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I. INTRODUCTION 

As we known that, mathematics is the tool for describing changes in each domain as dynamic systems, through which 

one can indicate their characteristics. One of the problems that attracts attention is to study by mathematical 

modelling an operation of rectifier circuits [1]-[5],[7][10]. Most electrical installations use direct current, but the 

power source is alternating current. Therefore, rectifiers are very important, indispensable and widely used in the 

electrical industry. A rectifier is an electric circuit consisting of electrical components used to convert alternating 

current to direct current. The positive elements in the rectifier circuit are semiconductor diodes. A semiconductor diode or 

diode is a type of semiconductor device that allows the current to flow through it in a single direction: from the anode to 

the cathode and without reversedirection [8],[9],[11]. 

 

In this paper, we will study the appropriate mathematical model for some common rectifier circuits in the science 

of electrical engineering, these are halfwave rectifying circuit and full-wave rectifying circuit. The mathematical model 

will be written by the canonical system which has the following form: 

{
 
 

 
 
𝑑𝑋

𝑑𝑡
+ ℑ𝑋 + 𝑌 = 𝐹(𝑡),

𝑋 ∈ 𝐸,                           
𝑋 ∈ 𝐸∗,                         
(𝑋, 𝑌) = 0.                  

                                                 (1) 

where, a set 𝐸 and 𝐸∗ are conjiugate cone in the space ℝ𝑛 , 𝑋(𝑡), 𝑌(𝑡) are unknown function whose values belong to 

ℝ𝑛  
 
at moment 𝑡, ℑ is a known constant square matrix of order 𝑛, 𝐹(𝑡) is a known continuous vector function with 

its values in ℝ𝑛. There have been many studies showing that differential models are equivalent to some differential 

equations with discontinuous right hand sides, such as in [1]. These studies help to find solutions of differential 

models. Here, the solution of the system (1) is understood as a locally absolutely function which satisfies (1) almost 

everywhere. 

The main content of this paper shows that, given a mathematical model for rectifier circuits, the model is 

presented by of the form (1). 

 

II. THE MATHEMATICAL MODEL FOR RECTIFIER CIRCUITS 

As we known that, if in the rectifier circuit, there is only one semiconductor diode, it is the halfwave rectifier circuit. In 

this type of circuit, there is only half a cycle (positive or negative) that can pass the diode, however, the rest half cycle will 

be blocked. It depends on the direction of installation of the diode. And as, only half a cycle is rectified, the half-wave 

rectifier circuit achieves a very low efficiency of power transmission. The half-wave rectifier circuit includes a diode that is 

connected to a source with voltage E(t), resistance R and bobbin L. Suppose that 𝐼 and 𝑈 are in turn the intensity of the 

current and the voltage which passes from the positive pole to the negetive pole of the diode. Then 

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 + 𝑈 = 𝐸(𝑡).                                                               (2) 

If we denote 𝑋 = 𝐼,𝐴 =  
𝑅

𝐿
, ℇ(𝑡) =  

𝐸(𝑡)

𝐿
 end 𝑌 = 

𝑈

𝐿
 then the equation (2) can be written as 

𝑋̇ + 𝐴𝑋 + 𝑌 =  ℇ(𝑡).                                                            (3) 

According to the principle of the operation of the diodes (see [5]), we see that the vector 𝑌 defined on the closed convex set 

𝑄∗ = (−∞, 0] ⊂ ℝ, can be written explicitly as following form: 
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{
𝑌 ∈ {0},   𝑖𝑓   𝑋 > 0    

𝑌 =  (−∞, 0]  𝑖𝑓  𝑋 = 0.
                                                        (4) 

Therefore, the operation of the half-wave rectifier circuit will be written in the form of the cononical 

system of (1), that means 

{

𝑋̇ + 𝐴𝑋 + 𝑌 = ℇ(𝑡),
𝑋 ∈ 𝑄,                           
𝑋 ∈ 𝑄∗,                         
(𝑋, 𝑌) = 0,                   

                                                              (5) 

where 𝑄 = [0,∞). 
Let us consider an electrical circuit having a circuit diagram 𝑆 and including resistances, inductances and a 

diode converter 𝐷. Such that, the diode converter 𝐷 contains 𝑚 diodes. In each diode, positive current readily goes 

from the anode to the cathode. We denote the current and the voltage across the 𝑗 − 𝑡ℎ diode by 𝑥𝑗, 𝑦𝑗 (𝑗 =

1,… ,𝑚) respectively. Assume that, diodes are ideal, that is, their currents 𝑥𝑗 and voltages 𝑦𝑗 are satisfied 

{

𝑥𝑗 ≥ 0    

𝑦𝑗 ≤ 0   

𝑥𝑗𝑦𝑗 = 0
; 𝑗 = 1,… ,𝑚.                                                                                                                                                       (6)   

Note that, from (4), for 𝑥 = (𝑥1 , 𝑥2, … , 𝑥𝑚)  and 𝑦 = (𝑦1 , 𝑦2 , … , 𝑦𝑚), it follows 

𝑥 ∈ ℝ+
𝑛 , 𝑦 ∈ ℝ−

𝑛  and (𝑥, 𝑦) = 0. 

We see that, in the circuit diagram 𝑆 all nodes are numbered in some order from 0 to 𝑛. We denote the current 

passing the 𝑘 − 𝑡ℎ node, the voltage between the node 𝑘 and node 0  by 𝑖𝑘 , 𝑢𝑘 , 𝑘 = 0,… , 𝑛 respectively. After that, 

we are interested in vectors 𝑖𝐷 = (𝑖1 , 𝑖2, … , 𝑖𝑛) and 𝑢𝐷 = (𝑢1 , 𝑢2 , … , 𝑢𝑛) (the vectors 𝑖0 and 𝑢0 are not interested, 

because they are presented through, other currents, other voltages, respectively). In order to show this, denoting 𝕋1 is 

a tree consists of all nodes. By the first Kirchhoff’s law, we have  
∑ 𝑎𝑘𝑗𝑥𝑗
𝑚
𝑗=1 =  𝑖𝑘 , 𝑘 = 1,… , 𝑛. 

Consequently 

𝐴𝑥 =  𝑖𝐷 ,                                                                    (6) 

where 𝐴 = (𝑎𝑘𝑗)𝑛×𝑚 is a matrix whose elements receive values 1,−1 and 0, respectively, if 𝑗 − 𝑡ℎ diode’s anode is 

connected with the 𝑘 − 𝑡ℎ node, 𝑗 − 𝑡ℎ diode’s cathode is connected with the 𝑘 − 𝑡ℎ node and in other cases: 

𝑎𝑘𝑗 = {
1
−1
0
, (𝑘 = 1,… , 𝑛; 𝑗 = 1,… ,𝑚).                                             (7) 

First hand, we can see that 𝐴 is a matrix of one linear operator (. ): ℝ𝑛 ⟶ ℝ𝑛  satisfies  (6). We note by 𝐴−1  a 

matrix of an inverse operator (. )−1.  

On the other hand, using (3) we obtain 

𝐴𝑇𝑢𝐷 = 𝑦.                                                                         (8) 

Now, we denote by 𝕋2 for a tree containing resistances 𝑅, inductances 𝐿 and a supply source. Therefore, 

branches complementing the tree 𝕋2 to the original circuit diagram 𝑆 are included resistances 𝑟, inductances 𝑙 and the 

diode converter 𝐷. From the second Kirchhoff’s law, we have 

𝑈𝑅 = 𝑀1𝑢𝑟  ,                                                                         (9) 

𝑈𝐿 = 𝑀2𝑢𝑟 +𝑀3𝑢𝑙 +𝑀4𝑢𝐷 + 𝐸(𝑡),                                (10) 

where 𝐸(𝑡) depends on the voltage 𝑒(𝑡) of the supply source. 

From (9) and (10), it implies that  

(
𝑈𝑅
𝑈𝐿
) = (

𝑀1 0 0
𝑀2 𝑀3 𝑀4

) . (

𝑢𝑟
𝑢𝑙
𝑢𝐷
) + (

0

𝐸(𝑡)
). 

Using the last equation and equation (3), we obtain 

(

𝑖𝑟
𝑖𝑙
𝑖𝐷

) = −(

𝑀1
𝑇 𝑀2

𝑇

0 𝑀3
𝑇

0 𝑀4
𝑇

) . (
𝐼𝑅
𝐼𝐿
). 

Therefore 

                                 𝑖𝐷 =  − 𝑀4
𝑇𝐼𝐿  ,                                                                (11) 

                                              𝑖𝑙 =  − 𝑀3
𝑇𝐼𝐿 ,                                                               (12) 

                             𝑖𝑟 =  − 𝑀2
𝑇𝐼𝐿 −𝑀1

𝑇𝐼𝑅  .                                                 (13) 

In order to find the mathematical model for rectifier circuits, we use obvious following equations 

𝑈𝑅 = 𝑅𝐼𝑅  ,                                                                  (14) 

𝑢𝑟 = 𝑟𝑖𝑟  ,                                                                    (15) 

𝐿
𝑑𝐼𝐿

𝑑𝑡
= 𝑈𝐿  ,                                                                 (16) 

𝑙
𝑑𝑖𝑙

𝑑𝑡
= 𝑢𝑙  .                                                                   (17) 
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where 𝐿, 𝐼, 𝑅 and 𝑟 are diagonal matrices whose diagonal elements are positive values. To solve the system (16) - 

(17), we consider 𝐼𝐿 and 𝑢𝐷  as the main unknowns. Further more, by (12) and (17) we get                                          

𝑀3𝑢𝑙 = −𝑀3𝑙𝑀3
𝑇 𝑑𝐼𝐿

𝑑𝑡
   .                                                               (18) 

Moreover, from equations (9), (13), (14) and (15), it implies that 

𝑢𝑟 = 𝑟𝑖𝑟 = −𝑟(𝑀2
𝑇𝐼𝐿 +𝑀1

𝑇𝐼𝑅) =  −𝑟𝑀2
𝑇𝐼𝐿 − 𝑟𝑀1

𝑇𝑅−1𝑀1𝑢𝑟  . 
Thus, with 𝐼 is the identity matrix, we have 

𝑢𝑟 = −(𝐼 + 𝑟 𝑀1
𝑇𝑅−1𝑀1)

−1𝑟𝑀2
𝑇𝐼𝐿  .                                               (19)  

Using (10), (16), (18) and (19), characteristics of the research circuit are represented by 

Θ
𝑑𝐼𝐿

𝑑𝑡
+ 𝐵𝐼𝐿 −𝑀4𝑢𝐷 = 𝐸(𝑡)                                                     (20) 

here Θ ≔ L +𝑀3𝑙𝑀3
𝑇    and 𝐵 ≔ 𝑀2(𝐼 + 𝑟 𝑀1

𝑇𝑅−1𝑀1)
−1𝑟𝑀2

𝑇𝐼𝐿 .  

Note that 

𝑋 =  𝛩
1

2𝐼𝐿;   𝑌 = 𝛩−
1

2(−𝑀4)𝑢𝐷 .                                              (21) 

And so, the equation (20) can be written as 
𝑑𝑋

𝑑𝑡
+ ℑ𝑋 + 𝑌 = 𝐹(𝑡),                                                          (22) 

{
ℑ = 𝛩−

1

2𝐵𝛩−
1

2,    

𝐹(𝑡) =  𝛩−
1

2𝐸(𝑡).
                                                               (23) 

In order to finish the proof of the theorem we will study properties of X and .Y   

First, by (21), we obtain 

(𝑋, 𝑌) =  (𝛩
1
2𝐼𝐿 , 𝛩

−
1
2(−𝑀4)𝑢𝐷) = (𝐼𝐿 , (𝛩

1
2)

𝑇

𝛩−
1
2(−𝑀4)𝑢𝐷). 

Since the matrix 𝛩 is diagonal, we can see that: (𝑋, 𝑌) =  (𝐼𝐿 , −𝑀4𝑢𝐷). 
Furthermore, using (11), (6) and (8), we have 

(𝑋, 𝑌) =  (−𝑀4
𝑇𝐼𝐿 , 𝑢𝐷) = (𝑖𝐷 , 𝑢𝐷) = (𝐴𝑥, 𝑢𝐷) = (𝑖𝐷 , 𝐴

𝑇𝑢𝐷) = (𝑥, 𝑦). 
And, by (5) we also obtain 

(𝑋, 𝑌) = 0.                                                             (24) 

 Thus, using (22), (23) and (24), we obtain 

{
 
 

 
 
𝑑𝑋

𝑑𝑡
+ ℑ𝑋 + 𝑌 = 𝐹(𝑡),

𝑋 ∈ 𝐸,                           
𝑋 ∈ 𝐸∗,                         
(𝑋, 𝑌) = 0.                  

 

where 𝐹(𝑡), ℑ are defined by (23). 

 Therefore, we have the following theorem: 

Theorem 2.1. The mathematical model for rectifier circuits is presented by differential models of the form (1) in 

which a function 𝐹(𝑡)and a matrix ℑ are defined in (23). 
 

To illustrate the results of the study, we consider a electric circuit of a following figure known as a full wave 

rectifier; it contains 4 diodes, a source, resistance 𝑅 and inductance 𝐿. In a supply circuit there is a source including a 

voltage 𝑒(𝑡), resistance 𝑟  and inductance 𝑙. This case is used to show the mathematical model of the form (1) for the 

considered rectifier circuit. For this, the choice of positive voltage is marked by indicators and on the other all nodes 

are numbered by  0, 1, 2, 3  as the figure (see Figure 1).  

 

  

 

 

 

 

      

 

 

 

 

                                                            Figure 1: The full wave rectifier 
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For this rectifier circuit, we note the current and the voltage (from positive to negative) of the diodes 𝑗 (𝑗 = 1,… ,4) 
are 𝑥𝑗 and 𝑦𝑗 repectively. Then, by the operating principle of the diodes, we have 

𝑥𝑗 ≥ 0, 𝑦𝑗 ≤ 0, (𝑥𝑗 , 𝑦𝑗) = 0, 𝑗 = 1,… ,4.                                           (25) 

In addition, all the nodes through which the diodes can be connected to other circuits are numbered 0, 1, 2, 3 as 

shown in the figure. The intensity of the current passing the 𝑘-node 𝑘 = 0,1,2,3 are denoted by 𝑖𝑘. The voltage between 

node 𝑘 and node 0 are denoted by 𝑢𝑘. 

In following, we show the operation of the full wave rectifier circuit for the nonlinear analytical model of (1). 

Assuming that the direction of the current is marked as in the figure, then according to Kirchhoff’s law, the operation of 

the circuit is represented by the following equations: 

{

𝑙
𝑑𝑖1

𝑑𝑡
+ 𝑟𝑖1 + 𝑢1 − 𝑢2 = 𝑒(𝑡)

𝐿
𝑑𝑖3

𝑑𝑡
+ 𝑅𝑖3 + 𝑢3 = 0              

𝑖2 = 𝑖3 − 𝑖1.                              

                                                  (26) 

If we define 𝐼𝐿 = (
𝑖1
𝑖3
) then the first equation of the system (26) will be rewritten as the following equations: 

𝐿
𝑑𝐼𝐿
𝑑𝑡

+ 𝐵𝐼𝐿 +  𝐻𝑢𝐷 = 𝐸(𝑡), 

where 

𝑢𝐷 = (𝑢1, 𝑢2, 𝑢3), 𝐿 =  (
𝑙 0
0 𝐿

) , 𝐵 =  (
𝑟 0
0 𝑅

), 

and the matrix 𝐻, 𝐸(𝑡) are determined by 

 

𝐴 =  (
1 −1 0
0 0 1

) , 𝐸(𝑡) =  (
𝑒(𝑡)
0
). 

We use the following transform: 

𝑋 =  𝐿1/2𝐼𝐿  and 𝑌 =  𝐿−
1

2(𝐻𝑢𝐷).                                                    (27) 

Therefore, the operation of wave rectifier circuit can be written by the following differential equation: 
𝑑𝑋

𝑑𝑡
+ ℑ𝑋 +  𝑌 = ℇ(𝑡),                                                               (28) 

where ℑ =  (

𝑟

𝑙
0

0
𝑅

𝐿

)  and ℇ(𝑡) =  (
𝑒(𝑡)

𝑙1/2

0
). 

The operation of wave rectifier circuit (27) will have the form of the canonical system (2), if we prove the 

existence of a conic 𝐾 in ℝ2 space such that 

{
𝑋 ∈ 𝐾        
𝑌 ∈ 𝐾∗       
(𝑋, 𝑌) = 0.

                                                                     (29) 

Indeed, according to first Kirchhoffs law, we have 

𝑖1 = 𝑥1 − 𝑥2, 𝑖2 = −𝑥3 + 𝑥4, 𝑖3 = 𝑥2 + 𝑥3, 𝑖1 = −𝑖2.                             (30) 

From this, we obtain 

{
𝑖3 ≥ 0, 𝑖3 + 𝑖1 ≥ 0, 𝑖3 − 𝑖1 ≥ 0,

𝑖3 ≥ ‖𝑖1‖.                                      
                                                (31) 

On the other hand, by second Kirchhoffs law, we have 

{
𝑢1 − 𝑢2 = 𝑦1 − 𝑦4 = 𝑦3 − 𝑦2
𝑢3 = 𝑦1 + 𝑦2 = 𝑦3 + 𝑦4.        

                                                     (32) 

From the systhem (32), we have 

{
𝑢3 + 𝑢1 − 𝑢2 = 𝑦1 + 𝑦3  ≤ 0           
𝑢3 − (𝑢1 − 𝑢2) = 𝑦2 + 𝑦4 ≤ 0.        

 

 

Therefore 

𝑢3 ≤ −|𝑢1 − 𝑢2| < 0.                                                            (33) 

From (27), (30), (32), we have 

(𝑋, 𝑌) =  
1

2
(𝑥2𝑦4 + 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥4𝑦2).                                         (34) 

By virtue of (25) we can obtain that (𝑋, 𝑌) ≤ 0. To justify 
(𝑋, 𝑌) = 0.                                                                           (35) 

Now, we have to prove that each term on the right-hand side of (34) is equal to 0. We suppose an absurd, then: 

𝑥2𝑦4 < 0 ⇔ {
𝑥2 > 0 ⇒ 𝑦2 = 0                                       
𝑦4 < 0 ⇒ 𝑥4 = 0 ⇒ 𝑥1 = 𝑖3 ⇒ 𝑦1 = 0.

 

Hence, in conjunction with (32), it is easy to deduce 𝑢3 = 𝑦1 + 𝑦2 = 0. This contradicts with (33), that mean, 𝑥2𝑦4 =
0. The remaining terms of the right-hand side of (34) are equal to 0. 
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Now, we define the cone 𝐾 ⊂ ℝ2  such that 𝑋 ∈ 𝐾. From the transformation (27) and the estimate (31), it is easy to 

deduce: 

𝑋 ∈ 𝐾 = {𝑋 =  (
𝑋1
𝑋2
) ∈ ℝ2: 𝑋2 > 0, 𝑋2 ≥ √

𝐿

𝑙
𝑋1 , 𝑋2 ≥ −√

𝐿

𝑙
𝑋1}. 

Under the modification of variables (27) and the evaluation (33), we have: 

𝑌 ∈ 𝐾∗ =  { (
𝑌1
𝑌2
) ∈ ℝ2: 𝑌2 < 0, 𝑌2 ≤ √

𝑙

𝐿
𝑌1 , 𝑌2 ≤ −√

𝑙

𝐿
𝑌1}. 

Thus, the characteristics of the full wave rectifier are presented by models of the form (1). 

 

III. CONCLUSION 

 

Mathematical simulation of engineering systems from which to study in an overview, the nature of their operating principle 

is one of the most important applications of mathematics. The characteristics of the rectifier using semiconductor diodes 

have been investigated in this paper by establishing a mathematical model that describes these characteristics and analyzes 

the mathematical models received. We have also considered a concrete case to illustrate the result of the study. 
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