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I. INTRODUCTION

In 1965, Browder [3] proved that every nonexpansive mapping in a uniformly convex Banach space has a fixed point.
Goebel and Kirk [5] extended Browder’s result to the class of asymptotically nonexpansive mappings. In 2005, Sahu [13]
introduced the class of nearly Lipschitzian mappings which is an important generalization of the class of Lipschitzian
mappings. Later, Agarwal et.al [1] proposed a new iteration process for the iterative approximation of fixed points of
nearly asymptotically nonexpansive mappings. In 2013, Khan [8] introduced a new iteration process for nonexpansive
mappings, which is called the Picard-Mann hybrid iteration process and showed that the new process converges faster than
Picard and Mann iteration processes. Geethalakshmi and Hemavathy [4] proved strong convergence and stability results
of the Picard-Mann hybrid iteration process for monotone nonexpansive mappings. Goyal [6] generalized a theorem of
Xu, for weakly asymptotic contraction. Recently, Khan [9] proves the existence of fixed points of generalized
nonexpansive mappings in CAT(0) spaces, and approximate them using Picard-Mann hybrid iterationprocesses. Akewe
and Osilike [2] proved convergence and stability results for Picard-Mann hybrid iterative schemes for contractive-like
operators in a real normed space.

Motived and inspired by this work, we introduce a modified Picard-Mann hybrid iteration process and prove some

strong convergence theorems for nearly nonexpansive mappings in uniformly convex Banach space.

Il. PRELIMINARIES

Let C be a nonempty subset of a real Banach space X and T: C — C be a mapping with the fixed point set F(T),

ie., F(T)={p e C:Tp=p} Now, we recall some definitions and conclusions for our presentation.

Definition2.1. ([5]) The function §x: [0,2] — [0,1] issaid tobe the modulus of convexity of X if
Sx(e) = inf {1 = E2 xl < LUyl < Ll -yl > &} (21)

X is said to be uniformly convex if §x(0) = 0 and 64(g) > 0 for all € € (0,2].

Definition 2.2. A mapping T: C —» C is said to be nonexpansive if

ITx —Ty|l < |lx —y|| forall x,y €C. (2.2)
Definition 2.3. A mapping T: C —» Cis said to be asymptotically nonexpansive if there exists a sequence

k, < [1, o) with lim,,_,, k, = 1 such that
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IT"x — T"y|| < k,llx —y|| forall x,y €C, n=>1 (2.3)

Definition 2.4. Amapping T: C — Cissaidto be uniformly L-Lipschitzian if there exists a constant L > 0 such that

|IT"x —T"y|| < L||lx —y|| forall x,y €C, n=>1. (2.4)

Remark 2.1. It easy to see that every nonexpansive mapping T is asymptotically nonexpansive with sequence

k, = 1 and every asymptotically nonexpansive mapping is uniformly L-Lipschitzian with L = sup,enKy-

Definition 2.5. ([13]) Let {a,} be a sequence in [0,1) with lim,_,. a, = 0. A mapping T: C - C is said to be nearly
nonexpansive with respect to {a,,} if

IT"x —T"y|| < |lx —yll + a, forall x,y €C, n=>1. (2.5)

Remark 2.2. ([13]) If C is a bounded domain of an asymptotically nonexpansive mapping T , then T is nearly

nonexpansive. In fact, we have
IT"x = T"yll < kpllx = yli
< llx =yl + (e = Dllx =yl
< |lx —yll + (k, — 1) - diam(C), forall x,y € C, n>1.

From Remark 2.1 and 2.2 we have the following implications:
nonexpansive = asymptotically nonexpansive = nearly nonexpansive
Example 2.1. Let X =R, € =[0,1] and T: C - C be a mapping defined by

qx, if x€[0,1)
0, if x=1.

where g € (0,1). Itis clear that T is discontinuous mapping. However, it is nearly nonexpansive mapping with respect

Tx ={

to the sequence a, = q", a, — 0. Indeed,
IT"x —T"yll < q"llx — yll + q"
<l|llx—yll +a, foral x,y €C, n=>1.

Lemma2.1([11]). Let {a,,}, {b,} and {5,,} be sequences of nonnegative real numberssatisfying the inequality

an1 < (1+6,)a, + b, forall neN

If Y6, <ooand Yo b, < oothenlim,_,, a, exists. In particular, if {a,} has a subsequence which

converges strongly to zero, then lim,,_,, a,, = 0.

Lemma2.2 ([14]). Let X bearealuniformly convex Banachspaceand 0 < a < t, < b < 1, foralln e N. Let {x,}
and {y,} be sequences in X such that lim,,_,., sup||x,|| < 7, lim,_ sup|ly,|l <7, and lim,_,||(1 — t,)x, + t,yull =

r, hold for some r > 0. Then lim,_, ||lx, — y.ll = 0.
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We will now consider some well-known iteration schemes. Let C be a nonempty convex subset of normed

space Xand T: C — C aself-map.

(a) The Picard iteration process is defined by
Xp+1 = Txp
forall n = 0, (see for more information [12]).
(b) The Mann iteration process (see, for example [10]) is defined by
Xper = (1= @)y + Ty

foralln = 0 and {a,},»¢ is a real sequence in [0, 1] which satisfies the conditions: 0 < a, < 1and }7_,a, = .

(c) The Ishikawa iteration process (see, for example [7]) is defined by

Xn+1 = (1 - an)xn + anTyn

Yn = (1 - ﬁn)xn + ﬁnTxn

where {a, }=0 and {8, }ns0 be real sequences in [0,1] foralln > 0.

(d) The modified Mann iteration process (see, for example [14]) is defined by

Xny1 = (1 — ap)x, + T"xp

where {a, }ns0 IS a real sequence in [0, 1] which satisfies condition 0 < a < a,, < b < 1 for alln = 0.
(e) The Picard-Mann hybrid iteration process (see, for example [8]) is defined by
Xn+1 = Thn
Yo = (1= an)xy + anTxy
forall n > 0 and {a,}. is a real sequence in [0, 1].

I11. MAIN RESULTS

We introduce a modified Picard-Mann hybrid iteration process by

—_7Tn
Xn+1 =T n

Yo =1 —a)x, + a,T"xy, (3.2)

foralln = 0 and {a, }»=¢ is areal sequence in [0, 1].

The purpose of this section is to prove some strong convergence theorems with respect to the iteration scheme (3.1) for

nearly nonexpansive mapping in real uniformly convex Banach spaces.

Theorem3.1. Let C be a nonempty compact convex subset of a real uniformly convex Banach space X. Let T: C - Chbea
uniformly L-Lipschitzian, nearly nonexpansive mapping with respect o {a,} such that >3 ,a, < co. Let {x,} be the

modified Picard-Mann iteration defined by (3.1) where {a,} is sequence in (0,1). Then the following hold:
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(i) lim,_.||x, — pll exists for all p € F(T);
(”) limn—>oo”Xn - Tan” =0;

(iii) {x,} converges strongly to a fixed point of T.

Proof. (i) By Schauder’s fixed point theorem, we obtain that F(T) # @. Let p € F(T), by (3.1) we have

lxner — 2l = IT"x, — 2l < llyn — 2l + an

lyn — pll = (1 = a)llx, — pll + aulIT"x, — pli
< (1 - a)llx, = pll + an(llx, — pll + az)
= llxp, —pll + (1 + ap)an 3.2)
So, we have
IXp41 — pll < llxp —pll + (1 + a)a, (3.3)
It follows from Yoy a,, < o and Lemma 2.1 that lim,,_,||x, — pl| exists for p € F(T).

(i) We set lim,,_, . l|x, — pll = ¢, from (3.2) we have

limy,,e suplly, —pll < ¢ (3.4)
Also,
IT"yn = pll < llyn —pll + an
So, we have
limp,_,o sup|IT"y, —pll < ¢ (3.5)
Similarly
IT"x, = pll < llxn — pll + an
and we have
lim,_,o sup||T"x, —pll < ¢ (3.6)
Now

1x%pe1 — 2ll < lly — Il + a,

Taking limit infimum, we have
lim inf [l 1 —pll < lim inf{|y, —pl|
c= limn—mo inf ||Yn - p” <c (37)

From (3.4) and (3.7) we have
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c= limn—wo”yn - P” (38)

¢ = lim|ly, —pll = lim [[(1 — an)(xn = p) + an(T"xn = p)l

Therefore by Lemma 2.2, we obtain

lim,, o ||, — T, || = 0. (3.9)
(iiif) Finaly, since T is uniformly L-Lipschitzian mapping, we have

lxn = Topll < ln = Xpa ll + 2tns = T ot L+ T g — T o ||+ IT™ = Tty
< llotn = X ll + 21 = T g Il + Lllxn g — xpll + Ll — Tl

Since T is uniformly continuous, it follows from (3.9) that

limy, o[l — Tx |l = 0. (3.10)
By the compactness of C, there is a subsequence {x,, } of {x,} such that

lim,,, Xy, = p” (3.11)

Since T is continuous, it follows from (3.10) that p* € F(T). Since lim,,_,||x;,, — pll exists for all p € F(T), and we
conclude from (3.11) that lim,,_,, x,, = p* € F(T).

Theorem 3.2. Assume that all the conditions of Theorem 3.1 are satisfied. Then the sequence {x, } generated by (3.1)

converges strongly to a fixed point of T if and only if

lim,_, infd(x,, F(T)) = 0,
where d(x, F (T)) = inf{d(x,p) : p € F (T)}.
Proof. Necessity is obvious. Conversely, suppose that lim,,_,, inf d(xn, F(T)) = 0. From Theorem 3.1 we know that
lim,,_,||x, — pl| exists forall p € F(T), so lim,,_, d(xn,F(T)) exists for all p € F(T). Thus by hypothesis
lim,,_,o d(x,, F(T)) = 0. (3.12)

Now we show that {x,} is a Cauchy sequence in C. Indeed, from (3.3), we have

IXne1 = pll < llxn = pll + (1 + @) ay

Now, we set b, == (1 + a,)a,. Foranym,n €N, m > n > 1, we have

lxm —Pll < llxm-1 =PIl + by
< ”xm—z - P” + bm—l + bm—z

m-—1
<l =pll+ ) by
i=0

< v —pll+ ) b
i=0
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Since lim,,_,, d(xn, F(T)) =0 and ),;2,b; < oo forany e > 0 there exists a positive integer n, such that

& - &
d(xn,F(T)) < Z, Z bi < Z

l:=TLO

Therefore, there exists p € F(T) such that

B £ < £
la = Bl <3 > Bi<s.

i=ng
Thus, for all m,n = n, we get from the above inequality that

”xm - xn” < ”xm - ﬁ” + ”xn - ﬁ”

< [y =8+ D b+ llxag =5l + D b

i=ng i=ng
=2 lfen, =1l + . b
i=ng
& &
<2 (Z + Z) =&.

Thus, it follows that {x,,} is a Cauchy sequence. Since C is a closed subset of Banach space X, the sequence {x,} converges
strongly to some p* € C. Since F(T) is a closed subset of € and lim,,_,, d(x,, F(T)) = 0 we have p* € F(T). Thus, the

sequence {x,} converges strongly to a fixed point of T. This completesthe proof.

Senter and Dotson [15] introduced the notion of mapping satisfying Condition (1) which is defined as follows:
Definition 3.1. A mapping T: C — C is said to satisfy Condition (1), if there exists a non-decreasing function

@ :[0,00) = [0, ) with ¢ (0) = 0 and ¢(t) > 0, for all t > 0 such that
d(x,Tx) 2 ¢(d(x,F (T))

forall x € C.

Theorem 3.3. Assume that all the conditions of Theorem 3.1 are satisfied and let T be a mapping satisfying Condition (I).

Then the sequence {x,,} generated by (3.1) converges strongly to a fixed point of T.

Proof. We proved in Theorem 3.2, that lim,,_,, d(x,,, F(T)) exists. From Theorem 3.1 we have lim d(x,, Tx,) = 0.
n—-oo

It follows from Condition (I) that

42



i.e,

Adrian Ghiura/ IIMTT, 66(12), 37-43, 2020

1111_)r2)(p (d(xn,F(T))) < 111i_)rgd(xn,Txn) =0

lim,, . @ (d(xn, F(T))) =0.

Since ¢ : [0,0) — [0,0) is a non-decreasing function with ¢ (0) = 0 and ¢(t) > 0, for all t > 0, we obtain

lim d(x,, F(T)) = 0.

Consequently, {x,} converges strongly to a fixed point of T.
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