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Abstract - In this work, a new higher-order beta probability distribution function is proposed from the existing beta probability 

distribution function. The new probability distribution function was derived using the work of [5]. The properties of the two 

distribution functions were given. A Monte Carlo experiment is performed for two scenarios using small and large sample sizes 

and it was observed that the proposed distribution has the least mean square error. It was equally observed that for the two 

scenarios, as the sample size increases, the error decreases which obey the finite sample theory.  More importantly, based on 

the observations, the proposed distribution is efficient even if the data set departs from the standard beta distribution. A real 

life applications were used to stress further the flexibility of the proposed distribution. 
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I. INTRODUCTION 

        A probability distribution can be defined as an assignment of probabilities to the values of a random variable. It can also be 

viewed as a statistical function that describes all the possible values and likelihoods that a random variable can take within a 

given range. There are several types of probability distribution such as the uniform distribution, the gamma distribution, the 

beta distribution, the normal distribution and several others. But the most commonly used distribution is the normal distribution 

because of its usefulness in finance, inventory, science and technology. However, this does not exclude the development and 

usage of other distributions. 

     The basic idea of the word “probability theory” began in the seventeenth century when the two French Mathematicians, 

Blaise Pascal and Piere de Fermat worked on two problems from game of chance [8]. In recent times, the evolvement of more 

new methods for constructing simple and robust probability distribution abound in the literature [2, 4, 6, 8]. A survey of these 

methods can be found in [7] and the references therein. 

     The beta distribution is a continuous probability distribution with two positive parameters α and β which control its shape 

and it is defined on a closed interval [0,1]x . Variants of beta distributions abound in the literature and they have been used in 

several ways by different authors to model the behaviour of proportions, see for example [4]. Hence mathematically, a random 

variable X  is said to have a beta distribution with shape parameters 0   and 0   if the probability density function is 

given by 
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     The main objective of this work is to compare beta distribution proposed by [10] called k – Beta distribution with the higher-

order beta distribution proposed in this work. The remaining part of this paper is structured as follows: this section is 

completed by giving some basic definitions. In Section 2, we review the k-Beta distribution which sets out the framework for 

developing the proposed higher-order beta distribution discussed in this work. In Section 3, we derive the proposed k-Higher-

order beta distribution and give its properties. A Monte-Carlo experiment and real life applications are performed in Section 4 

for two data sets. The discussion of results is equally done in the section. Finally Section 5 gives the concluding remark. 

 

A. BASIC DEFINITIONS 

 We give some definitions here which provide the rudiments for our main results. Definitions 1 – 4 are provided in [11]. 

1. Let X  denote any random variable. The distribution of X , denoted by  ( )F x , is such that ( ) ( )F x P X x=   for 

x−    . 

2. A random variable X with distribution ( )F x  is said to be continuous if ( )F x  is continuous, for x−    . 

3. Let ( )F x  be the distribution function for a continuous random variable X . Then ( )f x , given by 

 

( )
( ) ( )

dF x
f x F x

dx
= =  

whenever the derivative exists, it is called the probability density function for the random variable X . 

4. If ( )f x is a density function for a continuous random variable X , then 

i. ( ) 0 ,f x x x  −     

ii. ( ) 1f x dx


−
= . 

A survey of the properties of beta distribution as highlighted in [1] is as follows: 

1. If  = , then the shape of ( ; , )f x   is symmetric, unimodal and the mode = mean = median =0.5. 

2. If   , then the shape of ( ; , )f x   is right skewed, unimodal and the mean >median> mode <0.5. 

3. If   , then the shape of ( ; , )f x   is left skewed, unimodal and the mean <  median < mode >0.5. 

 

II. REVIEW OF k – BETA DISTRIBUTION FUNCTION [9] 

Let X be a continuous random variable; then it is said to have a k-beta distribution with two parameters α and β if its 

probability distribution function is defined by 
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Rahman, et al [9] further defined this distribution as k-beta distribution of the first kind and they labeled it 1, ( , )k m n , (where 

m = α and n = β in this paper). They also gave its cumulative distribution function as 
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As contained in [10], the k-beta probability distribution function in (4) satisfies the following properties: 

i. It is a probability density function. That is, it integrates to 1. 
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ii. Its mean is 


 +
 

iii. Its variance is 
2( ) ( )

k

k



   + + +
  

Proof: The proof is contained in [10]. 

 

III.  THE k - HIGHER-ORDER BETA PROBABILITY DISTRIBUTION FUNCTION 

In this section, we propose a new distribution function from the existing one. Since the kernel density is a probability density 

function, we adapt the method for developing higher-order kernels to construct our proposed new probability distribution 

function. Using the work of [5] and the k-Beta distribution of [10], a three parameters beta distribution is proposed as: 
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Equation (6) is thus the proposed k-HBDF with the cumulative distribution function given as: 
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Theorem 1 

The proposed k-HBDF represents a probability density function with the respective mean and variance: 
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A. PROPERTIES OF THE PROPOSED k-HBDF 

When k = 0.5 

1. If 1k = and   , then the shape of g( ; , )x   is left skewed, unimodal and the median > mean > mode > 0.5. 

2. If 1k = and  = , then the shape of g( ; , )x   is symmetric, unimodal and the mode = mean = median > 0.5 

3. If 1k = and   , then the shape of g( ; , )x   is right skewed, unimodal and the mean    =median = mode < 0.5. 

When k = 1 

1. If k > 1 and   , then the shape of g( ; , )x   is left skewed. 

2. If k > 1 and  = , then the shape of g( ; , )x   is symmetric. 

3. If k > 1 and   , then the shape of g( ; , )x   is strictly decreasing. 

When k = 1.5 

1. If k < 1 and   , then the shape of g( ; , )x   is symmetric and the mean = median = mode = 0.8. 

2. If k < 1 and  = , then the shape of g( ; , )x   is symmetric and the mean = median = mode = 0.5. 

3. If k < 1 and   , then the shape of g( ; , )x   is symmetric and the mean = median = mode = 0.2. 

 

B. SERIES REPRESENTATION OF k – HBDF 
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And thus, the corresponding cdf in (7) can be re-written in series form as 
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where  is as defined in (9). 

Theorem 2 

If the shape parameters α, β and k are strictly greater than zero, then the higher-order moments of k-HBDF are given by: 
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On simplification, we have 
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Thus, by applying the triangle inequality in the above equation, the desired result is achieved. If r = 1, 
1E( ) / ( )x    = = + . If r = 2, then 2E( ) 0x =  and thus, 2 2Var( ) E( ) E ( )x x x= −  20 [ / ( )]  = − +  and hence, we 

have the desired results in Theorem 2  
 

 

                        

                                                        Fig. 1: Graph of the pdf of k – HBDF when k << 1 

 

                        

                                                       Fig. 2: Graph of the pdf of k – HBDF when k < 1  
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                                                       Fig. 3: Graph of the pdf of k – HBDF when k = 1 

                          

                                                      Fig. 4: Graph of the pdf of k – HBDF when k > 1 

                       

                                                 Fig. 5: Graph of the pdf of k – HBDF when k > > 1 

         Figure 1 shows the density functions for some selected values of parameters  ,   and k . These plots indicate that 

HBDFk − are all  symmetric, unimodal and ununimodal irrespective of the when 1 =  , 1 =  and when    or 

   for the value of k  when it is far less than one. Figure 2(a,b,c) shows the density of HBDFk −  for some selected values 

of parameters  and   when k  is less than one.  The plots in Figure 2(a) shows that the HBDFk −  is U-shaped, uniform and 

symmetric when 0.5 = = , 0.8 = = and 0.3 = = . Figure 2(b) plots take the same shape as Figure 1(a,b,c). The 

plots in Figure 2(c) show that HBDFk −  could be increasing, decreasing or symmetric depending on the values of   and   

     Figure 3(a,b,c) shows the density of HBDFk −  for some selected values of parameters  and   when k  is equal to one. 

The plots in Figure 3(a) indicate that HBDFk −  are U-shaped when 1 =  . Those in Figure 3(b) are all symmetric but as 

the value of  and   increases, the shape becomes flattened. Figure 3(c) plots show that HBDFk − could be increasing, 

decreasing or skewed depending on the values of  and  . 

     Figure 4(a,b,c) shows the density of HBDFk −  for some selected values of parameters  and   when k  is greater than 

one. The plots in Figure 4(a) take the same shape as those in Figure 2(a). Equally, the shape of the plots in Figure 4(b) takes the 

same shape as those in Figure 3(a). However, plots in Figure 4(c) indicate that the plots are either decreasing or increasing. 

But, when    or   , the curves are asymptotic to the x-axis. 
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     Figure 3(a,b,c) shows the density of HBDFk −  for some selected values of parameters  and   when k  is far greater than 

one. The plots in Figure 5(a,b,c) are all U-shaped irrespective of when 1 =  , 1 =  and when    or   . 

 

IV. NUMERICAL EXPERIMENT 

    In this section, we highlight the performance of the proposed distribution by comparing it with the existing probability 

distribution function studied by [10]. This is done by visualising by a Monte Carlo experiment. Thereafter, two real life data 

sets are used to show its flexibility. 

 

A. MONTE – CARLO EXPERIMENT 

    To study the performance of the higher-order beta probability distribution function, Monte Carlo Simulation experiments are 

conducted for two different scenarios. The first experiment is performed using small and large sample sizes for three different 

combinations of values of α and β. That is, when  ,  = and  . In the second instance, a Monte Carlo experiment is 

performed using small and large sample sizes for two different mixtures beta densities. These are 

(3 /10) (1,1) (7 /10) (2,2)A B B= +

 

and (2 / 3) (1,2) (1/ 3) (7 / 4,7 / 4)B B B= + . Given a random sample 1 2, , , nx x x on a unit 

interval (0,1)x , the simulation is performed for 1000r = runs such that mean squared error (MSE) is given as: 

 2
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1 ˆ[ ( ) ( )]

n

i i

i

MSE f x f x
n

=

= −                                                                                                       (12) 

where (.)f is the pdf of a distribution and ˆ (.)f is its estimate. Equation (12) is then computed for four different standard beta 

densities and two different mixture beta densities for small and large sample sizes. The results are presented in Figures 6 

through 11 below: 

 

 

Fig. 6: Graph of the MSE of  k – Higher-order Beta Distribution and k – Beta Distribution Functions for the four 

standard densities when k = 0.5 
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Fig. 7: Graph of the MSE of  k – Higher-order Beta Distribution and k – Beta Distribution Functions for the four 

standard densities when k = 1 

 

Fig. 8: Graph of the MSE of  k – Higher-order Beta Distribution and k – Beta Distribution Functions for the four 

standard densities when k = 1.5 

 

Fig. 9: Graph of the MSE of  k – Higher-order Beta Distribution and k – Beta Distribution Functions for the two 

mixture densities when k = 0.5 
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Fig. 10: Graph of the MSE of  k – Higher-order Beta Distribution and k – Beta Distribution Functions for the two 

mixture densities when k = 1 

 

Fig. 11: Graph of the MSE of  k – Higher-order Beta Distribution and k – Beta Distribution Functions for the two 

mixture densities when k =1.5 

B. REAL LIFE APPLICATIONS 

In this subsection, a demonstration of the real life applications of HBDFk − is carried out.  Equation (12) is used for the two 

data sets. The first data set is the first 58 observations recorded from the failure times of Kevlar 49/epoxy strands when the 

pressure is at 90% stress level [3]. The HBDFk − and Betak − distributions are used to fit the data set. The estimates of the 

parameters  and  when 0.5k = were obtained by using the modified R-Code of [9]. The result of this fit is presented in 

Table 1 and Figure 12 below. 

Table 1: Method of moments fit of the failure times data 

 

     Distribution   k – Beta    k – HBDF 

 

    Parameter estimates   =1.57939     =2.49065 

     =1.30348     =2.76633 

    MSE    1.32829     1.58894e-35 

    RMSE   1.15252     3.98616e-18 

    MAD    0.13078     0.00326178 

 

From Table 1, it can be seen that HBDFk −  and Betak − distributions gave adequate fit for the data set. However, HBDFk −  

distribution provides the best fit. This is buttressed by its lower MSE as compared with Betak − distribution. 
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Fig. 12: Histogram and fitted densities of the failure times data 

 

The second data set is the set of 272 observations of the old faithful gersey eruption data extracted from Old Faithful Geyser 

Data – CMU Statistics available at https:www.stat.cmu.edu>~larry. This data was converted to cumulative relative and was 

used for the fiting in Table 2 and Figure 13 below. 

Table 2: Method of moments fits of the cumulative relative version of the old faithful geyser eruption data 

 

    Distribution   k – Beta    k – HBDF 

 

    Parameter estimates   =1.49375     =2.26151 

     =1.93338     =3.32982 

    MSE    0.69705     1.06661e-34 

    RMSE   0.83489     1.03277e-17 

    MAD    0.05144     0.0057433 

 

The results from Table 2 signify the flexibility and superiority of HBDFk −  distribution over the  Betak − distribution since it 

posses lower MSE. This is clearly exhibit in Figure 13. 
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             Fig. 13: Histogram and fitted densities of the Old faithful geyser eruption (cumulative relative) data 

 

C. SUMMARY OF RESULTS 

    This section discusses the summary of results obtained from the Monte-Carlo simulation experiment as well as results 

arising from this study. Specific outcomes of the Monte-Carlo simulation for the two scenarios and real life applications are 

presented below. 

    In the first instance, the k-HBDF has relatively low mean squared error for both the small and large sample sizes for the 

standard beta distribution considered as compared with the k-Beta distribution proposed by [10] (see Figures 6 to 8). Another 

major finding of this work is that the k-HBDF has relatively low mean squared error for both the small and large sample sizes 

for the mixture beta distribution considered as compared with the k-Beta distribution proposed by [10] (see Figures 9 to 11). 

    Another major finding of significance in this work is that the k-HBDF has relatively low mean squared error for both the 

cases k = 0.5, k = 1and k = 1.5 for the standard beta distribution considered as compared with the k-Beta distribution proposed 

by [10] (see Figures 6 to 8). Closely related to the above is that  the k-HBDF has relatively low mean squared error for both the 

cases k = 0.5, k = 1 and k = 1.5 for the mixture beta distribution considered as compared with the k-Beta distribution proposed 

by [10] (see Figures 9 to 11). 

    In addition to the above, it is observed that the k-HBDF and k-beta distribution proposed by [9] both competes favourably 

well for a single and mixture density. However, the MSE tends to be consistent at the mixture density than the single density 

(see Figures 6 through 11). 

    Another notable result from the experiment (using the real life data - 58n =  and 272n = ) shows that the HBDFk −  

distribution has relatively low mean squared error as compared with the Betak − distribution (see Tables 1 and 2). The 

importance of the current research is further corroborated by the discovery that the HBDFk −  and Betak − distributions 

provided the best fit for the data sets (see Figures 12 and 13). 

    Apart from the above, another finding of significance from the experiment is that the HBDFk −  and Betak − distributions 

both compete favourably well for the simulated data and real life data. However, the MSE tends to be consistent for HBDFk −

. Furthermore, the k-HBDF also satisfies the skewness property since it is symmetric when α = β, skewed to the right when α > 

β and skewed to the left when α < β (see Figures 1 to 5). Lastly, in all, the proposed k-HBDF is a better probability estimator 

compared to the k-Beta distribution proposed by [9] in terms of MSE. 
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V. CONCLUSION 

    In this work, a new probability distribution known as the k-HBDF is proposed. The properties of the proposed k-HBDF were 

derived and efficiency of the k-HBDF was compared with the k-beta (classical when k =1) distribution function through the 

Monte-Carlo simulation experiment. Results obtained signify that the proposed k-HBDF has smaller MSE compared to k-beta 

and hence, it is more efficient than the k-beta and classical beta distribution functions. 
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