Generalized f-Derivation of BP-Algebras

Chintia Ramadhona^{#1}, Sri Gemawati^{#2}, Syamsudhuha^{#3}

[#]Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau

Bina Widya Campus, Pekanbaru 28293, Indonesia

Abstract: In this paper, the notions of generalized (l, r)-derivation, generalized (r, l)-derivation, and generalized derivation of BP-agebra are introduced, and some related properties are investigated. Also, we consider generalized (l, r)-f-derivation, generalized (r, l)-f-derivation, and generalized f-derivation of BP-aljabar, where f be an endomorphism of BP-algebra, and their properties are established in details.

Keyword: BP-algebra, (l,r)-derivation, (r,l)-derivation, generalized derivation, generalized f-derivation

I. INTRODUCTION

In 2006, Kim and Kim [6] introduce the notion of *BM*-algebra, which is a non-empty set X with a constant 0 and a binary operation "*" denoted by (X; *, 0), satisfying the following axioms: (A1) x * 0 = x and (A2) (z * x) * (z * y) = y * x for all $x, y, z \in X$. They discuss some properties of *BM*-algebra and relation of *BM*-algebra with any other algebras, such as relation between a *BM*-algebra with a 0-commutative *B*-algebra and a *coxeter* algebra. Then, Ahn and Han [1] introduce the notion of *BP*-algebra, which is a non-empty set X with a constant 0 and a binary operation "*" denoted by (X; *, 0), satisfying the following axioms: (BP1) x * x = 0, (BP2) x * (x * y) = y, and (BP3) (x * z) * (y * z) = x * y for all $x, y, z \in X$. Also, some properties of *BP*-algebra and relation of *BP*-algebra with any other algebras, such as *BF*-algebra are discussed. Then, they discuss a quadratic *BP*-algebra and show that the quadratic *BP*-algebra is equivalent to several quadratic algebras. Furthermore, Zadeh et al. [10] introduce relation between *BP*-algebra and any other algebras, such as *BM*-algebra. They prove that the class of *BP*-algebras and *BM*-algebras are equivalent.

The first time, notion of derivation was introduced in prime ring by Posner in 1957. Then, Ashraf et al. [2] introduce the notion of derivation ring and its application. In the development of abstract algebra, the notion of derivation is also discussed in other algebraic structure, such as *BP*-algebra and the concept of f-derivation was introduced too. Kandaraj and Devi [3] have discussed the concept of f-derivation in BP-algebra and its properties. In the same paper, the notion of composition of f-derivation is defined in BP-algebra and some of related properties are investigated. A new notion of derivation and generalized derivation are introduced by some authors. Sugianti and Gemawati [9] introduce the generalized of derivation in BM-algebra. The results define a derivations, a left-right or (l, r)-derivation, a right-left or (r, l)-derivation in BM-algebra, and construct their properties. Then, research on f-derivation and generalization of f-derivation involving an endomorphism *f* has been discussed by Jana et al. [4] on KUS-algebra and by Kim [5] on BE-algebra.

Based on the same idea in the research of Sugianti and Gemawati [9] in constructing the concept of generalized derivation in BM-algebra and as the development of the research of Kandaraj and Devi [3] who discussed the concept of f-derivation in BP-algebra, this article discusses the concept of generalization of derivation and generalization of f-derivation in BP-algebra, and investigated their properties.

II. PRELIMINARIES

In this section, we recall the notion of *BM*-algebra, derivation and generalized derivation of *BM*-algebra, *BP*-algebra and review some properties that we need in the next section. Some definitions and theories related to the generalized of derivation in *BM*-algebra and *BP*-algebra being discussed by several authors [1, 3, 6, 9] are also presented.

Definition 2.1. [6] A *BM*-algebra is a non-empty set *X* with a constant 0 and a binary operation "*" satisfying the following axioms:

 $\begin{array}{ll} (A1) & x*0=x, \\ (A2) & (z*x)*(z*y)=y*x, \end{array}$

for all $x, y, z \in X$.

Example 2.1. Let $X = \{0, a, b\}$ be a set with Cayley's table as seen in Table 2.1. Table 2.1: Cayley's table for (X; *, 0)

*	0	a	b
0	0	b	a
a	а	0	b
b	b	a	0

From Table 2.1, we have the values in the second column satisfying x * 0 = x, for all $x \in X$ (A1 axiom) and they also satisfy (z * x) * (z * y) = y * x, for all $x, y, z \in X$ (A2 axiom). Hence, (X; *, 0) is a *BM*-algebra.

Lemma 2.2. [6] If (*X*; *, 0) is a *BM*-algebra, then

(i) x * x = 0,

(ii) 0 * (0 * x) = x,

(iii) 0 * (x * y) = y * x,

(iv) (x * z) * (y * z) = x * y,

(v) x * y = 0 if and only if y * x = 0 for all $x, y, z \in X$,

for all $x, y, z \in X$.

Proof. Lemma 2.2 has been proved in [7].

Let (*X*; *, 0) be a *BM*-algebra, we denote $x \land y = y * (y * x)$ for all $x, y \in X$.

Definition 2.3. [9]. Let (X; *, 0) be a *BM*-algebra. By an (l, r)-derivation of X, a self-map d of X satisfies the identity $d(x * y) = (d(x) * y) \land (x * d(y))$, for all $x, y \in X$. If X satisfies the identity $d(x * y) = (x * d(y)) \land (d(x) * y)$, for all $x, y \in X$, then we say that d is an (r, l)-derivation. Moreover, if d is both an (l, r)-derivation and an (r, l)-derivation, we say that *d* is a derivation of *X*.

Definition 2.4. [9] Let X be a BM-algebra. A mapping $D: X \to X$ is called a generalized (l, r)-derivation if there exists an (l,r)-derivation $d: X \to X$ such that $D(x * y) = (D(x) * y) \land (x * d(y))$ for all $x, y \in X$, if there exists an (r, l)derivation $d: X \to X$ such that $D(x * y) = (x * D(y)) \land (d(x) * y)$ for all $x, y \in X$, the mapping $D: X \to X$ is called a generalized (r, l)-derivation. Moreover, if D is both a generalized (l, r)-derivation and (r, l)-derivation, we say that D is a generalized derivation.

Definisi 2.5. [1] A BP-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

(*BP1*) x * x = 0, $(BP2) \ x * (x * y) = y,$ (BP3)(x * z) * (y * z) = x * y,for all $x, y, z \in X$,

Example 2.2. Let $X = \{0, a, b, c\}$ be a set with Cayley's table as shown in Table 2.2.

	,	/		())
*	0	а	b	с
0	0	а	b	с
а	а	0	с	b
b	b	с	0	а
с	с	b	а	0

Table 2.2: Cayley's table for (X; *, 0)

Then, from Table 2.2 it can be shown that (X; *, 0) is a *BP*-algebra.

Theorem 2.6. [1] If (X; *, 0) a *BP*-algebra, then for all $x, y \in X$,

- (i) 0 * (0 * x) = x.
- (ii) 0 * (y * x) = x * y,
- (iii) x * 0 = x,
- (iv) If x * y = 0, then y * x = 0,
- (v) If 0 * x = 0 * y, then x = y,

(vi) If 0 * x = y, then 0 * y = x,
(vii) If 0 * x = x, then x * y = y * x.

Proof. The Theorem 2.7 has been proved in [1].

Definition 2.7. [3] Let (X; *, 0) be a *BP*-algebra. By a left-right *f*-derivation (briefly, (l, r)-*f*-derivation) on *X*, we mean a self map d_f of *X* satisfies the identity $d_f(x * y) = (d_f(x) * f(y)) \land (f(x) * d_f(y))$ for all $x, y \in X$. If d_f satisfies the identity $d_f(x * y) = (f(x) * d_f(y)) \land (d_f(x) * f(y))$ for all $x, y \in X$, then it is said that d_f is a right-left *f*-derivation (briefly, (r, l)-*f*-derivation) of X. If d_f is both an (r, l)-*f*-derivation and an (l, r)-*f*-derivation, then d_f is said to be an *f*-derivation.

III. GENERALIZED DERIVATION OF BP-ALGEBRA

In this section, a generalized (l, r)-derivation, a generalized (r, l)-derivation, and a generalized derivation in *BP*-algebra are defined by a way similar to the construct of the generalized derivation in *BM*-algebra by Sugianti and Gemawati [9]. Then, also we obtain some related properties.

Let (*X*; *, 0) be a *BP*-algebra, we denote $x \land y = y * (y * x)$ for all $x, y \in X$.

Definition 3.1. Let *X* be a *BP*-algebra. A mapping $D: X \to X$ is called a generalized (l, r)-derivation if there exists an (l, r)-derivation $d: X \to X$ such that $D(x * y) = (D(x) * y) \land (x * d(y))$ for all $x, y \in X$, if there exists an (r, l)-derivation $d: X \to X$ such that $D(x * y) = (x * D(y)) \land (d(x) * y)$ for all $x, y \in X$, the mapping $D: X \to X$ is called a generalized (r, l)-derivation. Moreover, if *D* is both a generalized (l, r)-derivation and (r, l)-derivation, we say that *D* is a generalized derivation.

Example 3.1. Let $X = \{0, 1, 2, 3\}$ be a set with Cayley's table as shown in Table 3.1.

Table 3.1: Cayley's table for $(X; *, 0)$								
	*	0	1	2	3			
	0	0	3	2	1			
	1	1	0	3	2			
	2	2	1	0	3			
	3	3	2	1	0			

Then, it is easy to show that X is a *BP*-algebra. Define a map $d : X \to X$ by d(x) = x and $D : X \to X$ by

$$D(x) = \begin{cases} 2 & \text{if } x = 0, \\ 3 & \text{if } x = 1, \\ 0 & \text{if } x = 2, \\ 1 & \text{if } x = 3. \end{cases}$$

It can be shown that d is a derivation of X and D is a generalized derivation of X.

Theorem 3.2. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (l, r)-derivation in *X*, then

- (i) D(x * y) = D(x) * y for all $x, y \in X$,
- (ii) D(0) = D(x) * x for all $x \in X$,
- (iii) D(x * d(x)) = D(x) * d(x) for all $x \in X$,
- (iv) D(x) = D(0) * (0 * x) for all $x \in X$.

Proof. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (l, r)-derivation in *X*.

- (i) Since *D* is a generalized (*l*, *r*)-derivation in *X*, then by (*BP2*) axiom obtained D(x * y) = (D(x) * y) ∧ (x * d(y)) = (x * d(y)) * [(x * d(y)) * (D(x) * y)] D(x * y) = D(x) * y. Hence, it is obtained that D(x * y) = D(x) * y for all x, y ∈ X.
- (ii) By (i) we have D(x * y) = D(x) * y. Substitution of y = x gives D(x * x) = D(x) * x, and by (*BP1*) axiom we get D(0) = D(x) * x for all $x \in X$
- (iii) By (i) it is obtained that D(x * d(x)) = D(x) * d(x) for all $x \in X$.
- (iv) Since D is a generalized (l, r)-derivation in X, then by Theorem 2.6 (i) and (BP2) axiom we get

D(x) = D(0 * (0 * x))= $(D(0) * (0 * x)) \land (0 * d(0 * x))$ = (0 * d(0 * x) * [(0 * d(0 * x) * (D(0) * (0 * x))]D(x) = D(0) * (0 * x).Hence, we obtain D(x) = D(0) * (0 * x) for all $x \in X$.

Theorem 3.3. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (l, r)-derivation in *X*. If 0 * x = x for all $x \in X$, then (i) D(x) = D(0) * x = x * D(0) for all $x \in X$,

(ii) D(x) * D(y) = x * y for all $x, y \in X$.

Proof. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (l, r)-derivation in *X*. Since 0 * x = x, then by Theorem 2.6 (vii) obtained x * y = y * x for all $x, y \in X$.

(i) From Theorem 3.2 (i) we get
D(x) = D(0 * x)
= D(0) * x
D(x) = x * D(0).
Hence, we have D(x) = D(0) * x = x * D(0) for all x ∈ X.

(ii) From (i) we get D(x) = x * D(0) and D(y) = y * D(0). By (BP3) axiom obtained D(x) * D(y) = (x * D(0)) * (y * D(0))

D(x) * D(y) = x * y.Therefore, this shows that D(x) * D(y) = x * y for all $x, y \in X.$

Theorem 3.4. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (r, l)-derivation in *X*, then

- (i) D(x * y) = x * D(y) for all $x, y \in X$,
- (ii) D(0) = x * D(x) for all $x \in X$,
- (iii) D(d(x) * x) = d(x) * D(x) for all $x \in X$.

Proof. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (r, l)-derivation in *X*.

- (i) Since D is a generalized (r, l)-derivation in X, then by (BP2) axiom we get D(x * y) = (x * D(y)) ∧ (d(x) * y) = (d(x) * y) * [(d(x) * y) * (x * D(y))] D(x * y) = x * D(y).
 Hence, it is obtained that D(x * y) = x * D(y) for all x, y ∈ X.
- (ii) By (i) we have D(x * y) = x * D(y). By substitution of y = x then D(x * x) = x * D(x), and by (*BP1*) axiom we get D(0) = x * D(x) for all $x \in X$.
- (iii) From (i) we have D(d(x) * x) = d(x) * D(x) for all $x \in X$.

Definition 3.5. Let (X; *, 0) be a *BP*-algebra. A self-map $D: X \to X$ is said to be *regular* if d(0) = 0.

From the definition *regular* in *BP*-algebra we have Theorem 3.6, Theorem 3.7, and Theorem 3.8.

Theorem 3.6. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (l, r)-derivation in *X*, then

- (i) If d is a *regular*, then $D(x) = D(x) \land x$ for all $x \in X$,
- (ii) If D is a *regular*, then D is an identity function.

Proof. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (l, r)-derivation in *X*.

(i) Since d is a *regular*, then d(0) = 0 and by Theorem 2.6 (iii) we get

D(x) = D(x * 0)= $(D(x) * 0)) \land (x * d(0))$ = $(D(x) * 0) \land (x * 0)$ $D(x) = D(x) \land x.$ Hence, it is obtained that $D(x) = D(x) \land x$ for all $x \in X$. (ii) Since D is a *regular*, then D(0) = 0. From Theorem 3.2 (iv) and Theorem 2.6 (i) we have D(x) = D(0) * (0 * x)

$$= 0 * (0 * x)$$

 $D(x) = x.$

Hence, we obtain D(x) = x for all $x \in X$, such that D is an identity function.

Theorem 3.7. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (r, l)-derivation in *X*. If *D* is a *regular*, then *D* is an identity function.

Proof. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized (r, l)-derivation in *X*. Since *D* is a *regular*, then D(0) = 0. From Theorem 2.6 (iii) and (*BP2*) axiom obtained

D(x) = D(x * 0)= $(x * D(0)) \land (d(x) * 0)$ = $(x * 0) \land (d(x) * 0)$ = $x \land d(x)$ = d(x) * (d(x) * x)D(x) = x.

Hence, we obtain D(x) = x for all $x \in X$, such that D is an identity function.

Theorem 3.8. Let (X; *, 0) be a *BP*-algebra and *D* be a generalized derivation in *X*. If *D* is a *regular* if and only if *D* is an identity function.

Proof. Let *D* be a generalized (l, r)-derivation in *X* and *D* is a *regular*, then by Theorem 3.6 (ii) we get *D* is an identity function. If *D* is a generalized (r, l)-derivation in *X* and *D* is a *regular*, then by Theorem 3.7 it shows that *D* is an identity function. Conversely, if *D* is an identity function, then D(x) = x for all $x \in X$, clearly D(0) = 0. Hence, *D* is a *regular*.

IV. GENERALIZED f-DERIVATION OF BP-ALJGEBRA

In this section, a generalized (l, r)-f-derivation, a generalized (r, l)-f-derivation, and a generalized f-derivation in BPalgebra are defined as a development of the generalized derivation in BP-algebra. Then, also we obtain some related properties.

Let (X; *, 0) and (Y; *, 0) are two *BP*-algebraA map $f: X \to Y$ to be said a homomorphism of X if it satisfied f(x * y) = f(x) * f(y) for all $x, y \in X$. If f is a self-map of X and f is a homomorphism of X, then f is a endomorphism of X. Note that f(0) = 0.

Definition 4.1. Let *X* be a *BP*-algebra and *f* be an endomorphism of *X*. A mapping $D_f: X \to X$ is called a generalized (l, r)-*f*-derivation in *X* if there exists an (l, r)-*f*-derivation $d_f: \to X$ such that $D_f(x * y) = (D_f(x) * f(y)) \land (f(x) * d_f(y))$ for all $x, y \in X$. If there exists an (r, l)-*f*-derivation $d_f: X \to X$ such that $D_f(x * y) = (f(x) * D_f(y)) \land (d_f(x) * f(y))$ for all $x, y \in X$, the mapping D_f is called a generalized (r, l)-*f*-derivation in *X*. Moreover, if D_f is both a generalized (l, r)-*f*-derivation and (r, l)-*f*-derivation, we say that D_f is a generalized *f*-derivation.

Theorem 4.2. Let (X; *, 0) be a *BP*-algebra and D_f be a generalized (l, r)-*f*-derivation in *X*, where *f* be an endomorphism of *X*, then

- (i) $D_f(x * y) = D_f(x) * f(y)$ for all $x, y \in X$,
- (ii) $D_f(0) = D_f(x) * f(x)$ for all $x \in X$,
- (iii) $D_f(x) = D_f(0) * (0 * f(x))$ for all $x \in X$.

Proof. Let (X; *, 0) be a *BP*-algebra and D_f be a generalized (l, r)-f-derivation in X, where f be an endomorphism of X.

(i) Since D_f is a generalized (l, r)-f-derivation in X, then by (BP2) axiom obtained $D_f(x * y) = (D_f(x) * f(y)) \land (f(x) * d_f(y))$ $= (f(x) * d_f(y)) * [(f(x) * d_f(y)) * (D_f(x) * f(y))]$ $D_f(x * y) = D_f(x) * f(y).$

Hence, it is obtained that $D_f(x * y) = D_f(x) * f(y)$ for all $x, y \in X$.

(ii) By (i) we have $D_f(x * y) = D_f(x) * f(y)$. Substitution of y = x gives $D_f(x * x) = D_f(x) * f(x)$, and by (*BP1*) axiom we get $D_f(0) = D_f(x) * f(x)$ for all $x \in X$.

(iii) Since D_f is a generalized (l, r)-f-derivation in X, then by Theorem 2.6 (i) and (BP2) axiom we get $D_f(r) = D_f(0 * (0 * r))$

$$D_f(x) = D_f(0 * (0 * x))$$

= $(D_f(0) * f(0 * x)) \land (f(0) * d_f(0 * x))$
= $(f(0) * d_f(0 * x) * [(f(0) * d_f(0 * x) * (D_f(0) * f(0 * x))]]$
 $D_f(x) = D_f(0) * (0 * f(x)).$

Hence, we obtain $D_f(x) = D_f(0) * (0 * f(x))$ for all $x \in X$.

Theorem 4.3. Let (X; *, 0) be a *BP*-algebra and D_f be a generalized (r, l)-*f*-derivation in *X*, where *f* be an endomorphism of *X*, then

(i) D_f(x * y) = f(x) * D_f(y) for all x, y ∈ X,
(ii) D_f(0) = f(x) * D_f(x) for all x ∈ X.

of X, then

Proof. Let (X; *, 0) be a *BP*-algebra and D_f be a generalized (r, l)-*f*-derivation in X, where f be an endomorphism of X.

- (i) Since D_f is a generalized (r, l)-f-derivation in X, then by (BP2) axiom we get $D_f(x * y) = (f(x) * D_f(y)) \land (d_f(x) * f(y))$ $= (d_f(x) * f(y)) * [(d_f(x) * f(y)) * (f(x) * D_f(y))]$ $D_f(x * y) = f(x) * D_f(y).$ Hence, it is obtained that $D_f(x * y) = f(x) * D_f(y)$ for all $x, y \in X$.
- (ii) By (i) we have $D_f(x * y) = f(x) * D_f(y)$. By substitution of y = x then $D_f(x * x) = f(x) * D_f(x)$ and by (*BP1*) axiom we get $D_f(0) = f(x) * D_f(x)$ for all $x \in X$.

From the notion of *regular* in *BP*-algebra we obtain Theorem 4.4, Theorem 4.5, and Theorem 4.6. **Theorem 4.4.** Let (X;*,0) be a *BP*-algebra and D_f be a generalized (l, r)-*f*-derivation in *X*, where *f* be an endomorphism

- (i) If d_f is a *regular*, then $D_f(x) = D_f(x) \land f(x)$ for all $x \in X$,
- (ii) If D_f is a regular, then $D_f(x) = f(x)$ for all $\in X$.

Proof. Let (X; *, 0) be a *BP*-algebra and D_f be a generalized (l, r)-derivation in X, where f be an endomorphism of X.

- (i) Since d_f is a *regular*, then $d_f(0) = 0$ and by Theorem 2.6 (iii) we get $D_f(x) = D_f(x * 0)$ $= (D_f(x) * f(0)) \land (f(x) * d_f(0))$ $= (D_f(x) * 0) \land (f(x) * 0)$ $D_f(x) = D_f(x) \land f(x)$. Hence, it is obtained that $D_f(x) = D_f(x) \land f(x)$ for all $x \in X$.
- (ii) Since D_f is a *regular*, then $D_f(0) = 0$. From Theorem 4.2 (iii) and Theorem 2.6 (i) we have $D_f(x) = D_f(0) * (0 * f(x))$ = 0 * (0 * f(x)) $D_f(x) = f(x)$. Hence, we obtain $D_f(x) = f(x)$ for all $x \in X$.

Theorem 4.5. Let (X; *, 0) be a *BP*-algebra and D_f be a generalized (r, l)-*f*-derivation in *X*, where *f* be an endomorphism of *X*. If D_f is a *regular*, then $D_f(x) = f(x)$ for all $x \in X$.

Proof. Let (X; *, 0) be a *BP*-algebra and D_f be a generalized (r, l)-*f*-derivation in *X*, where *f* be an endomorphism of *X*. Since D_f is a *regular*, then $D_f(0) = 0$. From Theorem 2.6 (iii) and (*BP2*) axiom obtained

 $D_{f}(x) = D_{f}(x * 0)$ = $(f(x) * D_{f}(0)) \wedge (d_{f}(x) * f(0))$ = $(f(x) * 0) \wedge (d_{f}(x) * 0)$ = $f(x) \wedge d_{f}(x)$ = $d_{f}(x) * (d_{f}(x) * f(x))$ $D_{f}(x) = f(x).$ Hence, we obtain $D_{f}(x) = f(x)$ for all $x \in X$.

Theorem 4.6. Let (X; *, 0) be a *BP*-algebra and D_f be a generalized derivation in *X*, where *f* be an endomorphism of *X*. D_f is a *regular* if and only if $D_f(x) = f(x)$ for all $x \in X$.

Proof. Let D_f be a generalized (l, r)-*f*-derivation in *X* and D_f is a *regular*, then by Theorem 4.4 (ii) we get $D_f(x) = f(x)$ for all $x \in X$. If D_f is a generalized (r, l)-*f*-derivation in *X* and D_f is a *regular*, then by Theorem 4.5 it shows that $D_f(x) = f(x)$ for all $x \in X$. Conversely, if $D_f(x) = f(x)$, then $D_f(0) = f(0) = 0$. Hence, D_f is a *regular*.

V. CONCLUSION

The definition of a generalized derivation in *BP*-algebra is equivalent to a generalized derivation in *BM*-algebra, and all the properties of the generalized derivation in *BM*-algebra also satisfied in *BP*-algebra. However, there is a property of the generalized derivation in *BP*-algebra, which is not true in *BM*-algebra, i.e. if *D* is a generalized (l, r)-derivation in *BP*-algebra (X; *, 0) and 0 * x = x, then D(x) = D(0) * x = x * D(0) and D(x) * D(y) = x * y for all $x, y \in X$. Furthermore, the properties of the generalized derivation in *BP*-algebra are different to the properties of the generalized *f*-derivation in *BP*-algebra.

REFERENCES

- [1] S. S. Ahn and J. S. Han, On BP-algebras, Hacettepe Journal of Mathematics and Statistics, 42 (2013), 551-557.
- [2] M. Ashraf, S. Ali, and C. Haetinger, On derivations in rings and their applications, *The Aligarh Bulletin of Mathematics*, 25 (2006), 79-107.
- [3] N. Kandaraj and A. A. Devi, f-Derivations on BP-algebras, International Journal of Scientific and Research Publications, 6 (2016), 8-18.
- [4] C. Jana, T. Senapati, and M. Pal, Derivation, *f*-derivation and generalized derivation of *KUS*-algebras, *Cogent Mathematics*, 2 (2015), 1-12.
- [5] K. H. Kim, On generalized *f*-derivations of *BE*-algebras, *International Mathematical Forum*, 9 (2014), 523-531.
- [6] C. B. Kim and H. S. Kim, On BM-algebras, Scientiae Mathematicae Japonicae Online, (2006), 215-221.
- [7] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Scientiae Mathematicae Japonicae Online, 18 (2005), 31-36.
- [8] J. Neggers and H. S. Kim, On B-algebras, Matematicki Vesnik, 54 (2002), 21-29.
- [9] K. Sugianti and S. Gemawati, Generalized derivations of *BM*-algebras, *preprint*, 2020.
- [10] S.A. N. Zadeh, A. Radfar, and A. B. Saied, On *BP*-algebras and *QS*-algebras, *The Journal of Mathematics and Computer Science*, 5 (2012), 17-21.