi(x) * \psi(y)$ for all $x, y \in A$, where A and B are two *BN*-algebras. The kernel of ψ denoted by ker ψ is defined to be the set $\{x \in A : \psi(x) = 0_B\}$. A *BN*-homomorphism ψ is called a *BN*-monomorphism, *BN*-epimorphism, or *BN*-isomorphism if one-one, onto, or a bijection, respectively. Kim [8] also discuss the concept of coxeter algebra. A coxeter algebra is a non-empty set X with a constant 0 and a binary operation "* satisfying the following axioms: (B1) x * x = 0, (B2) x * 0 = x, and (x * y) * z = x * (y * z) for all $x, y, z \in X$.

Fitria et al. [3] discuss the concept of prime ideal of *B*-algebra. The results define an ideal and a prime ideal of *B*-algebra and some of their properties are investigated. A non-empty subset *I* of *B*-algebra *X* is called an ideal of *X* if it satisfies $0 \in X$ and if $y \in I$, $x * y \in I$ implies $x \in I$ for any $x, y \in X$. Moreover, *I* is called a prime ideal of *X* if it satisfies $A \cap B \subseteq I$, then $A \subseteq I$ or $B \subseteq I$ for any *A* and *B* are two ideals of *X*. The concept of ideal also discussed in *BN*-algebra by Dymek and Walendziak [2]. They obtain the definition of ideal in *BN*-algebra is equivalent to *B*-algebra, but some of their properties are different. Also, the properties of kernel are obtained, such that the kernel ψ is an ideal in *X*. In addition, Dymek and Walendziak investigate the kernel ψ of *BN*-algebra to *BM*-algebra, such that obtained kernel ψ be a normal ideal of *BN*-algebra.

The concepts of ideals of *B*-algebras are discussed by Abdullah [1], those are a complete ideal (briefly *c*-ideal) and an *n*-ideal in *B*-algebras. The results define a *c*-ideal and an *n*-ideal in *B*-algebra, and some of related properties are investigated. They obtain every normal of *B*-algebra is both *c*-ideal and *n*-ideal. Using the same ideas as previous studies [1] and [2], the concepts of *c*-ideal and *n*-ideal in *B*-algebras to *BN*-algebra will be applied.

The objective of this paper is to construct the concept of complete ideal and n-ideal of BN-algebras, and then investigate complete ideal and n-ideal of normal ideal and BN-homomorphism. Finally, we study relationship between these ideals types.

II. PRELIMINARIES

In this section, we recall the notion of *B*-algebra, *BM*-algebra, and *BN*-algebra and review some properties which we will need in the next section. Some definitions and theories related to *c*-ideal and *n*-ideal of *BN*-algebra that have been discussed by several authors [1, 2, 3, 6, 7, 8, 10] will also be presented.

Definition 2.1. [10] A *B*-algebra is a non-empty set *X* with a constant 0 and a binary operation " * " satisfying the following axioms:

(B1) x * x = 0,(B2) x * 0 = x,(B3) (x * y) * z = x * (z * (0 * y)), $for all x, y, z \in X.$

A non-empty subset S of B-algebra (X ; *, 0) is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$. **Definition 2.2.** [8] An algebra (X ; *, 0) is said to be 0-commutative if x * (0 * y) = y * (0 * x) for any $x, y \in X$.

Example 1. Let $A = \{0, 1, 2\}$ be a set with Cayley's table as seen in Table 1.

Table 1	1: Cayley	's table fo	or (<i>A</i> ; *, 0)
1 40 10			

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

From Table 1 we get the value of main diagonal is 0, such that *A* satisfies x * x = 0 for all $x \in A$ (*B1* axiom). In the second column, we see that for all $x \in A$, x * 0 = x (*B2* axiom) and it also satisfies (x * y) * z = x * (z * (0 * y)), for all $x, y, z \in A$. Hence, (A; *, 0) be a *B*-algebra. It easy to check that (A; *, 0) satisfies x * (0 * y) = y * (0 * x), for all $x, y, z \in A$. Hence, *A* be a 0-commutative *B*-algebra.

Definition 2.3. [3] A non-empty subset I of B-algebra (X; *, 0) is called an ideal of X if it satisfies

(i). $0 \in I$,

(ii). $x * y \in I$ and $y \in I$ imply $x \in I$ for any $x, y \in X$.

Definition 2.4. [1] A non-empty subset I of B-algebra (X; *, 0) is said to be *complete* ideal (briefly *c*-ideal) of X if it satisfies

- (i). $0 \in I$,
- (ii). $x * y \in I$ for all $y \in I$ such that $y \neq 0$ implies $x \in I$.

Definition 2.5. [1] A non-empty subset I of B-algebra (X; *, 0) is said to be n-ideal of X if it satisfies

- (i). $0 \in I$,
- (ii). $x * y \in I$ and $y \in I$ implies there exist $n \in Z^+$, $x^n \neq 0$ such that $x^n \in I$, where $x^n = ((x * x) * x) * x * ... * x$.

Definition 2.6. [6] A *BG*-algebra is a non-empty set X with a constant 0 and a binary operation " * " satisfying the following axioms:

(B1) x * x = 0,(B2) x * 0 = x,(BG) (x * y) * (0 * y) = x, $for all x, y \in X.$

Example 2. Let $X = \{0, 1, 2, 3\}$ be a set with Cayley's table as seen in Table 2.

				, ,
*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Table 2: Cavley's table for (X : *, 0)

Then, it can be shown that (X; *, 0) is a *BG*-algebra.

Definition 2.7. [7] A *BM*-algebra is a non-empty set *X* with a constant 0 and a binary operation "*" satisfying the following axioms:

 $(A1) \ x * 0 = x,$

 $(A2) (z * x) * (z * y) = y * x \text{ for all } x, y, z \in X.$

Example 3. Let $X = \{0, 1, 2\}$ be a set with Cayley's table as seen in Table 3.

Table 3: Cayley's table for (X; *, 0)					
*	0	1	2		
0	0	2	1		
1	1	0	2		
2	2	1	0		

From the Table 3, we have the values in the second column satisfying x * 0 = x for all $x, y \in X$ (A1 axiom) and they also satisfying (z * x) * (z * y) = y * x for all $x, y, z \in X$ (A2 axiom). Hence, (X; *, 0) is a BM-algebra.

Theorem 2.8. [7] Every BM-algebra is a B-algebra.

Proof. Theorem 2.8 has been proved in [7].

The converse of Theorem 2.8 does not hold in general.

Proposition 2.9. [7] If (A; *, 0) be a *BM*-algebra, then

(i). x * (x * y) = y,
(ii). If x * y = 0, then x = y, for all x, y ∈ A.

Proof. Proposition 2.9 has been proved in [7].

Definition 2.10. [8] A *BN*-algebra is a non-empty set X with a constant 0 and a binary operation " * " satisfying the following axioms:

(BN1) x * x = 0,(BN2) x * 0 = x,(BN3) (x * y) * z = (0 * z) * (y * x), $for all x, y, z \in X,$

Example 4. Let $X = \{0, 1, 2, 3\}$ be a set with Cayley's table as seen in Table 4.

able 4.	Cayley	s tabi		Λ;*,0
*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Table 4: Cayley's table for (X; *, 0)

Then, it can be shown that (X; *, 0) is a *BN*-algebra.

Theorem 2.11. [8] If (X; *, 0) is a *BN*-algebra, then X be a 0-commutative.

Proof. Theorem 2.11 has been proved in [8].

The converse of Theorem 2.11 does not hold in general.

Definition 2.12. [2] Let (A; *, 0) be a *BN*-algebra. We define a binary relation \leq on *A* by $x \leq y$ if and only if x * y = 0.

It is easy to see that, for any $x \in A$, if $x \le 0$, then x = 0.

Proposition 2.13. [8] If (A; *, 0) be a *BN*-algebra, then

(i). 0 * (0 * x) = x,

- (ii). 0 * (x * y) = y * x,
- (iii). y * x = (0 * x) * (0 * y),
- (iv). If x * y = 0, then y * x = 0,
- (v). If 0 * x = 0 * y, then x = y, for all $x, y \in A$.

Proof. Proposition 2.13 has been proved in [8].

Definition 2.14. [2] A non-empty subset S of BN-algebra (X; *, 0) is called a subalgebra of X if it satisfies $x * y \in S$ for all $x, y \in S$. A non-empty subset N of X is called a normal if it satisfies $(x * a) * (y * b) \in N$, for any $x * y, a * b \in N$.

Let (X; *, 0) and (Y; *, 0) be two *BN*-algebras. A map $\psi: X \to Y$ is called a *BN*-homomorphism if $\psi(a * b) = \psi(a) * \psi(b)$ for any $a, b \in X$. The kernel of ψ denoted by ker ψ is defined to be $ker \psi = \{x \in X: \psi(x) = 0_Y\}$. A *BN*-homomorphism ψ is called a *BN*-monomorphism, *BN*-epimorphism, or *BN*-isomorphism if one-one, onto, or a bijection function, respectively.

Proposition 2.15. [2] Let A be a BN-algebra and let $S \subseteq A$. Then S is a normal subalgebra of A if and only if S is a normal ideal.

Proof. Proposition 2.15 has been proved in [2].

III. COMPLETE IDEAL OF BN-ALGEBRAS

In this section, we get definition of complete ideal briefly c-ideal in BN-algebra and its properties are obtained. The concept can be extended to the BN-homomorphism. Then, we have some of the related properties.

Definition 3.1. A non-empty subset *I* of *BN*-algebra (X; *, 0) is said to be *complete* ideal (briefly *c*-ideal) of *X* if it satisfies

(i). $0 \in I$, (ii). $x * y \in I$ for all $y \in I$ such that $y \neq 0$ implies $x \in I$ for any $x, y \in X$.

Example 5. Let \mathbb{R} be the set of real numbers and let (\mathbb{R} ; *, 0) be the algebra with the operation * defined by

$$x * y = \begin{cases} x & \text{if } y = 0, \\ y & \text{if } x = 0, \\ 0 & \text{otherwise} \end{cases}$$

Then, \mathbb{R} is a *BN*-algebra. Moreover, $\{0\}$ and \mathbb{R} be a *c*-ideal of (\mathbb{R} ; *, 0).

Example 6. Let $A = \{0, 1, 2, 3\}$ be a set with Cayley's table as seen in Table 5.

Table 5: Cayley's table for $(A; *, 0)$							
	*	0	1	2	3		
	0	0	1	2	3		
	1	1	0	3	0		
	2	2	3	0	2		
	3	3	0	2	0		

Then, it can be shown that (A; *, 0) is a *BN*-algebra. We can be prove that $\{0\}$ and *A* are ideals of (A; *, 0), and $\{0\}$, $\{0, 1, 3\}$, and *A* are *c*-ideals of (A; *, 0).

Proposition 3.2. Let (A; *, 0) be a *BN*-algebra and $I \subseteq A$. If *I* be an ideal then *I* be a *c*-ideal of *A*.

Proof. Let *I* be an ideal of *A*. Let $x * y \in I$ for all $y \in I$ and $y \neq 0$, then

(i) For $I = \{0\}$, it obviously that I is a *c*-ideal of A.

(ii) For $I \neq \{0\}$ there exist $y \in I$ such that $y \neq 0$ and $x * y \in I$. Since *I* is an ideal, then $x \in I$. Thus, *I* is a *c*-ideal of *A*.

Corollary 3.3. Every a normal ideal of *BN*-algebra is a normal *c*-ideal.

Proof. Let (A; *, 0) be a *BN*-algebra and let *I* be an ideal of *A*. By Proposition 3.2 we obtain *I* is a *c*-ideal of *A*. Since *I* is a normal, then *I* is a normal *c*-ideal of *A*.

Proposition 3.4. Let (A; *, 0) be a *BN*-algebra and let *I* be a *c*-ideal of *A*. If $x \le y$, for all $y \in I$ and $y \ne 0$, then $x \in I$.

Proof. Let $x \le y$ for all $y \in I$ and $y \ne 0$, then from Definition 2.12 we have $x * y = 0 \in I$, such that $x \in I$.

Example 7. Let $A = \{0, 1, 2, 3\}$ be a set with Cayley's table as seen in Table 6.

able 6: Cayley's table for $(A; *, 0)$				
*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Table 6: Cayley's table for (A; *, 0)

Then, (A; *, 0) is a *BN*-algebra and $\{0\}$, $\{0,2\}$, $\{0,3\}$, $\{0,2,3\}$, $\{0,1,2,3\}$ are all of *c*-ideals of *A*. Moreover, $I = \{0, 2, 3\}$ be a *c*-ideal of *A*, but it is not a subalgebra of *A*, since $2, 3 \in I$, $2 * 3 = 1 \notin I$ and $S = \{0,1\}$ be a subalgebra of *A*, but it is not a subalgebra of *A*, since $2 * 1 = 1 \in S$ and $1 \in S$, but $2 \notin S$.

Example 8. From *BN*-algebra in Example 3, we have $\{0\}$ and $A = \{0, 1, 2, 3\}$ are *c*-ideals of *A* and it can be shown that *A* is a normal of *A*, and $\{0\}$ is also a normal of *A*, however it does not hold in general.

As an illustration the following example is given. **Example 9.** Let $A = \{0, 1, 2, 3\}$ be a set with Cayley's table as seen in Table 7.

able 7: Cayley's table for $(A; *, 0)$					
*	0	1	2	3	
0	0	1	2	3	
1	1	0	3	0	
2	2	3	0	2	
3	3	0	2	0	

It can be shown that (A ; *, 0) be a *BN*-algebra. Then, $\{0\}$ and *A* are *c*-ideals of *A*. *A* is a normal, but $\{0\}$ is not a normal, since $2 * 2 = 0 \in I$ and $1 * 3 = 0 \in I$, however $(2 * 1) * (2 * 3) = 3 * 2 = 2 \notin I$.

Theorem 3.5. Let *A* be a *BN*-algebra and $S \subseteq A$. *S* is a normal subalgebra if and only if it is a normal *c*-ideal.

Proof. Let *S* be a normal subalgebra of *A*, it is clearly that $0 \in S$. If $x * y \in S$ and for all $y \in S$, $y \neq 0$, then $0 * y \in S$. Since *S* be a normal obtained $(x * 0) * (y * y) \in S$ and from *BN1* and *BN2* axioms, we get $(x * 0) * (y * y) = x \in S$. Therefore, *S* is a *c*-ideal of *A* and since *S* be a normal, it clearly that *S* is a normal *c*-ideal of *A*. Conversely, let $x, y \in S$, since *S* be a normal, then $(x * y) * (x * 0) \in S$. From *BN2* axiom we get $0 \in S$ and $x * y \in S$. Thus, it shows that *S* is a normal subalgebra of *A*.

Lemma 3.6. Let *I* be a normal *c*-ideal of *BN*-algebra *A* and $x, y \in A$, then

- (i) $x \in I \Rightarrow 0 * x \in I$,
- (ii) $x * y \in I \Rightarrow y * x \in I$.

Proof.

- (i). Let $x \in I$, then $x = x * 0 \in I$. Since *I* be a normal, then $(0 * x) * (0 * 0) \in I$. From *BN1* and *BN2* axioms we get $(0 * x) * (0 * 0) = 0 * x \in I$.
- (ii). Let $x * y \in I$ and by (i) obtained $0 * (x * y) \in I$. From Proposition 2.13 (ii), we obtain 0 * (x * y) = y * x, such that $y * x \in I$.

Remark 3.7.

- 1. The intersection of two *c*-ideals of *BN*-algebra is a *c*-ideal of *BN*-algebra.
- 2. The union of ascending sequence of *c*-ideal is a *c*-ideal of *BN*-algebra.

Let (A; *, 0) be a *BN*-algebra. If a self-map f be a homomorphism of A, then f(0) = f(0 * 0) = f(0) * f(0) = 0 and ker $f = \{x \in A : f(x) = 0\}$.

Theorem 3.8. If $f: A \to A$ be a homomorphism of A to itself, then ker f is a c-ideal of A.

Proof. Let *f* be a homomorphism of *A* to itself, then it is clearly that $0 \in \ker f$. If $x * y \in \ker f$ and for all $y \in \ker f$, $y \neq 0$ then

$$0 = f(x * y) = f(x) * f(y) = f(x) * 0 0 = f(x),$$

such that $x \in \ker f$. Thus, we get ker f is a c-ideal of A.

Remark 3.9. The kernel of a homomorphism is not always a normal *c*-ideal. Let (A; *, 0) be a *BN*-algebra given in Example 6. Clearly, $c \cdot id_A: A \to A$ is a homomorphism and the *c*-ideal ker $(c \cdot id_A)$ is not normal of *A*.

Theorem 3.10. Let $(A; *, 0_A)$ be a *BN*-algebra and let $(B; *, 0_B)$ be a *BM*-algebra. Let $f: A \to B$ be a homomorphism from A into B, then ker f is a normal c-ideal of A.

Proof. Let *f* be a homomorphism from *A* into *B*. From Theorem 3.8 it follows that ker *f* is a *c*-ideal of *A*. Let $x, y, a, b \in A$ and x * y, $a * b \in \text{ker } f$, then $0_B = f(x * y) = f(x) * f(y)$. By Proposition 2.9 (ii) it follows that f(x) = f(y) and f(a) = f(b), such that

$$f[(x * a) * (y * b)] = f(x * a) * f(y * b)$$

= [f(x) * f(a)] * [f(y) * f(b)]
= [f(x) * f(a)] * [f(x) * f(a)]
= 0_n.

Then, we get $(x * a) * (y * b) \in \ker f$. Hence, it shows that ker f is a normal c-ideal of A.

Theorem 3.11. Let $(A; *, 0_A)$ be a *BM*-algebra and let $(B; *, 0_B)$ be a *BN*-algebra. If $f: A \to B$ be a homomorphism of A to B, then ker f is a c-ideal of A.

Proof. Let *f* be a homomorphism of *A* to *B*, then it is clearly that $0_A \in \ker f$. If $x * y \in \ker f$ and for all $y \in \ker f$, $y \neq 0_A$ then

$$0_{B} = f(x * y) = f(x) * f(y) = f(x) * 0_{B} 0_{B} = f(x),$$

such that $x \in \ker f$. Thus, we get ker f is a c-ideal of A.

IV. n-IDEAL OF BN-ALGEBRA

In this section, we get definition of n-ideal in BN-algebra and its properties are obtained. Then, we have some of the related properties.

Definition 4.1. A non-empty subset I of BN-algebra (A; *, 0) is said to be n-ideal of A if it satisfies

(i). $0 \in I$, and

(ii). $x * y \in I$ and $y \in I$, there exist $n \in Z^+$, $x^n \neq 0$ such that $x^n \in I$, where $x^n = ((x * x) * x) * x * ... * x$.

Example 10. Let (*A*; *, 0) be a *BN*-algebra given in Example 6, then $I = \{0, 1, 3\}$ is an *n*-ideal of *A*, since $0 \in I$ and $1 * 3 = 0 \in I$, $3 \in I$, there exist $3 \in Z^+$ such that $1^3 = (1 * 1) * 1 = 0 * 1 = 1 \in I$. It follows that $\{0\}, \{0,1,3\},$ and $\{0,1,2,3\}$ are *n*-ideals of *A*.

Proposition 4.2. Let (A; *, 0) be a *BN*-algebra and $I \subseteq A$. If *I* be an ideal then *I* be an *n*-ideal of *A*.

Proof. Let $x * y \in I$ and $y \in I$. Since *I* is an ideal of *A*, then $x \in I$. This shows that *I* is an *n*-ideal where n = 1. This complete the proof.

The converse of Proposition 4.2 is not true in general.

Corollary 4.3. Every a normal ideal of *BN*-algebra is a normal *n*-ideal.

Proof. Let (A; *, 0) be a *BN*-algebra and let *I* be an ideal of *A*. By Proposition 4.2 we obtain *I* is an *n*-ideal of *A*. Since *I* is a normal, then *I* is a normal *n*-ideal of *A*.

Proposition 4.4. Every normal subalgebra *S* of *BN*-algebra *A* is a normal *n*-ideal.

Proof. It is directly from Proposition 2.15 and Corollary 4.3.

Theorem 4.5. Let (A; *, 0) be a *BN*-algebra. If $f: A \to A$ be a homomorphism of A to itself, then ker f is a *n*-ideal of A.

Proof. Let *f* be a homomorphism of *A* to itself, then it is clearly that $0 \in \ker f$. If $x * y \in \ker f$ and $y \in \ker f$, then

$$0 = f(x * y) = f(x) * f(y) = f(x) * 0 0 = f(x).$$

Thus, there exist $1 \in Z^+$ such that $x^1 = x \in \ker f$. Thus, $\ker f$ is an *n*-ideal of *A*.

Theorem 4.6. Let $(A; *, 0_A)$ be a *BN*-algebra and let $(B; *, 0_B)$ be a *BM*-algebra. Let $f: A \to B$ be a homomorphism from A into B, then ker f is a normal *n*-ideal of A.

Proof. Let f be a homomorphism from A into B. Since every BM-algebra is a BN-algebra, from Theorem 4.5 it follows that ker f is an n-ideal of A. Let $x, y, a, b \in A$ and x * y, $a * b \in ker f$, then $0_B = f(x * y) = f(x) * f(y)$. By Proposition 2.9 (ii) it follows that f(x) = f(y) and f(a) = f(b), such that f[(x * a) * (y * b)] = f(x * a) * f(y * b)

$$x * a) * (y * b)] = f(x * a) * f(y * b) = [f(x) * f(a)] * [f(y) * f(b)] = [f(x) * f(a)] * [f(x) * f(a)] = 0_{B}.$$

Then, we get $(x * a) * (y * b) \in \ker f$. Hence, it shows that ker f is a normal n-ideal of A.

Definition 4.7. A non-empty subset *I* of *BN*-algebra (A; *, 0) is said to be complete *n*-ideal briefly *c*-*n*-ideal of *A*, if it satisfies

(i). $0 \in I$, and

(ii). $x * y \in I$ for all $y \neq 0 \in I \Rightarrow x^n \neq 0 \in I$ for some $n \in Z^+$.

Proposition 4.8. Every *c*-ideal of *BN*-algebra *A* is a *c*-*n*-ideal of *A*.

Proof. Let *I* be a *c*-ideal, then $0 \in I$. Let $x * y \in I$ for all $y \neq 0 \in I$, since *I* is a *c*-ideal, then $x \in I$. It follows that *A* is a complete *n*-ideal of *A*.

V. CONCLUSION

In this paper, the notions of c-ideal and n-ideal of BN-algebra are defined and some of their properties are obtained. Furthermore, we define a c-n-ideal in BN-algebra and we have every c-ideal of BN-algebra is a c-n-ideal.

REFERENCES

- [1] H. K. Abdullah, Complete Ideal and n-Ideal of B-algebra, Applied Mathematical Sciences, 11(2017), 1705 1713.
- [2] G. Dymek and A. Walendziak, (Fuzzy) Ideals of BN-Algebras, Scientific World Journal, (2015), 1-9.
- [3] E. Fitria, S. Gemawati, and Kartini, Prime Ideals in B-Algebras, International Journal of Algebra, 11(2017), 301-309.
- [4] Y. Huang, Irreducible Ideals in BCI-algebras, Demonstratio Mathematica, 37(2004), 3-8.
- [5] K. Iseki and S. Tanaka, Ideal Theory of BCK-algebras, Mathematica Japonica, 21(1976), 351–366.
- [6] C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Mathematica, 41(2003), 497-505.
- [7] C. B. Kim and H. S. Kim, On BM-algebras, Scientiae Mathematicae Japonicae Online, 2006, 215–221.
- [8] C. B. Kim, On BN-algebras, Kyungpook Math, 53 (2013), 175-184.
- [9] H. S. Kim, Y. H. Kim, dan J. Neggers, Coxeter Algebras and Pre-Coxeter Algebras in Smarandache Setting, Honam Mathematical Journal, 26(2004), 471–481.
- [10] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik, 54 (2002), 21-29.
- [11] A. Walendziak, BM-algebras and Related Topics, Mathematica Slovaca, 64(2014), 1075–1082.
- [12] A. Walendziak, On BF-algebras, Mathematica Slovaca, 57(2007), 119–128.