ii-regular Spaces in Topological Spaces

¹Hamant Kumar and ²M C Sharma Department of Mathematics ¹Government Degree College, Bilaspur-Rampur, Uttar Pradesh, India ²N R E C College, Khurja, Uttar Pradesh, India

Abstract: The aim of this paper is to introduce and study a new class of spaces, namely ii-regular spaces by using ii-open sets. The relationships among regular, strongly rg-regular, almost regular, softly regular, weakly regular, α -regular, s-regular and ii-regular spaces are investigated. Also we obtain some characterizations of ii-regular spaces, properties of the forms of giiclosed, iig-closed functions and preservation theorems for ii-regular spaces.

Key words: *ii-open sets*; *ii-regular*, *s-regular*, *almost regular and softly regular spaces*; *gii-closed and ii-gii-closed functions*.

2010 Mathematics Subject Classification: 54C10, 54D10.

1. Introduction

N. Levine [7] introduced the concept of semi-open sets in topological spaces. O. Njastad [10] introduced and studied the notion of α -open sets. M. K. Singal and S. P. Arya [12] introduced two new classes of regular spaces, namely almost regular and weakly regular. S. N. Maheshwari and R. Prasad [8] defined a new class of regular spaces called s-regular. S. S. Benchalli [1] introduced and studied the notion of α -regular spaces. M. C. Sharma, P. Sharma and M. Singh [11] introduced a new class of regular spaces called ξ -regular spaces. Hamant Kumar [6] obtained some more characterizations and preservation theorems for ξ -regular spaces. Hamant Kumar and M. C. Sharma [3] introduced two new classes of separation axioms, namely softly regular and partly regular spaces which are weaker than regular spaces. Hamant Kumar [4] introduced some new types of separation axioms, namely ii-T₀, ii-T₁ and ii-T₂ etc. in topological spaces by using ii-open sets due to A. A. Mohammed and B. S. Abdullah [9]. Hamant Kumar [5] introduced two new classes of sets called gii-closed and by using these sets, obtained some characterizations of ii-normal spaces and properties of the forms of generalized ii-closed functions.

In this paper, we utilize ii-open sets to define and study a new class of spaces, called ii-regular spaces in topology. The relationships among regular, strongly rg-regular, almost regular, softly regular, weakly regular, α -regular, s-regular and ii-regular spaces are investigated. Also we obtain some characterizations and preservation theorems for ii-regular spaces.

2. Preliminaries

Throughout this paper, spaces (X, τ) , (Y, σ) , and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by **cl**(A) and **int**(A) respectively.

2.1 Definition. A subset A of a space (X, \mathfrak{T}) is said to be: (1) **semi-open** [7] if $A \subset cl(int(A))$. (2) α -open [10] if $A \subset int(cl(int(A)))$. (3) **ii-open** [9] set if there exists an open set $G \in \mathfrak{T}$, such that (i) $G \neq \phi$, X (ii) $A \subset cl(A \cap G)$ (iii) int(A) = G.

2.2 Remark. We have the following implications for the properties of subsets:

open $\rightarrow \alpha$ -open \rightarrow s-open \rightarrow ii-open

Where none of the implications is reversible as can be seen from [9].

The complement of a s-open (resp. α-open, ii-open,) set is called **s-closed** (resp. **α-closed**, **ii-closed**).

The intersection of all ii-closed sets containing A, is called the **ii-closure** of A and is denoted by **ii-cl(A)**. Dually, the **ii-interior** of A, denoted by **ii-int(A)** is defined to be the union of all ii-open sets contained in A.

The family of all ii-open (resp. ii-closed) sets of a space X is denoted by ii-O(X) (resp. ii-C(X)).

2.3 Definition. A subset A of a space (X, ℑ) is said to be
(1) generalized ii-closed [5] (briefly gii-closed) if ii-cl(A) ⊂ U whenever A ⊂ U and U ∈ ℑ.
(2) ii-generalized closed [5] (briefly iig-closed) if ii-cl(A) ⊂ U whenever A ⊂ U and U ∈ ii-O(X).

The complement of gii-closed (resp. iig-closed) set is said to be gii-open (resp. iig-open).

2.4 Remark. We have the following implications for the properties of subsets:

closed \rightarrow ii-closed \rightarrow gii-closed \rightarrow iig-closed

Where none of the implications is reversible as can be seen from [5]:

2.5 Lemma. Let A be a subset of a space X and x ∈ X. The following properties hold for ii-cl(A) :
(i) x ∈ ii-c1(A) if and only if A ∩ U ≠ \$\$\$\$\$\$\$\$\$\$\$\$\$\$ for every U ∈ ii-O(X) containing x.
(ii) A is ii-closed if and only if A = ii-cl(A) .
(iii) ii-c1(A) ⊂ ii-c1(B) if A ⊂ B.
(iv) ii-c1(ii-c1(A)) = ii-c1(A).
(v) ii-c1(A) is ii-closed.

2.6 Lemma [5]. A subset A of a space X is gii-open in X if and only if $F \subset \text{ii-int}(A)$ whenever $F \subset A$ and F is closed in X.

4. ii-regular spaces.

4.1 Definition. A space X is said to be **ii-regular** (resp. α -regular [1], s-regular [8], ξ -regular [11]) if for each closed set F of X, and each point $x \in X - F$, there exist disjoint ii-open (resp. α -open, s-open, ξ -open) set U, V such that $F \subset U$ and $x \in V$.

4.2 Definition. A space X is said to be **softly regular** [3] (resp. **almost regular** [12], **strongly rg-regular** [2]) if for every π -closed (resp. regular closed, rg-closed) set F of X, and a point $x \in X - F$, there exist disjoint open sets U and V such that $F \subset U$ and $x \in V$.

4.3 Definition. A space X is said to be **weakly regular** [12] if for every point x and every regularly open set U containing x, there is an open set V such that $x \in V \subset cl(V) \subset U$.

4.4 Theorem. Every regular space is ii-regular.

Proof. Let X be a regular space. Let F be any closed set in X and a point $x \in X$ such that $x \notin F$. Since X is a regular space, there exists a pair of disjoint sets U and V such that $F \subset U$ and $x \in V$. Since we know that every open set is ii-open. So U and V are ii-open sets. Hence X is ii-regular.

By the definitions stated above, we have the following diagram:

ξ-regular € strongly rg-regular regular α -regular s-regular ii-regular \Rightarrow \Rightarrow \Rightarrow ∜ softly regular \Rightarrow almost regular \Rightarrow weakly regular

Where none of the implications is reversible as can be seen from the following examples:

4.5 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the space (X, \mathfrak{I}) is weakly regular. But it is neither almost regular nor softly regular.

4.6 Example. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then the space (X, \Im) is almost regular but not strongly rg-regular.

4.7 Example. Let $X = \{a, b, c\}$ and $\Im = \{\phi, \{a\}, \{b\}, \{a, c\}, X\}$. Then the space (X, \Im) is regular.

4.8 Example. Let $X = \{a, b, c\}$ and $\Im = \{\phi, \{a\}, \{b, c\}, X\}$. Then the space (X, \Im) is regular but not strongly rg-regular. Since $F = \{b\}$ is a rg-closed set such that $c \notin \{b\}$. We can not separate c and $\{b\}$ by disjoint open sets.

4.9 Theorem. The following properties are equivalent for a space X:

(a) X is ii-regular.

(b) For each $x \in X$ and each open set U of X containing x, there exists $V \in ii$ -O(X) such that $x \in V \subset ii$ -cl(V) $\subset U$.

(c) For each closed set F of X, \cap {ii-cl(V) : F \subset V \in ii-O(X)} = F.

(d) For each subset A of X and each open set U of X such that $A \cap U \neq \phi$, there exists $V \in ii$ -O(X) such that $A \cap V \neq \phi$ and ii-cl(V) \subset U.

(e) For each non empty subset A of X and each closed subset F of X such that $A \cap F = \phi$, there exist V, $W \in \text{ii-O}(X)$ such that $A \cap V \neq \phi$, $F \subset W$ and $V \cap W \neq \phi$.

Proof.

(a) \Rightarrow (b). Let U be an open set containing x, then X – U is closed in X and x \notin X – U. By (a), there exist W, V \in ii-O(X) such that x \in V, X – U \subset W and V \cap W = ϕ .By **Lemma 2.5**, we have ii-cl(V) \cap W = ϕ and hence x \in V \subset ii-cl(V) \subset U.

(b) \Rightarrow (c). Let F be a closed set of X. If $F \subset V$, then by Lemma 2.5 (iii), ii-cl(F) \subset ii-cl(V) which gives $F \subset$ ii-cl(V) as $F \subset$ ii-cl(F). Therefore, $\cap \{ii-cl(V) : F \subset V \in ii-O(X)\} \supset F$.

Conversely, let $x \notin F$. Then X - F is an open set containing x. By (b), there exists $U \in ii-O(X)$ such that $x \in U \subset ii-cl(U) \subset X - F$. Put V = X - ii-cl(U). By **Lemma 2.5**, $F \subset V \in ii-O(X)$ and $x \notin ii-cl(V)$. This implies that $\cap \{ii-cl(V) : F \subset V \in ii-O(X)\} \subset F$.

Hence \cap {ii-cl(V) : F \subset V \in ii-O(X)} = F.

(c) \Rightarrow (d). Let A be a subset of X and let U be open in X such that $A \cap U \neq \phi$. Let $x \in A \cap U$, then X - U is a closed set not containing x. By (c), there exists $W \in ii$ -O(X) such that $X - U \subset W$ and $x \notin ii$ -cl(W). Put V = X - ii-cl(W). Then $V \subset X - W$. Also $x \in V \cap A$. By using **Lemma 2.5**, we obtain $V \in ii$ -O(X), and ii-cl(V) \subset ii-cl(X - W) = X - W \subset U.

(d) \Rightarrow (e). Let A be a subset of X and let F be a closed set in X such that $A \cap F = \phi$, where $A \neq \phi$. Since X – F is open in X and $A \neq \phi$, by (d), there exists $V \in ii$ -O(X) such that $A \cap V \neq \phi$ and ii-c1(V) \subset X – F. Put W = X - ii-c1(V), then $F \subset W$. Also, $V \cap W = \phi$. By Lemma 2.5, $W \in ii$ -O(X).

(e) \Rightarrow (a). This is obvious.

4.10 Theorem. A topological space (X, \mathfrak{I}) is ii-regular if and only if for each closed set F of (X, \mathfrak{I}) and each $x \in X - F$, there exist ii-open sets U and V of (X, \mathfrak{I}) such that $x \in U$ and $F \subset V$ and ii-cl $(U) \cap$ ii-cl $(V) = \phi$.

Proof: Let F be a closed set in (X, \mathfrak{I}) and $x \notin F$. Then there exist ii-open sets U_x and V such that $x \in U_x$, $F \subset V$ and $U_x \cap V = \phi$. This Implies that $U_x \cap ii\text{-cl}(V) = \phi$. Since ii-cl(V) is ii-closed and $x \notin ii\text{-Cl}(V)$. Since (X, \mathfrak{I}) is ii-regular, there exist ii-open sets G and H of (X, \mathfrak{I}) such that $x \in G$, ii-cl(V) \subset H and $G \cap H = \phi$. This implies ii-cl(G) $\cap H = \phi$. Take $U = U_x \cap G$. Then U and V are ii-open sets of (X, \mathfrak{I}) such that $x \in U$ and $F \subset V$ and ii-cl(U) \cap ii-cl(V) $= \phi$, since ii-cl(U) \cap ii-cl(V) \subset ii-cl(G) $\cap H = \phi$. Conversely, suppose for each closed set F of (X, \mathfrak{I}) and each $x \in X - F$, there exist ii-open sets U and V of (X, \mathfrak{I}) such that $x \in U$, $F \subset V$ and and ii-cl(U) \cap ii-cl(V) $= \phi$. Now $U \cap V \subset$ ii-cl(U) \cap ii-cl(V) $= \phi$. Thus (X, \mathfrak{I}) is ii-regular.

4.11 Definition. A space X is said to be ii-T₃ space if it is ii-regular as well as ii-T₁ space.

4.12 Theorem. Every ii-T₃ space is an ii-T₂ space.

Proof. Let X be ii-T₃, so it is both ii-T₁ and ii-regular. Also X is ii-T₁ \Rightarrow every singleton subset {x} of X is an ii-closed. Let {x} be an ii-closed subset of X and $y \in X - \{x\}$. Then we have $x \neq y$ since X is ii-regular, there exist disjoint ii-open sets U and V such that $\{x\} \subset U, y \in V$, and such that $U \cap V = \phi$ (or) U and V are disjoint ii-open sets containing x and y respectively. Since x and y are arbitrary, for every pair of distinct points, there exist disjoint ii-open sets. Hence X is ii-T₂ space.

4.13 Theorem. Every subspace of an ii-regular space is ii-regular.

Proof. Let X be an ii-regular space. Let Y be a subspace of X. Let $x \in Y$ and F be a closed set in Y such that $x \notin F$. Then there is a closed set A of X with $F = Y \cap A$ and $x \notin A$. Since X is ii-regular, there exist disjoint ii-open sets U and V such that $x \in U$ and $A \subset V$. Note that $Y \cap U$ and $Y \cap V$ are ii-open sets in Y. Also $x \in U$ and $x \notin Y$, which implies $x \in Y \cap U$ and $A \subset V$ implies $Y \cap U \subset Y \cap V$, $F \subset Y \cap V$. Also, $(Y \cap U) \cap (Y \cap V) = \phi$. Hence Y is ii-regular space.

4.14 Theorem. Every ii-compact Hausdorff space is an ii-T₃ space and hence an ii-regular space.

Proof. Let (X, \mathfrak{I}) be a compact Hausdorff space, that is an ii-T₃ space. But every ii-T₂ space is ii-T₁. To prove that it is ii-T₃ space it is sufficient to prove that it is ii-regular. Let F be a closed subset of X, and $x \notin F$. Now $x \in X - F$ so that any point $y \in F$ is a point of X which is different from x. Since (X, \mathfrak{I}) is an ii-T₂ space corresponding to x and y, there exists two ii-open sets H_y and G_y such that G_y \cap H_y = ϕ where $x \in H_y$ and $y \in G_y$. Now let \mathfrak{I}^* denote the relative topology for F so that the collection $C^* = \{F \cap H_y : y \in F\}$ is an ii- \mathfrak{I}^* open cover of F. But F is closed and since (X, \mathfrak{I}) is ii-compact (F, \mathfrak{I}^*) is also ii-compact. Hence a finite subcover of F (or) there exist points y_1, y_2, \dots, y_n in F such that $C^* = \{F \cap H_{yi} : i = 1, 2, \dots, n\}$ is a finite sub cover for F. Now $\mathbf{F} = \bigcup \{F \cap H_{yi} : i = 1, 2, \dots, n\}$ or $F = F \cap \{\bigcup \{H_{yi} : i = 1, 2, \dots, n\}\}$

Hence $F \subset \bigcup \{ H_{yi} : i = 1, 2, ...,n \}$ or $F \subset H$ where $H = \bigcup \{ H_{yi} : i = 1, 2, ...,n \}$ is ii-open set containing H, being the union of ii-open sets. Again G_{yi} for i = 1, 2, 3, ..., n is ii-open set containing x and hence $G = \bigcap \{ G_{yi} : i = 1, 2, ..., n \}$ is also an ii-open set containing x.

Also $G \cap H = \phi$, otherwise $G_{yi} \cap H_{yi} \neq \phi$ for some i. Hence corresponding to each closed set F and an element x in X – F we have two ii-open sets G and H such that $x \in G$, $F \subset H$ and $G \cap H = \phi$. Hence (X, \Im) is ii-regular. Since it is ii-T₂ so ii-T₁ and hence (X, \Im) ii-T₃.

5. Some related functions with ii-regular spaces

5.1 Definition. A function $f: X \to Y$ is said to be **ii-closed** [4] if for each closed set F of X, f(F) is ii-closed in Y.

5.2 Definition. A function $f: X \rightarrow Y$ is said to be

(i) generalized ii-closed [5] (briefly gii-closed) if for each closed set F of X, f (F) is gii-closed in Y.

(ii) ii-generalized ii-closed [5] (briefly ii-gii-closed) if for each ii-closed set F of X, f (F) is gii-closed in Y.

5.3 Remark. Every closed function is ii-closed but not conversely. Also, every ii-closed function is gii-closed because every ii-cosed set is gii-closed. It is obvious that both ii-closedness and ii-gii-closedness imply gii-closedness.

5.4 Theorem. A surjective function $f: X \to Y$ is gii-closed (resp. ii-gii-closed) if and only if for each subset B of Y and each open (resp. ii-open) set U of X containing $f^{-1}(B)$, there exists a gii-open set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. Suppose that f is gii-closed (resp. ii-gii-closed). Let B be any subset of Y and U be open (resp. ii-open) set of X containing $f^{-1}(B)$. Put V = Y - f(X - U). Then the complement V^c of V is $V^c = Y - V = f(X - U)$. Since X - U is closed in X and f is gii-closed, $f(X - U) = V^c$ is gii-closed. Therefore, V is gii-open in Y. It is easy to see that $B \subset V$ and $f^{-1}(V) \subset U$.

Conversely, let F be a closed (resp. ii-closed) set of X. Put B = Y - f(F), then we have $f^{-1}(B) \subset X - F$ and X - F is open (resp. ii-open) in X. Then by assumption, there exists a gii-open set V of Y such that $B = Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Now $f^{-1}(V) \subset X - F$ implies $V \subset Y - f(F) = B$. Also $B \subset V$ and so B = V. Therefore, we obtain f(F) = Y - V and hence f(F) is gii-closed in Y. This shows that f is gii-closed (resp. ii-gii-closed).

5.5 Remark. We can prove the necessity part of the above theorem by replacing each set to closed set in the form of the proposition given below:

5.6 Proposition. If a surjective function $f : X \to Y$ is gii-closed (resp. ii-gii-closed) then for a closed set F of Y and for any open (resp. ii-open) set U of X containing $f^{-1}(F)$, there exists an ii-open set V of Y such that $F \subset V$ and $f^{-1}(V) \subset U$.

Proof. By Theorem 5.4, there exists a gii-open set W of Y such that $F \subset W$ and $f^{-1}(W) \subset U$. Since F is closed, by Lemma 2.6 we have $F \subset \text{ii-int}(W)$. Put V = ii-int(W). Then $V \in \text{ii-O}(Y)$, $F \subset V$ and $f^{-1}(V) \subset U$.

5.7 Proposition. If $f: X \to Y$ is continuous ii-gii-closed and A is gii-closed in X, then f(A) is gii-closed in Y.

Proof. Let V be a open set of Y containing f(A). Then $A \subset f^{-1}(V)$. Since f is continuous, $f^{-1}(V)$ is open in X. Since A is giiclosed in X, by a definition, we get ii-c1(A) $\subset f^{-1}(V)$ and hence $f(ii-c1(A)) \subset V$. Since f is ii-gii-closed and ii-c1(A) is ii-closed in X, f(ii-c1(A)) is gii-closed in Y and hence we have ii-c1($f(ii-c1(A))) \subset V$. By definition of the ii-closure of a set, $A \subset ii-c1(A)$ which implies $f(A) \subset f(ii-c1(A))$ and using **Lemma 2.5**, ii-c1(f(A)) $\subset ii-c1(f(ii-c1(A))) \subset U$. That is ii-c1(f(A)) $\subset U$. This shows that f (A) is gii-closed in Y.

5.8 Definition. A function $f: X \to Y$ is said to be **ii-irresolute** [4] if for each $V \in ii-O(Y)$, $f^{-1}(V) \in ii-O(X)$.

5.9 Proposition. If $f: X \to Y$ is an open ii-irresolute bijection and B is gii-closed in Y, then $f^{-1}(B)$ is gii-closed in X.

Proof. Let U be a open set of X containing $f^{-1}(B)$. Then $B \subset f(U)$ and f(U) is open in Y. Since B is gii-closed in Y, ii-c1(B) \subset f(U) and hence we have $f^{-1}(ii-c1(B)) \subset U$. Since f is ii-irresolute, $f^{-1}(ii-c1(B))$ is ii-closed in X (**Theorem 2.5** (i) and (v)), we have ii-c1($f^{-1}(B)$) $\subset f^{-1}(ii-c1(B) \subset U$. This shows that $f^{-1}(B)$ is gii-closed in X.

5.10 Theorem. Let $f: X \to Y$ and $h: Y \to Z$ be the two functions, then

(i) If hof: X → Z is gii-closed and if f: X → Y is a continuous surjection, then h: X → Z is gii-closed.
(ii) If f: X → Y is gii-closed with h: Y → Z is continuous and ii-gii-closed, then hof: X → Z is gii-closed.
(iii) If f: X → Y is closed and h: Y → Z is gii-closed, then hof: X → Z is gii-closed.

Proof.

(i) Let F be a closed set of Y. Then $f^{-1}(F)$ is closed in X since f is continuous. By hypothesis (hof) $(f^{-1}(F))$ is gii-closed in Z. Hence h is gii-closed.

(ii)The proof follows from the Proposition 5.7.

(iii)The proof is obvious from definitions.

5.11 Theorem. The following properties are equivalent for a space X :

(a) X is ii-regular.

(b) For each closed set F and each point $x \in X - F$, there exists $U \in ii - O(X)$ and a gii-open set V such that $x \in U$ and $F \subset V$ and $U \cap V = \phi$.

(c) For each subset A of X and each closed set F such that $A \cap F = \phi$, there exist $U \in ii$ -O(X) and a gii-open set V such that $A \cap U \neq \phi$, $F \subset V$ and $U \cap V = \phi$.

(d) For each closed set F of X, $F = \bigcap \{ii - c1(V) : F \subset V \text{ and } V \text{ is gii-open} \}.$

Proof.

(a) \Rightarrow (b). The proof is obvious since every ii-open set is gii-open.

(b) \Rightarrow (c). Let A be a subset of X and let F be a closed set in X such that $A \cap F = \phi$. For a point $x \in A, x \in X - F$ and hence there exists $U \in ii$ -O(X) and a gii-open set V such that $x \in U$ and $F \subset V$ and $U \cap V = \phi$. Also $x \in A, x \in U$ implies $x \in A \cap U$. So $A \cap U \neq \phi$.

(c) \Rightarrow (a). Let F be a closed set and let $x \in X - F$. Then, $\{x\} \cap F = \phi$ and there exist $U \in ii$ -O(X) and a gii-open set W such that $x \in U, F \subset W$ and $U \cap W = \phi$. Put V = ii-int(W), then by **Lemma 2.6**, we have $F \subset V, V \in ii$ -O(X) and $U \cap V = \phi$. Therefore X is ii-regular.

(a) \Rightarrow (d). For a closed set F of X, by **Theorem 4.9**, we obtain $F \subset \cap \{ii-c1(V) : F \subset V \text{ and } V \text{ is gii-open}\}$

 $\label{eq:constraint} \begin{array}{l} \subset \ \cap \ \{ii\text{-}c1(V): F \subset V \ \text{and} \ V \in ii\text{-}O(X)\} = F \\ \\ \text{Therefore,} \quad F = \ \cap \ \{ii\text{-}c1(V): F \subset V \ \text{and} \ V \ \text{is gii-open}\}. \end{array}$

(d) \Rightarrow (a). Let F be a closed set of X and $x \in X - F$. by (d), there exists a gii-open set W of X such that $F \subset W$ and $x \in X - ii-c1(W)$. Since F is closed, $F \subset ii-int(W)$ by **Lemma 2.6**. Put V = ii-int(W), then $F \subset V$ and $V \in ii-O(X)$. Since $x \in X - ii-c1(W)$, $x \in X - ii-c1(V)$. Put U = X - ii-c1(V) then, $x \in U$, $U \in ii-O(X)$ and $U \cap V = \phi$. This shows that X is ii-regular.

5.12 Definition. A function $f: X \to Y$ is said to be **ii-open** if for each open set U of X, $f(U) \in ii-O(Y)$.

5.13 Theorem. If $f: X \rightarrow Y$ is a continuous ii-open gii-closed surjection and X is regular, then Y is ii-regular.

Proof. Let $y \in Y$ and let V be an open set of Y containing y. Let x be a point of X such that y = f(x). By the regularity of X, there exists an open set U of X such that $x \in U \subset c1(U) \subset f^{-1}(V)$. We have $y \in f(U) \subset f(c1(U)) \subset V$. since f is ii-open and gii-closed, $f(U) \in ii-O(Y)$ and f(c1(U)) is gii-closed in Y. So, we obtain, $y \in f(U) \subset ii-c1(f(U)) \subset ii-cl(f(c1(U))) \subset V$. It follows from **Theorem 5.11** that Y is ii-regular.

5.14 Definition. A function $f: X \to Y$ is said to be **pre ii-open** [5] if for each ii-open set U of X, $f(U) \in ii-O(Y)$.

5.15 Theorem. If $f: X \rightarrow Y$ is a continuous pre ii-open ii-gii-closed surjection and X is ii-regular, then Y is ii-regular.

Proof. Let F be any closed set of Y and $y \in Y - F$. Then $f^{-1}(Y) \cap f^{-1}(F) = \phi$ and $f^{-1}(F)$ is closed in X. Since X is ii-regular, for a point $x \in f^{-1}(y)$, there exist U, $V \in ii$ -O(X) such that $x \in U$, $f^{-1}(F) \subset V$ and $U \cap V = \phi$. Since F is closed in Y, by **Proposition 5.6**, there exists $W \in ii$ -O(Y) such that $F \subset W$ and $f^{-1}(W) \subset V$. Since f pre ii-open, we have $y = f(x) \in f(U)$ and $f(U) \in ii$ -O(Y). Since $U \cap V = \phi$, $f^{-1}(W) \cap U = \phi$ and hence $W \cap f(U) = \phi$. This shows that Y is ii-regular.

6. Conclusion

In this paper, we introduce and study a new class of spaces, namely ii-regular spaces by using ii-open sets. The relationships among regular, strongly rg-regular, almost regular, softly regular, weakly regular, α -regular, s-regular and ii- regular spaces are investigated. Also we obtained some characterizations of ii-regular spaces, properties of the forms of gii-closed, iig-closed functions and preservation theorems for ii-regular spaces. Of course, the entire content will be a successful tool for the researchers for finding the way to obtain the results in the context of such types of regular spaces.

REFERENCES

- [1] S. S. Benchalli and P. G. Patil, Some new continuous maps in topological spaces, Journal of Advanced Studied in Topology, 2/1-2, (2009), 53-63.
- [2] P. Gnanachandra and P. Thangavelu, On strongly rg-regular and strongly rg-normal spaces, Int. Tour. of Math. Archive, no. 2, 12(2011), 2570-2577.
- [3] Hamant Kumar and M. C. Sharma, Softly regular spaces in topological spaces, Jour. of Emerging Technologies and Innovative Research, no. 11, 5(2018), 183-190.
- [4] Hamant Kumar, ii-separation axioms in topological spaces, Int. Jour. of Math. Trends and Technology, no. 11, 65(2019).
- [5] Hamant Kumar, ii-normal spaces in topological spaces, Jour. of Emerging Technologies and Innovative Research, no. 8, 5(2020), 1510-1520.
- [6] Hamant Kumar, ξ-normal and ξ-regular spaces in topological spaces, Int. Jour. of Sci. Engg. and Research, no. 9, 5(2017), 6-10.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, The American Mathematical Monthly, no. 1, 70(1963), 36-41.
- [8] S. N. Maheshwari and R. Prasad, On s-regular spaces, Glasnik Math., 30(10) (1975), 347-350.
- [9] A. A. Mohammed and B. S. Abdullah, ii-open sets in topological spaces, Int. Math. Forum, no. 1, 14(2019), 41-48.
- [10] O. Njastad, On some class of nearly open sets, Pacific. J. Math., no. 3, 15(1965), 961-970.
- [11] M. C. Sharma, P. Sharma, S. Sharma and M. Singh, E-regular spaces, Journal of Applied Science and Technology, Vol. 4 1(2014), 1-4.
- [12] M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Math., 4(24) (1969), 89-99.