SHARP BOUNDS OF FEKETE-SZEGÖ FUNCTIONAL FOR QUASI-SUBORDINATION CLASS

S. R. SWAMY* AND Y SAILAJA

Abstract

In this work, considering a special subclass of the family of holomorphic functions in an open unit disk, defined by means of quasi-subordination, we determine sharp bounds for Fekete-Szegö functional $\left|d_{3}-\xi d_{2}^{2}\right|$ of functions in this class. Several results for new classes and connections to known classes are mentioned.

2020 Mathematics Subject Classification: 30C45, 30C50, 30D60
Keywords and Phrases : Holomorphic functions, Majorization, Quasi- subordination, FeketeSzegö coefficients.

1. Introduction, preliminaries and definitions

Let \mathscr{A} be the family of normalized functions that have the form

$$
\begin{equation*}
s(z)=z+\sum_{k=2}^{\infty} d_{k} z^{k}, \tag{1.1}
\end{equation*}
$$

which are holomorphic in $\mathfrak{D}=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{S} be the collection of all members of \mathscr{A} that are univalent in \mathfrak{D}. Let $\varsigma(z)$ be holomorphic function in \mathfrak{D} with $|\varsigma(z)| \leq 1, z \in \mathfrak{D}$, such that

$$
\begin{equation*}
\varsigma(z)=R_{0}+R_{1} z+R_{2} z^{2}+\ldots \tag{1.2}
\end{equation*}
$$

where $R_{0}, R_{1}, R_{2}, \ldots$ are real. Let $\mathfrak{h}(z)$ be holomorphic function in \mathfrak{D}, with $\mathfrak{h}(0)=1, \mathfrak{h}^{\prime}(0)>0$, having the positive real part, such that

$$
\begin{equation*}
\mathfrak{h}(z)=1+Q_{1} z+Q_{2} z^{2}+\ldots \tag{1.3}
\end{equation*}
$$

where $Q_{1}, Q_{2}, Q_{3}, \ldots$ are real and $Q_{1}>0$. Through out this work we shall assume that the functions ς and \mathfrak{h} follow the above conditions unless otherwise mentioned.

It is known that for $s \in \mathcal{S}$ given by (1.1), there holds upper bounds for $\left|d_{3}-\xi d_{2}^{2}\right|$ when ξ is real, which are sharp (see [4]). Since then, the estimation of the sharp upper bounds for $\left|d_{3}-\xi d_{2}^{2}\right|$ with ξ being an arbitrary real or complex number for any compact collection \mathfrak{F} of elements in \mathcal{S} is well- known as the Fekete- Szegö problem for \mathfrak{F}. Several researchers (including [2], [5], [9], [11], [13], [16]) have estimated sharp Fekete-Szegö bounds for many subclasses of \mathcal{S}.

We recall the principle of subordination and also the principle of majorization, between two holomorphic functions $s(z)$ and $\nu(z)$ in \mathfrak{D}. We say that $s(z)$ is subordinate to $\nu(z)$, written as $s(z) \prec \nu(z), z \in \mathfrak{D}$, if there is a holomorphic function $u(z)$ in \mathfrak{D}, with $u(0)=0$ and $|u(z)|<1, z \in \mathfrak{D}$, such that $s(z)=\nu(u(z))$. Moreover $s(z) \prec \nu(z)$ is equivalent to $s(0)=\nu(0)$ and $s(\mathfrak{D}) \subset \nu(\mathfrak{D})$, if ν is univalent in \mathfrak{D}. We know that $s(z)$ is majorized by $\nu(z)$, written as $s(z) \prec \prec \nu(z), z \in \mathfrak{D}$, if there exists a holomorphic function $\varsigma(z), z \in \mathfrak{D}$, with $|\varsigma(z)| \leq 1$, such that $s(z)=\varsigma(z) \nu(z), z \in \mathfrak{D}$.

Robertson [15] introduced a new concept called quasi-subordination, which generalizes both the concepts of subordination and majorization. For two holomorphic functions $s(z)$ and $\nu(z)$, $s(z)$ is quasi-subordinate to $\nu(z)$, written as $s(z) \prec_{q} \nu(z), z \in \mathfrak{D}$, if there exists two holomorphic functions ς and u with $|\varsigma(z)| \leq 1, u(0)=0$ and $|u(z)|<1$ such that $s(z)=\varsigma(z) \nu(u(z)), z \in \mathfrak{D}$.

Observe that if $\varsigma(z)=1$, then $s(z)=\nu(u(z)), z \in \mathfrak{D}$, so that $s(z) \prec \nu(z)$ in \mathfrak{D}. Also note that if $u(z)=z$, then $s(z)=\varsigma(z) \nu(z), z \in \mathfrak{D}$ and hence $s(z) \prec \prec \nu(z)$ in \mathfrak{D}. There are more studies related to quasi-subordination such as [1], [3], [5], [6], [7], [10], [11], [13], [14], [18].

Let Υ be the family of functions holomorphic in \mathfrak{D} of the form

$$
\begin{equation*}
u(z)=u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\ldots \tag{1.4}
\end{equation*}
$$

satisfying the condition $|u(z)|<1, z \in \mathfrak{D}$. We now state a lemma of [8], which is used to prove our main result.

Lemma 1.1. If $u \in \Upsilon$, then for any complex number ξ, we have $\left|u_{1}\right| \leq 1,\left|u_{2}-\xi u_{1}^{2}\right| \leq$ $1+(|\xi|-1)\left|u_{1}\right|^{2} \leq \max \{1,|\xi|\} . u(z)=z$ or $u(z)=z^{2}$ exhibit the sharpness of the result.

Inspired by recent trends on quasi-subordination, we define the following new subclasses of the family \mathscr{A}.

Definition 1.1. We say that $s(z)$ in \mathscr{A} belongs to $\mathfrak{R}_{q}(\tau, \mu, \mathfrak{h}), \tau \geq 0, \mu \in \mathbb{C}-\{0\}$, if

$$
\frac{1}{\mu}\left(\left(\frac{z s^{\prime}(z)}{s(z)}\right)\left(1+\tau \frac{z s^{\prime \prime}(z)}{s^{\prime}(z)}\right)-1\right) \prec_{q}(\mathfrak{h}(z)-1), z \in \mathfrak{D}
$$

where \mathfrak{h} is as stated in (1.3).
Definition 1.2. We say that $s(z)$ in \mathscr{A} belongs to $\mathfrak{H}_{q}(\tau, \mu, \mathfrak{h}), \tau \geq 1, \mu \in \mathbb{C}-\{0\}$, if

$$
1+\frac{1}{\mu}\left(\tau \frac{z s^{\prime \prime}(z)}{s^{\prime}(z)}\right) \prec_{q} \mathfrak{h}(z), z \in \mathfrak{D},
$$

where \mathfrak{h} is as stated in (1.3).
Definition 1.3. We say that $s(z)$ in \mathscr{A} belongs to $\mathfrak{K}_{q}(\mu, \mathfrak{h}), \mu \in \mathbb{C}-\{0\}$, if

$$
\frac{1}{\mu}\left(\frac{\left(z^{2} s^{\prime}(z)\right)^{\prime}}{(z s(z))^{\prime}}-1\right) \prec_{q}(\mathfrak{h}(z)-1), z \in \mathfrak{D},
$$

where \mathfrak{h} is as stated in (1.3).
Definition 1.4. We say that $s(z)$ in \mathscr{A} belongs to $\mathfrak{J}_{q}(\mu, \mathfrak{h}), \mu \in \mathbb{C}-\{0\}$, if

$$
\frac{1}{\mu}\left(\frac{\left(z^{2} s^{\prime}(z)\right)^{\prime}}{2 s(z)}-1\right) \prec_{q}(\mathfrak{h}(z)-1), z \in \mathfrak{D}
$$

where \mathfrak{h} is as stated in (1.3).
Definition 1.5. We say that $s(z)$ in \mathscr{A} belongs to $\mathfrak{L}_{q}(\mu, \mathfrak{h}), \mu \in \mathbb{C}-\{0\}$, if

$$
\frac{1}{\mu}\left(\frac{2 z\left(z s^{\prime}(z)\right)^{\prime}}{(z s(z))^{\prime}}-1\right) \prec_{q}(\mathfrak{h}(z)-1), z \in \mathfrak{D}
$$

where \mathfrak{h} is as stated in (1.3).
Motivated by the paper [17] and earlier works on quasi-subordination, we now define a new special class $\mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$.

Definition 1.6. We say that $s(z)$ in \mathscr{A} belongs to $\mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h}), 0 \leq \gamma \leq 1, \tau \geq 0, \tau \geq \gamma, \mu \in$ $\mathbb{C}-\{0\}$, if

$$
\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right) \prec_{q}(\mathfrak{h}(z)-1), z \in \mathfrak{D}
$$

where \mathfrak{h} is as stated in (1.3).

Clearly a function s is in the class $\mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$ if and only if there exits a holomorphic function $\varsigma(z)$ with $|\varsigma(z)| \leq 1$, such that

$$
\frac{\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right)}{\varsigma(z)} \prec(\mathfrak{h}(z)-1), z \in \mathfrak{D},
$$

where \mathfrak{h} is as stated in (1.3).
If we set $\varsigma(z) \equiv 1, z \in \mathfrak{D}$, then the class $\mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$ is denoted by $\mathscr{S}(\tau, \gamma, \mu, \mathfrak{h})$ satisying the condition

$$
1+\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right) \prec \mathfrak{h}(z), z \in \mathfrak{D} .
$$

The family of $\mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$ is of special interest. In view of this, we deem it worth while to note the relevance of the class $\mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$ with classes defined above as well as some known ones. Indeed we havei) $\mathscr{S}_{q}(\tau, 0, \mu, \mathfrak{h})=\mathfrak{R}_{q}(\tau, \mu, \mathfrak{h})$, ii) $\mathscr{S}_{q}(\tau, 1, \mu, \mathfrak{h})=\mathfrak{H}_{q}(\tau, \mu, \mathfrak{h})$, iii) $\mathscr{S}_{q}(1 / 2,1 / 2, \mu, \mathfrak{h})=\mathfrak{K}_{q}(\mu, \mathfrak{h}), \quad$ iv $) \mathscr{S}_{q}(1 / 2,0, \mu, \mathfrak{h})=\mathfrak{J}_{q}(\mu, \mathfrak{h})$,
v) $\mathscr{S}_{q}(1,1 / 2, \mu, \mathfrak{h})=\mathfrak{L}_{q}(\mu, \mathfrak{h})$ and vi) $\mathscr{S}_{q}(\gamma, \gamma, 1, \mathfrak{h}), 0 \leq \gamma \leq 1$ is the class investigated by Panigrahi and Raina [13].

In the second section, we find Fekete-Szegö functional $\left|d_{3}-\xi d_{2}^{2}\right|$ for elements in the class $\mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$. Many new consequences of this result are pointed out.

2. Main Results

Theorem 2.1. Let $0 \leq \gamma \leq 1, \tau \geq 0, \tau \geq \gamma$ and $\mu \in \mathbb{C}-\{0\}$. If $s(z) \in \mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$, then

$$
\begin{equation*}
\left|d_{2}\right| \leq \frac{|\mu| Q_{1}}{(1-\gamma+2 \tau)} \tag{2.1}
\end{equation*}
$$

and for any complex number ξ,

$$
\begin{equation*}
\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}-M Q_{1}\right|\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\mu\left(\frac{2 \xi(1-\gamma+3 \tau)}{(1-\gamma+2 \tau)^{2}}-\frac{1+\gamma}{1-\gamma+2 \tau}\right) . \tag{2.3}
\end{equation*}
$$

The result is sharp.
Proof. Suppose that $s \in \mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$. Then there exists a Schwarz function $u(z)$ and a holomorphic function $\varsigma(z)$ such that

$$
\begin{equation*}
\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right)=\varsigma(z)(\mathfrak{h}(u(z))-1), z \in \mathfrak{D} . \tag{2.4}
\end{equation*}
$$

Series expansions of s and its successive derivatives from (1.1) gives

$$
\begin{align*}
\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right)= & \frac{1}{\mu}\left[(1-\gamma+2 \tau) d_{2} z+\right. \\
& \left.\left((1-\gamma+3 \tau) 2 d_{3}-(1+\gamma)(1-\gamma+2 \tau) d_{2}^{2}\right) z^{2}+\ldots\right] \tag{2.5}
\end{align*}
$$

Similarly from (1.2), (1.3) and (1.4), we obtain

$$
\mathfrak{h}(u(z))-1=Q_{1} u_{1} z+\left(Q_{1} u_{2}+Q_{2} u_{1}^{2}\right) z^{2}+\ldots
$$

and

$$
\begin{equation*}
\varsigma(z)(\mathfrak{h}(u(z))-1)=R_{0} Q_{1} u_{1} z+\left[R_{1} Q_{1} u_{1}+R_{0}\left(Q_{1} u_{2}+Q_{2} u_{1}^{2}\right)\right] z^{2}+\ldots \tag{2.6}
\end{equation*}
$$

Using (2.5) and (2.6) in (2.4), we get

$$
\begin{equation*}
d_{2}=\frac{\mu R_{0} Q_{1} u_{1}}{1-\gamma+2 \tau} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{3}=\frac{\mu Q_{1}}{2(1-\gamma+3 \tau)}\left[R_{1} u_{1}+R_{0}\left\{u_{2}+\left(\frac{\mu(1+\gamma) R_{0} Q_{1}}{1-\gamma+2 \tau}+\frac{Q_{2}}{Q_{1}}\right) u_{1}^{2}\right\}\right] . \tag{2.8}
\end{equation*}
$$

Thus for any $\xi \in \mathbb{C}$, we get

$$
\begin{equation*}
d_{3}-\xi d_{2}^{2}=\frac{\mu Q_{1}}{2(1-\gamma+3 \tau)}\left[R_{1} u_{1}+\left(u_{2}+\frac{Q_{2}}{Q_{1}} u_{1}^{2}\right) R_{0}-M Q_{1} R_{0}^{2} u_{1}^{2}\right] \tag{2.9}
\end{equation*}
$$

where M is as stated in (2.3).
Since $\varsigma(z)=R_{0}+R_{1} z+R_{2} z^{2}+\ldots$ is holomorphic and $|\varsigma(z)| \leq 1, z \in \mathfrak{D}$, we have (see [12])

$$
\begin{equation*}
\left|R_{0}\right| \leq 1 \quad \text { and } \quad R_{1}=\left(1-R_{0}^{2}\right) y \quad(y \leq 1) . \tag{2.10}
\end{equation*}
$$

The assertion (2.1) follows from (2.7) using (2.10) and Lemma 1.1. From (2.9) and (2.10), we obtain

$$
\begin{equation*}
d_{3}-\xi d_{2}^{2}=\frac{\mu Q_{1}}{2(1-\gamma+3 \tau)}\left[y u_{1}+\left(u_{2}+\frac{Q_{2}}{Q_{1}} u_{1}^{2}\right) R_{0}-\left(M Q_{1} u_{1}^{2}+y u_{1}\right) R_{0}^{2}\right] . \tag{2.11}
\end{equation*}
$$

If $R_{0}=0$ in (2.11), we at once get

$$
\begin{equation*}
\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)} \tag{2.12}
\end{equation*}
$$

If $R_{0} \neq 0$, then define a function

$$
G\left(R_{0}\right)=y u_{1}+\left(u_{2}+\frac{Q_{2}}{Q_{1}} u_{1}^{2}\right) R_{0}-\left(M Q_{1} u_{1}^{2}+y u_{1}\right) R_{0}^{2}
$$

which is quadratic in R_{0} and hence holomorphic in $\left|R_{0}\right| \leq 1$. Clearly $\left|G\left(R_{0}\right)\right|$ attains its maximum value at $R_{0}=e^{i \theta} \quad(0 \leq \theta \leq 2 \pi)$. Thus

$$
\max \left|G\left(R_{0}\right)\right|=\max _{0 \leq \theta \leq 2 \pi}\left|G\left(e^{i \theta}\right)\right|=|G(1)|=\left|u_{2}-\left(M Q_{1}-\frac{Q_{2}}{Q_{1}}\right) u_{1}^{2}\right| .
$$

Therefore, it follows from (2.11) that

$$
\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)}\left|u_{2}-\left(M Q_{1}-\frac{Q_{2}}{Q_{1}}\right) u_{1}^{2}\right|
$$

which on using Lemma 1.1, show that

$$
\begin{equation*}
\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}-M Q_{1}\right|\right) \tag{2.13}
\end{equation*}
$$

The assertion (2.2) now follows from (2.12) and (2.13). We exhibit the sharpness by defining $s(z)$ as

$$
\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}=\mathfrak{h}(z)
$$

or

$$
\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}=\mathfrak{h}\left(z^{2}\right)
$$

or

$$
\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}=z(\mathfrak{h}(z)-1) .
$$

This ends the proof.
Remark 2.1. If we take $\tau=\nu, 0 \leq \nu \leq 1$ and $\mu=1$ in Theorem 2.1, we get Theorem 2.1 of [13].

We conclude the below sharp result for the class $\mathfrak{R}_{q}(\tau, \mu, \mathfrak{h})$ by putting $\gamma=0$ in Theorem 2.1.

Corollary 2.1. Let $\mu \in \mathbb{C}-\{0\}$ and $\tau \geq 0$. If $s \in \mathfrak{R}_{q}(\tau, \mu, \mathfrak{h})$, then $\left|d_{2}\right| \leq \frac{|\mu| Q_{1}}{(1+2 \tau)}$ and for some $\xi \in \mathbb{C},\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{2(1+2 \tau)} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}-\mu\left(\frac{2 \xi(1+3 \tau)}{(1+2 \tau)^{2}}-\frac{1}{1+2 \tau}\right) Q_{1}\right|\right)$.
Remark 2.2. For $\mu=1$ and $\tau=0$ the above corollary reduces to Corollary 2.2 of [13].
We conclude the following sharp result for the class $\mathfrak{H}_{q}(\tau, \mu, \mathfrak{h})$, on putting $\gamma=1$ in Theorem 2.1.

Corollary 2.2. Let $\mu \in \mathbb{C}-\{0\}$ and $\tau \geq 1$. If $s \in \mathfrak{H}_{q}(\tau, \mu, \mathfrak{h})$, then $\left|d_{2}\right| \leq \frac{|\mu| Q_{1}}{2 \tau}$ and for some $\xi \in \mathbb{C},\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{6 \tau} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}+\mu\left(\frac{2-3 \xi}{2 \tau}\right) Q_{1}\right|\right)$.
Remark 2.3. If $\mu=\tau=1$ in Corollary 2.2, we get Corollary 2.3 of [13].
Theorem 2.1 reduces to the corollary given below, when $\gamma=\tau=\frac{1}{2}$.
Corollary 2.3. Let $\mu \in \mathbb{C}-\{0\}$ and. If $s \in \mathfrak{K}_{q}(\mu, \mathfrak{h})$, then $\left|d_{2}\right| \leq \frac{2|\mu| Q_{1}}{3}$ and for some $\xi \in \mathbb{C}$, $\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{4} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}+\mu\left(1-\frac{16}{9} \xi\right) Q_{1}\right|\right)$. which is a sharp result.

Putting $\gamma=0$ and $\tau=\frac{1}{2}$ in Theorem 2.1, we conclude the corollary given below:
Corollary 2.4. Let $\mu \in \mathbb{C}-\{0\}$. If $s \in \mathfrak{J}_{q}(\mu, \mathfrak{h})$, then $\left|d_{2}\right| \leq \frac{|\mu| Q_{1}}{2}$ and for some $\xi \in \mathbb{C}$, $\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{5} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}+\mu\left(\frac{2-5 \xi}{4}\right) Q_{1}\right|\right)$, which is a sharp result.

Letting $\gamma=\frac{1}{2}$ and $\tau=1$ in Theorem 2.1, we get the following:
Corollary 2.5. Let $\mu \in \mathbb{C}-\{0\}$. If $s \in \mathfrak{L}_{q}(\mu, \mathfrak{h})$, then

$$
\left|d_{2}\right| \leq \frac{2|\mu| Q_{1}}{5} \text { and }\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{7} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}+\mu\left(\frac{15-28 \xi}{25}\right) Q_{1}\right|\right),
$$

for some $\xi \in \mathbb{C}$ and the result is sharp.
The next result is based on majorization.
Theorem 2.2. Let $0 \leq \gamma \leq 1, \tau \geq 0, \tau \geq \gamma$ and $\mu \in \mathbb{C}-\{0\}$. If an element $s(z) \in \mathscr{A}$ satisfies

$$
\begin{equation*}
\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right) \prec \prec(\mathfrak{h}(z)-1), z \in \mathfrak{D} \tag{2.14}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|d_{2}\right|=\frac{|\mu| Q_{1}}{1-\gamma+2 \tau} \tag{2.15}
\end{equation*}
$$

and for some $\xi \in \mathbb{C}$,

$$
\begin{equation*}
\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}-M Q_{1}\right|\right) \tag{2.16}
\end{equation*}
$$

where M is as stated in (2.3). The result is sharp.

Proof. Assume that (2.14) holds. From the principle of majorization, there exists a holomorphic function $\varsigma(z)$ such that

$$
\begin{equation*}
\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right)=\varsigma(z)(\mathfrak{h}(z)-1), z \in \mathfrak{D} . \tag{2.17}
\end{equation*}
$$

Taking $u(z)=z$, so that $u_{1}=1, u_{n}=0, n \geq 2$, we obtain (2.15) and (2.16), following the proof of Theorem 2.1. The function $s(z)$ given by

$$
1+\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right)=\mathfrak{h}(z), z \in \mathfrak{D}
$$

exhibit the sharpness of the result, which completes the proof of Theorem 2.2.
Our next sharp result is associated with $\mathscr{S}(\tau, \gamma, \mu, \mathfrak{h})$.
Theorem 2.3. Let $0 \leq \gamma \leq 1, \tau \geq 0, \tau \geq \gamma$ and $\mu \in \mathbb{C}-\{0\}$. If $s(z) \in \mathscr{S}(\tau, \gamma, \mu, \mathfrak{h})$, then

$$
\left|d_{2}\right| \leq \frac{|\mu| Q_{1}}{1-\gamma+2 \tau}
$$

and for any $\xi \in \mathbb{C}$,

$$
\left|d_{3}-\xi d_{2}^{2}\right| \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)} \max \left(1,\left|\frac{Q_{2}}{Q_{1}}-M Q_{1}\right|\right),
$$

where M is as stated in (2.3).
Proof. Let $s \in \mathscr{S}(\tau, \gamma, \mu, \mathfrak{h})$. Taking $\varsigma(z)=1, z \in \mathfrak{D}$, we get $R_{0}=1, R_{n}=0, n \in N$ and by following the proof of Theorem 2.1, we attain the required result. We exhibit the sharpness by defining $s(z)$ as

$$
1+\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right)=\mathfrak{h}(z),
$$

or

$$
1+\frac{1}{\mu}\left(\frac{z s^{\prime}(z)+\tau z^{2} s^{\prime \prime}(z)}{(1-\gamma) s(z)+\gamma z s^{\prime}(z)}-1\right)=\mathfrak{h}\left(z^{2}\right) .
$$

Which ends the proof.
We now settle sharp bounds of $\left|d_{3}-\xi d_{2}^{2}\right|$ for real ξ.
Theorem 2.4. Let $0 \leq \gamma \leq 1, \tau \geq 0$ and $\tau \geq \gamma$. If $s(z) \in \mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$, then for real ξ and μ, we have

$$
\left|d_{3}-\xi d_{2}^{2}\right| \leq \begin{cases}\frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)}\left[\frac{Q_{2}}{Q_{1}}+\mu Q_{1}\left(\frac{1+\gamma}{1-\gamma+2 \tau}-\frac{2 \xi(1-\gamma+3 \tau)}{(1-\gamma+2 \tau)^{2}}\right)\right] & (\xi \leq \rho) \tag{2.18}\\ \frac{\mid \mu Q_{1}}{2(1-\gamma+3 \tau)} & (\rho \leq \xi \leq \rho+2 \sigma) \\ -\frac{\mu \mid Q_{1}}{2(1-\gamma+3 \tau)}\left[\frac{Q_{1}}{Q_{2}}+\mu Q_{1}\left(\frac{1+\gamma}{1-\gamma+2 \tau}-\frac{2 \xi(1-\gamma+3 \tau)}{(1-\gamma+2 \tau)^{2}}\right)\right] & (\xi \geq \rho+2 \sigma)\end{cases}
$$

where

$$
\begin{equation*}
\rho=\frac{(1+\gamma)(1-\gamma+2 \tau)}{2(1-\gamma+3 \tau)}-\frac{(1-\gamma+2 \tau)^{2}}{2 \mu(1-\gamma+3 \tau)}\left(\frac{1}{Q_{1}}-\frac{Q_{2}}{Q_{1}}\right) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma=\frac{(1-\gamma+2 \tau)^{2}}{2 \mu(1-\gamma+3 \tau)} \tag{2.20}
\end{equation*}
$$

Proof. Let ξ and μ be real values. Then (2.18) can be obtained from (2.2) and (2.3) respectively, under the cases:

$$
Q_{1} M-\frac{Q_{2}}{Q_{1}} \leq-1,-1 \leq Q_{1} M-\frac{Q_{2}}{Q_{1}} \leq 1 \text { and } Q_{1} M-\frac{Q_{2}}{Q_{1}} \geq 1
$$

We also note the following:
(i) Equality holds for $\xi<\rho$ or $\xi>\rho+2 \sigma$ if and only if $\varsigma(z) \equiv 1$ and $u(z)=z$ or one of its rotations.
(ii) Equality holds for $\rho<\xi<\rho+2 \sigma$ if and only if $\varsigma(z) \equiv 1$ and $u(z)=z^{2}$ or one of its rotations.
(iii) Equality holds for $\xi=\rho$ if and only if $\varsigma(z) \equiv 1$ and $u(z)=\frac{z(z+\theta)}{1+\theta z}, 0 \leq \theta \leq 1$, or one of its rotations, while for $\xi=\rho+2 \sigma$, the equality holds if and only if $\varsigma(z) \equiv 1$ and $u(z)=-\frac{z(z+\theta)}{1+\theta z}, 0 \leq \theta \leq 1$, or one of its rotations.

The second part of assertion in (2.18) for real values of ξ and μ can be improved further as follows:

Theorem 2.5. Let $0 \leq \gamma \leq 1, \tau \geq 0$ and $\tau \geq \gamma$. If $s(z) \in \mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$, then for real ξ and μ, we have

$$
\begin{equation*}
\left|d_{3}-\xi d_{2}^{2}\right|+(\xi-\rho)\left|d_{2}\right|^{2} \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)} \quad(\rho \leq \xi \leq \rho+\sigma) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|d_{3}-\xi d_{2}^{2}\right|+(\rho+2 \sigma-\xi)\left|a_{2}\right|^{2} \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)} \quad(\rho+\sigma \leq \xi \leq \rho+2 \sigma) \tag{2.22}
\end{equation*}
$$

where ρ and σ are given by (2.19) and (2.20), respectively.
Proof. Let $s \in \mathscr{S}_{q}(\tau, \gamma, \mu, \mathfrak{h})$. For real μ and ξ satisfying $\rho \leq \xi \leq \rho+\sigma$, and using (2.7) and (2.13), we get

$$
\begin{aligned}
\left|d_{3}-\xi d_{2}^{2}\right|+(\xi-\rho)\left|d_{2}\right|^{2} \leq & \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)}\left[\left|u_{2}\right|-\frac{2 Q_{1}(1-\gamma+3 \tau)}{(1-\gamma+2 \tau)^{2}}(\xi-\rho-\sigma)\left|u_{1}\right|^{2}\right. \\
& \left.+\frac{2 Q_{1}(1-\gamma+3 \tau)}{(1-\gamma+2 \tau)^{2}}(\xi-\rho)\left|u_{1}\right|^{2}\right] .
\end{aligned}
$$

Therefore, by using Lemma 1.1, we obtain

$$
\left|d_{3}-\xi d_{2}^{2}\right|+(\xi-\rho)\left|d_{2}\right|^{2} \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)}\left[1-\left|u_{1}\right|^{2}+\left|u_{1}\right|^{2}\right]
$$

which yields the assertion (2.21),
If $\rho+\sigma \leq \xi \leq \rho+2 \sigma$, then again from (2.7), (2.13) and Lemma 1.1, we obtain

$$
\begin{aligned}
\left|d_{3}-\xi d_{2}^{2}\right|+(\xi-\rho)\left|d_{2}\right|^{2} & \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)}\left[\left|u_{2}\right|-\frac{2 Q_{1}(1-\gamma+3 \tau)}{(1-\gamma+2 \tau)^{2}}(\xi-\rho-\sigma)\left|u_{1}\right|^{2}\right. \\
& \left.+\frac{2 Q_{1}(1-\gamma+3 \tau)}{(1-\gamma+2 \tau)^{2}}(\rho+2 \sigma-\xi)\left|u_{1}\right|^{2}\right] \\
& \leq \frac{|\mu| Q_{1}}{2(1-\gamma+3 \tau)}\left[1-\left|u_{1}\right|^{2}+\left|u_{1}\right|^{2}\right]
\end{aligned}
$$

which estimates (2.22).
Remark 2.4. Numerous consequences of Theorem 2.2 to Theorem 2.5 can be obtained for different choices of γ and τ.

References

[1] Abdul Rahman S.Juma and Mohammed H. Saloomi, Generalized differential operator on bistarlike and biconvex functions associated by quasi-subordination, IOP conf. series:Journal of Physics: Conf. Series 1003 (2018), 012046.
[2] D. Bansal, Fekete-Szegö problem for a new class of analytic functions, Int. J. Math. Math. Sci., Article ID 143096 (2011), 5 pages.
[3] R. Bharavi Sharma and K. Rajya Laxmi, Fekete-Szegö inequalities for some subclasses of bi-univalent functions through quasi-subordination, Asian European Journal of Mathematics, 13(1) (2020), 2050006 (16 pages).
[4] M. Fekete and G. Szegö, Eine Bemerkung Über ungerade schlichte Funktionen,J. London Math. Soc., 8 (1933), 85-89.
[5] S. P. Goyal and O. Singh, Fekete-Szegö problems and coefficient estimates of quasi-subordination classes, J. Rajasthan Acad. Phys. Sci., 13 (2) (2014), 133-142.
[6] G. Singh, G. Singh and G. Singh, Certain subclases of bi-close -to-convex functions associated with quasisubordination, Abstract and Applied Analysis, Vol. 2019, Article 1D6947020, 6 pages, 2019.
[7] S. Kant and P. P. Vyas, Sharp bounds of Fekete-Szegö functional for quasi-subordination class, Acta. Univ. Sapientiae Math., 11 (1) (2019), 87-98.
[8] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[9] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1) (1987), 89-95.
[10] N. Magesh, V. K. Balaji and J. Yamini, Certain subclasses of bi-starlike and bi-convex functions based on quasi-subordination, Abstact and Applied Analysis, Vol. 2016, Article ID 3102960, 6 pages, 2016.
[11] M.H. Mohd and M. Darus, Fekete Szegö problems for Quasi-Subordination classes, Abstact and Applied Analysis, Vol.2012, Article ID 192956, 14 pages, 2012.
[12] Z. Nehari, Conformal mapping, Dover, New York (1975) (reprinting of the 1952 edition).
[13] T. Panigrahi and R. K. Raina, Fekete-Szegö coefficient functional for quasi-subordination class, Afro. Mat., 28 (5-6) (2017), 707-716.
[14] F.Y. Ren, S. Owa and S. Fukui, Some Inequalities on Quasi-Subordinate functions, Bull. Aust. Math.Soc., 43 (2) (1991), 317-324.
[15] M.S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc., 76 (1970), 1-9.
[16] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Var. Theory Appl., 44 (2001), 145-163.
[17] S.R. Swamy, Ruscheweyh derivative and a new generalized Multiplier differential operator, Annals of pure and Applied Mathematics, 10 (2) (2015), 229-238.
[18] S. R. Swamy and Y. Sailaja, On the Fekete-Szegö coefficient functional for quasi-subordination class, Palastine Journal of Mathematics, 10 (2021), 10 Pages. (In Press)
(S R Swamy) Department of Computer Science and Engineering, RV College of Engineering, Bengaluru - 560 059, Karnataka, India., ORCID:https://orcid.org/0000-0002-8088-4103
(Y Sailaja) Department of Mathematics, RV College of Engineering, Bengaluru - 560 059, Karnataka, India., ORCID: https://orcid.org/0000-0002-9155-9146

