Generalized f-Derivation of BP-Algebras

Chintia Ramadhona ${ }^{\# 1}$, Sri Gemawati ${ }^{\# 2}$, Syamsudhuha ${ }^{\# 3}$
\#Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau
Bina Widya Campus, Pekanbaru 28293, Indonesia

Abstract

In this paper, the notions of generalized (l, r)-derivation, generalized (r, l)-derivation, and generalized derivation of BP-agebra are introduced, and some related properties are investigated. Also, we consider generalized (l, r)-f-derivation, generalized (r, l)-f-derivation, and generalized f-derivation of BP-aljabar, where f be an endomorphism of BP-algebra, and their properties are established in details.

Keyword: BP-algebra, (l,r)-derivation, (r,l)-derivation, generalized derivation, generalized f-derivation

I. INTRODUCTION

In 2006, Kim and Kim [6] introduce the notion of $B M$-algebra, which is a non-empty set X with a constant 0 and a binary operation " $*$ " denoted by $(X ; *, 0)$, satisfying the following axioms: $(A 1) x * 0=x$ and $(A 2)(z * x) *(z * y)=$ $y * x$ for all $x, y, z \in X$. They discuss some properties of $B M$-algebra and relation of $B M$-algebra with any other algebras, such as relation between a $B M$-algebra with a 0 -commutative B-algebra and a coxeter algebra. Then, Ahn and Han [1] introduce the notion of $B P$-algebra, which is a non-empty set X with a constant 0 and a binary operation " $*$ " denoted by $(X ; *, 0)$, satisfying the following axioms: (BP1) $x * x=0$, $(B P 2) x *(x * y)=y$, and $(B P 3)(x * z) *(y * z)=x * y$ for all $x, y, z \in X$. Also, some properties of $B P$-algebra and relation of $B P$-algebra with any other algebras, such as $B F$ algebra are discussed. Then, they discuss a quadratic $B P$-algebra and show that the quadratic $B P$-algebra is equivalent to several quadratic algebras. Furthermore, Zadeh et al. [10] introduce relation between $B P$-algebra and any other algebras, such as $B M$-algebra. They prove that the class of $B P$-algebras and $B M$-algebras are equivalent.

The first time, notion of derivation was introduced in prime ring by Posner in 1957. Then, Ashraf et al. [2] introduce the notion of derivation ring and its application. In the development of abstract algebra, the notion of derivation is also discussed in other algebraic structure, such as $B P$-algebra and the concept of f-derivation was introduced too. Kandaraj and Devi [3] have discussed the concept of f-derivation in BP-algebra and its properties. In the same paper, the notion of composition of f-derivation is defined in BP-algebra and some of related properties are investigated. A new notion of derivation and generalized derivation are introduced by some authors. Sugianti and Gemawati [9] introduce the generalized of derivation in BM-algebra. The results define a derivations, a left-right or (l, r)-derivation, a right-left or (r, l)-derivation in BM-algebra, and construct their properties. Then, research on f-derivation and generalization of f-derivation involving an endomorphism f has been discussed by Jana et al. [4] on KUS-algebra and by Kim [5] on BE-algebra.

Based on the same idea in the research of Sugianti and Gemawati [9] in constructing the concept of generalized derivation in BM-algebra and as the development of the research of Kandaraj and Devi [3] who discussed the concept of fderivation in BP-algebra, this article discusses the concept of generalization of derivation and generalization of f-derivation in BP-algebra, and investigated their properties.

II. PRELIMINARIES

In this section, we recall the notion of $B M$-algebra, derivation and generalized derivation of $B M$-algebra, $B P$-algebra and review some properties that we need in the next section. Some definitions and theories related to the generalized of derivation in $B M$-algebra and $B P$-algebra being discussed by several authors [1, 3, 6, 9] are also presented.

Definition 2.1. [6] A $B M$-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

$$
\text { (Al) } x * 0=x
$$

(A2) $(z * x) *(z * y)=y * x$,
for all $x, y, z \in X$.

Example 2.1. Let $X=\{0, a, b\}$ be a set with Cayley's table as seen in Table 2.1.
Table 2.1: Cayley's table for $(X ; *, 0)$

$*$	0	a	b
0	0	b	a
a	a	0	b
b	b	a	0

From Table 2.1, we have the values in the second column satisfying $x * 0=x$, for all $x \in X$ (Al axiom) and they also satisfy $(z * x) *(z * y)=y * x$, for all $x, y, z \in X$ (A2 axiom). Hence, $(X ; *, 0)$ is a $B M$-algebra.

Lemma 2.2. [6] If $(X ; *, 0)$ is a $B M$-algebra, then
(i) $x * x=0$,
(ii) $0 *(0 * x)=x$,
(iii) $0 *(x * y)=y * x$,
(iv) $(x * z) *(y * z)=x * y$,
(v) $x * y=0$ if and only if $y * x=0$ for all $x, y, z \in X$,
for all $x, y, z \in X$.
Proof. Lemma 2.2 has been proved in [7].
Let $(X ; *, 0)$ be a $B M$-algebra, we denote $x \wedge y=y *(y * x)$ for all $x, y \in X$.
Definition 2.3. [9] . Let $(X ; *, 0)$ be a $B M$-algebra. By an (l, r)-derivation of X, a sel f-map d of X satisfies the identity $d(x * y)=(d(x) * y) \wedge(x * d(y))$, for all $x, y \in X$. If X satisfies the identity $d(x * y)=(x * d(y)) \wedge(d(x) * y)$, for all $x, y \in X$, then we say that d is an (r, l)-derivation. Moreover, if d is both an (l, r)-derivation and an (r, l)-derivation, we say that d is a derivation of X.

Definition 2.4. [9] Let X be a $B M$-algebra. A mapping $D: X \rightarrow X$ is called a generalized (l, r)-derivation if there exists an (l, r)-derivation $d: X \rightarrow X$ such that $D(x * y)=(D(x) * y) \wedge(x * d(y))$ for all $x, y \in X$, if there exists an (r, l) derivation $d: X \rightarrow X$ such that $D(x * y)=(x * D(y)) \wedge(d(x) * y)$ for all $x, y \in X$, the mapping $D: X \rightarrow X$ is called a generalized (r, l)-derivation. Moreover, if D is both a generalized (l, r)-derivation and (r, l)-derivation, we say that D is a generalized derivation.

Definisi 2.5. [1] A $B P$-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(BP1) $x * x=0$,
(BP2) $x *(x * y)=y$,
(BP3) $(x * z) *(y * z)=x * y$,
for all $x, y, z \in X$,
Example 2.2. Let $X=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ be a set with Cayley's table as shown in Table 2.2.
Table 2.2: Cayley's table for ($X ; *, 0$)

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Then, from Table 2.2 it can be shown that $(X ; *, 0)$ is a $B P$-algebra.
Theorem 2.6. [1] If $(X ; *, 0)$ a $B P$-algebra, then for all $x, y \in X$,
(i) $0 *(0 * x)=x$,
(ii) $0 *(y * x)=x * y$,
(iii) $x * 0=x$,
(iv) If $x * y=0$, then $y * x=0$,
(v) If $0 * x=0 * y$, then $x=y$,
(vi) If $0 * x=y$, then $0 * y=x$,
(vii) If $0 * x=x$, then $x * y=y * x$.

Proof. The Theorem 2.7 has been proved in [1].
Definition 2.7. [3] Let $(X ; *, 0)$ be a $B P$-algebra. By a left-right f-derivation (briefly, (l, r) - f-derivation) on X, we mean a self map d_{f} of X satisfies the identity $d_{f}(x * y)=\left(d_{f}(x) * f(y)\right) \wedge\left(f(x) * d_{f}(y)\right)$ for all $x, y \in X$. If d_{f} satisfies the identity $d_{f}(x * y)=\left(f(x) * d_{f}(y)\right) \wedge\left(d_{f}(x) * f(y)\right)$ for all $x, y \in X$, then it is said that d_{f} is a right-left f-derivation (briefly, (r, l) - f-derivation) of X . If d_{f} is both an $(r, l)-f$-derivation and an $(l, r)-f$-derivation, then d_{f} is said to be an f derivation.

III. GENERALIZED DERIVATION OF BP-ALGEBRA

In this section, a generalized (l, r)-derivation, a generalized (r, l)-derivation, and a generalized derivation in $B P$ algebra are defined by a way similar to the construct of the generalized derivation in $B M$-algebra by Sugianti and Gemawati [9]. Then, also we obtain some related properties.

Let $(X ; *, 0)$ be a $B P$-algebra, we denote $x \wedge y=y *(y * x)$ for all $x, y \in X$.
Definition 3.1. Let X be a $B P$-algebra. A mapping $D: X \rightarrow X$ is called a generalized (l, r)-derivation if there exists an (l, r)-derivation $d: X \rightarrow X$ such that $D(x * y)=(D(x) * y) \wedge(x * d(y))$ for all $x, y \in X$, if there exists an (r, l) derivation $d: X \rightarrow X$ such that $D(x * y)=(x * D(y)) \wedge(d(x) * y)$ for all $x, y \in X$, the mapping $D: X \rightarrow X$ is called a generalized (r, l)-derivation. Moreover, if D is both a generalized (l, r)-derivation and (r, l)-derivation, we say that D is a generalized derivation.

Example 3.1. Let $X=\{0,1,2,3\}$ be a set with Cayley's table as shown in Table 3.1.
Table 3.1: Cayley's table for $(X ; *, 0)$

$*$	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Then, it is easy to show that X is a $B P$-algebra. Define a map $d: X \rightarrow X$ by $d(x)=x$ and $D: X \rightarrow X$ by

$$
D(x)= \begin{cases}2 & \text { if } x=0 \\ 3 & \text { if } x=1 \\ 0 & \text { if } x=2 \\ 1 & \text { if } x=3\end{cases}
$$

It can be shown that d is a derivation of X and D is a generalized derivation of X.
Theorem 3.2. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (l, r)-derivation in X, then
(i) $D(x * y)=D(x) * y$ for all $x, y \in X$,
(ii) $D(0)=D(x) * x$ for all $x \in X$,
(iii) $D(x * d(x))=D(x) * d(x)$ for all $x \in X$,
(iv) $D(x)=D(0) *(0 * x)$ for all $x \in X$.

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (l, r)-derivation in X.
(i) Since D is a generalized (l, r)-derivation in X, then by (BP2) axiom obtained

$$
\begin{aligned}
D(x * y) & =(D(x) * y) \wedge(x * d(y)) \\
& =(x * d(y)) *[(x * d(y)) *(D(x) * y)] \\
D(x * y) & =D(x) * y .
\end{aligned}
$$

Hence, it is obtained that $D(x * y)=D(x) * y$ for all $x, y \in X$.
(ii) By (i) we have $D(x * y)=D(x) * y$. Substitution of $y=x$ gives $D(x * x)=D(x) * x$, and by (BPl) axiom we get $D(0)=D(x) * x$ for all $x \in X$
(iii) By (i) it is obtained that $D(x * d(x))=D(x) * d(x)$ for all $x \in X$.
(iv) Since D is a generalized (l,r)-derivation in X, then by Theorem 2.6 (i) and (BP2) axiom we get

$$
\begin{aligned}
D(x) & =D(0 *(0 * x)) \\
& =(D(0) *(0 * x)) \wedge(0 * d(0 * x)) \\
& =(0 * d(0 * x) *[(0 * d(0 * x) *(D(0) *(0 * x))] \\
D(x) & =D(0) *(0 * x) .
\end{aligned}
$$

Hence, we obtain $D(x)=D(0) *(0 * x)$ for all $x \in X$.
Theorem 3.3. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (l, r)-derivation in X. If $0 * x=x$ for all $x \in X$, then
(i) $D(x)=D(0) * x=x * D(0)$ for all $x \in X$,
(ii) $D(x) * D(y)=x * y$ for all $x, y \in X$.

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (l, r)-derivation in X. Since $0 * x=x$, then by Theorem 2.6 (vii) obtained $x * y=y * x$ for all $x, y \in X$.
(i) From Theorem 3.2 (i) we get

$$
\begin{aligned}
D(x) & =D(0 * x) \\
& =D(0) * x \\
D(x) & =x * D(0)
\end{aligned}
$$

Hence, we have $D(x)=D(0) * x=x * D(0)$ for all $x \in X$.
(ii) From (i) we get $D(x)=x * D(0)$ and $D(y)=y * D(0)$. By (BP3) axiom obtained

$$
\begin{aligned}
& D(x) * D(y)=(x * D(0)) *(y * D(0)) \\
& D(x) * D(y)=x * y .
\end{aligned}
$$

Therefore, this shows that $D(x) * D(y)=x * y$ for all $x, y \in X$.
Theorem 3.4. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (r, l)-derivation in X, then
(i) $D(x * y)=x * D(y)$ for all $x, y \in X$,
(ii) $D(0)=x * D(x)$ for all $x \in X$,
(iii) $D(d(x) * x)=d(x) * D(x)$ for all $x \in X$.

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (r, l)-derivation in X.
(i) Since D is a generalized (r, l)-derivation in X, then by $(B P 2)$ axiom we get

$$
\begin{aligned}
D(x * y) & =(x * D(y)) \wedge(d(x) * y) \\
& =(d(x) * y) *[(d(x) * y) *(x * D(y))] \\
D(x * y) & =x * D(y)
\end{aligned}
$$

Hence, it is obtained that $D(x * y)=x * D(y)$ for all $x, y \in X$.
(ii) By (i) we have $D(x * y)=x * D(y)$. By substitution of $y=x$ then $D(x * x)=x * D(x)$, and by (BP1) axiom we get $D(0)=x * D(x)$ for all $x \in X$.
(iii) From (i) we have $D(d(x) * x)=d(x) * D(x)$ for all $x \in X$.

Definition 3.5. Let $(X ; *, 0)$ be a $B P$-algebra. A self-map $D: X \rightarrow X$ is said to be regular if $d(0)=0$.
From the definition regular in BP-algebra we have Theorem 3.6, Theorem 3.7, and Theorem 3.8.
Theorem 3.6. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (l, r)-derivation in X, then
(i) If d is a regular, then $D(x)=D(x) \wedge x$ for all $x \in X$,
(ii) If D is a regular, then D is an identity function.

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (l, r)-derivation in X.
(i) Since d is a regular, then $d(0)=0$ and by Theorem 2.6 (iii) we get
$D(x)=D(x * 0)$

$$
=(D(x) * 0)) \wedge(x * d(0))
$$

$D(x)=D(x) \wedge x$.

$$
=(D(x) * 0) \wedge(x * 0)
$$

Hence, it is obtained that $D(x)=D(x) \wedge x$ for all $x \in X$.
(ii) Since D is a regular, then $D(0)=0$. From Theorem 3.2 (iv) and Theorem 2.6 (i) we have
$D(x)=D(0) *(0 * x)$

$$
=0 *(0 * x)
$$

$D(x)=x$.

Hence, we obtain $D(x)=x$ for all $x \in X$, such that D is an identity function .
Theorem 3.7. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (r, l)-derivation in X. If D is a regular, then D is an identity function.

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized (r, l)-derivation in X. Since D is a regular, then $D(0)=0$. From Theorem 2.6 (iii) and (BP2) axiom obtained

$$
\begin{aligned}
D(x) & =D(x * 0) \\
& =(x * D(0)) \wedge(d(x) * 0) \\
& =(x * 0) \wedge(d(x) * 0) \\
& =x \wedge d(x) \\
& =d(x) *(d(x) * x) \\
D(x) & =x .
\end{aligned}
$$

Hence, we obtain $D(x)=x$ for all $x \in X$, such that D is an identity function.
Theorem 3.8. Let $(X ; *, 0)$ be a $B P$-algebra and D be a generalized derivation in X. If D is a regular if and only if D is an identity function.

Proof. Let D be a generalized (l, r)-derivation in X and D is a regular, then by Theorem 3.6 (ii) we get D is an identity function. If D is a generalized (r, l)-derivation in X and D is a regular, then by Theorem 3.7 it shows that D is an identity function. Conversely, if D is an identity function, then $D(x)=x$ for all $x \in X$, clearly $D(0)=0$. Hence, D is a regular.

IV. GENERALIZED \boldsymbol{f}-DERIVATION OF BP-ALJGEBRA

In this section, a generalized (l, r) - f-derivation, a generalized $(r, l)-f$-derivation, and a generalized f-derivation in $B P$ algebra are defined as a development of the generalized derivation in $B P$-algebra. Then, also we obtain some related properties.

Let $(X ; *, 0)$ and $(Y ; *, 0)$ are two $B P$-algebraA map $f: X \rightarrow Y$ to be said a homomorphism of X if it satisfied $f(x *$ $y)=f(x) * f(y)$ for all $x, y \in X$. If f is a self-map of X and f is a homomorphism of X, then f is a endomorphism of X. Note that $f(0)=0$.

Definition 4.1. Let X be a $B P$-algebra and f be an endomorphism of X. A mapping $D_{f}: X \rightarrow X$ is called a generalized (l, $r)-f$-derivation in X if there exists an (l, r) - f-derivation $d_{f}: \rightarrow X$ such that $D_{f}(x * y)=\left(D_{f}(x) * f(y)\right) \wedge\left(f(x) * d_{f}(y)\right)$ for all $x, y \in X$. If there exists an (r, l) - f-derivation $d_{f}: \mathrm{X} \rightarrow \mathrm{X}$ such that $D_{f}(x * y)=\left(f(x) * D_{f}(y)\right) \wedge\left(d_{f}(x) * f(y)\right)$ for all $x, y \in$ X, the mapping D_{f} is called a generalized (r, l) - f-derivation in X. Moreover, if D_{f} is both a generalized (l, r) - f-derivation and $(r, l)-f$-derivation, we say that D_{f} is a generalized f-derivation.

Theorem 4.2. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized $(l, r)-f$-derivation in X, where f be an endomorphism of X, then
(i) $D_{f}(x * y)=D_{f}(x) * f(y)$ for all $x, y \in X$,
(ii) $D_{f}(0)=D_{f}(x) * f(x)$ for all $x \in X$,
(iii) $D_{f}(x)=D_{f}(0) *(0 * f(x))$ for all $x \in X$.

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized $(l, r)-f$-derivation in X, where f be an endomorphism of X.
(i) Since D_{f} is a generalized $(l, r)-f$-derivation in X, then by ($B P 2$) axiom obtained

$$
\begin{aligned}
D_{f}(x * y) & =\left(D_{f}(x) * f(y)\right) \wedge\left(f(x) * d_{f}(y)\right) \\
& =\left(f(x) * d_{f}(y)\right) *\left[\left(f(x) * d_{f}(y)\right) *\left(D_{f}(x) * f(y)\right)\right] \\
D_{f}(x * y) & =D_{f}(x) * f(y)
\end{aligned}
$$

Hence, it is obtained that $D_{f}(x * y)=D_{f}(x) * f(y)$ for all $x, y \in X$.
(ii) By (i) we have $D_{f}(x * y)=D_{f}(x) * f(y)$. Substitution of $y=x$ gives $D_{f}(x * x)=D_{f}(x) * f(x)$, and by (BP1) axiom we get $D_{f}(0)=D_{f}(x) * f(x)$ for all $x \in X$.
(iii) Since D_{f} is a generalized $(l, r)-f$-derivation in X, then by Theorem 2.6 (i) and (BP2) axiom we get

$$
\begin{aligned}
D_{f}(x) & =D_{f}(0 *(0 * x)) \\
& =\left(D_{f}(0) * f(0 * x)\right) \wedge\left(f(0) * d_{f}(0 * x)\right) \\
& =\left(f (0) * d _ { f } (0 * x) * \left[\left(f(0) * d_{f}(0 * x) *\left(D_{f}(0) * f(0 * x)\right)\right]\right.\right. \\
D_{f}(x) & =D_{f}(0) *(0 * f(x)) .
\end{aligned}
$$

Hence, we obtain $D_{f}(x)=D_{f}(0) *(0 * f(x))$ for all $x \in X$.
Theorem 4.3. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized $(r, l)-f$-derivation in X, where f be an endomorphism of X, then
(i) $D_{f}(x * y)=f(x) * D_{f}(y)$ for all $x, y \in X$,
(ii) $D_{f}(0)=f(x) * D_{f}(x)$ for all $x \in X$.

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized $(r, l)-f$-derivation in X, where f be an endomorphism of X.
(i) Since D_{f} is a generalized $(r, l)-f$-derivation in X, then by $(B P 2)$ axiom we get

$$
\begin{aligned}
D_{f}(x * y) & =\left(f(x) * D_{f}(y)\right) \wedge\left(d_{f}(x) * f(y)\right) \\
& =\left(d_{f}(x) * f(y)\right) *\left[\left(d_{f}(x) * f(y)\right) *\left(f(x) * D_{f}(y)\right)\right] \\
D_{f}(x * y) & =f(x) * D_{f}(y)
\end{aligned}
$$

Hence, it is obtained that $D_{f}(x * y)=f(x) * D_{f}(y)$ for all $x, y \in X$.
(ii) By (i) we have $D_{f}(x * y)=f(x) * D_{f}(y)$. By substitution of $y=x$ then $D_{f}(x * x)=f(x) * D_{f}(x)$ and by (BP1) axiom we get $D_{f}(0)=f(x) * D_{f}(x)$ for all $x \in X$.

From the notion of regular in $B P$-algebra we obtain Theorem 4.4, Theorem 4.5, and Theorem 4.6.
Theorem 4.4. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized $(l, r)-f$-derivation in X, where f be an endomorphism of X, then
(i) If d_{f} is a regular, then $D_{f}(x)=D_{f}(x) \wedge f(x)$ for all $x \in X$,
(ii) If D_{f} is a regular, then $D_{f}(x)=f(x)$ for all $\in X$. .

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized (l, r)-derivation in X, where f be an endomorphism of X.
(i) Since d_{f} is a regular, then $d_{f}(0)=0$ and by Theorem 2.6 (iii) we get

$$
\begin{aligned}
D_{f}(x) & =D_{f}(x * 0) \\
& =\left(D_{f}(x) * f(0)\right) \wedge\left(f(x) * d_{f}(0)\right) \\
& =\left(D_{f}(x) * 0\right) \wedge(f(x) * 0) \\
D_{f}(x) & =D_{f}(x) \wedge f(x) .
\end{aligned}
$$

Hence, it is obtained that $D_{f}(x)=D_{f}(x) \wedge f(x)$ for all $x \in X$.
(ii) Since D_{f} is a regular, then $D_{f}(0)=0$. From Theorem 4.2 (iii) and Theorem 2.6 (i) we have
$D_{f}(x)=D_{f}(0) *(0 * f(x))$
$=0 *(0 * f(x))$
$D_{f}(x)=f(x)$.
Hence, we obtain $D_{f}(x)=f(x)$ for all $x \in X$.
Theorem 4.5. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized (r, l) - f-derivation in X, where f be an endomorphism of X. If D_{f} is a regular, then $D_{f}(x)=f(x)$ for all $x \in X$.

Proof. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized $(r, l)-f$-derivation in X, where f be an endomorphism of X. Since D_{f} is a regular, then $D_{f}(0)=0$. From Theorem 2.6 (iii) and (BP2) axiom obtained

$$
\begin{aligned}
D_{f}(x) & =D_{f}(x * 0) \\
& =\left(f(x) * D_{f}(0)\right) \wedge\left(d_{f}(x) * f(0)\right) \\
& =(f(x) * 0) \wedge\left(d_{f}(x) * 0\right) \\
& =f(x) \wedge d_{f}(x) \\
& =d_{f}(x) *\left(d_{f}(x) * f(x)\right) \\
D_{f}(x) & =f(x) .
\end{aligned}
$$

Hence, we obtain $D_{f}(x)=f(x)$ for all $x \in X$.
Theorem 4.6. Let $(X ; *, 0)$ be a $B P$-algebra and D_{f} be a generalized derivation in X, where f be an endomorphism of $X . D_{f}$ is a regular if and only if $D_{f}(x)=f(x)$ for all $x \in X$.

Proof. Let D_{f} be a generalized (l,r)-f-derivation in X and D_{f} is a regular, then by Theorem 4.4 (ii) we get $D_{f}(x)=f(x)$ for all $x \in X$. If D_{f} is a generalized $(r, l)-f$-derivation in X and D_{f} is a regular, then by Theorem 4.5 it shows that $D_{f}(x)=$ $f(x)$ for all $x \in X$. Conversely, if $D_{f}(x)=f(x)$, then $D_{f}(0)=f(0)=0$. Hence, D_{f} is a regular.

V. CONCLUSION

The definition of a generalized derivation in $B P$-algebra is equivalent to a generalized derivation in $B M$-algebra, and all the properties of the generalized derivation in $B M$-algebra also satisfied in $B P$-algebra. However, there is a property of the generalized derivation in $B P$-algebra, which is not true in $B M$-algebra, i.e. if D is a generalized (l, r)-derivation in $B P$ algebra $(X ; *, 0)$ and $0 * x=x$, then $D(x)=D(0) * x=x * D(0)$ and $D(x) * D(y)=x * y$ for all $x, y \in X$. Furthermore, the properties of the generalized derivation in $B P$-algebra are different to the properties of the generalized f-derivation in $B P$-algebra.

REFERENCES

[1] S. S. Ahn and J. S. Han, On BP-algebras, Hacettepe Journal of Mathematics and Statistics, 42 (2013), 551-557.
[2] M. Ashraf, S. Ali, and C. Haetinger, On derivations in rings and their applications, The Aligarh Bulletin of Mathematics, 25 (2006), 79-107.
[3] N. Kandaraj and A. A. Devi, f-Derivations on BP-algebras, International Journal of Scientific and Research Publications, 6 (2016), 8-18.
[4] C. Jana, T. Senapati, and M. Pal, Derivation, f-derivation and generalized derivation of KUS-algebras, Cogent Mathematics, 2 (2015), 1-12.
[5] K. H. Kim, On generalized f-derivations of BE-algebras, International Mathematical Forum, 9 (2014), 523-531.
[6] C. B. Kim and H. S. Kim, On BM-algebras, Scientiae Mathematicae Japonicae Online, (2006), 215-221.
[7] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Scientiae Mathematicae Japonicae Online, 18 (2005), 31-36.
[8] J. Neggers and H. S. Kim, On B-algebras, Matematicki Vesnik, 54 (2002), 21-29.
[9] K. Sugianti and S. Gemawati, Generalized derivations of BM-algebras, preprint, 2020.
[10] S.A. N. Zadeh, A. Radfar, and A. B. Saied, On BP-algebras and QS-algebras, The Journal of Mathematics and Computer Science, 5 (2012), 1721.

