Int-Normal Spaces

Bhopal Singh Sharma and Anuj Kumar

Department of Mathematics N.R.E.C. College Khurja-203131, Bulandshahr

Abstract: In this paper we introduce and study a new class of spaces, namely int-normal spaces. The relationships between normal, ii-normal and int-normal spaces are investigated. Moreover, we introduced some function related with int-normal spaces, we obtain some preservation theorems of int-normal spaces.

Keywords: int-open, ii-open, int-normal, ii-normal spaces.

2010 hematics Subject Classification: 54A05, 54C08, 54C10, 54D15.

I. Introduction

In 1937, Stone [7] introduced the notion of regular-open sets. In 2019, Mohammed and Abdullah [1] introduced the concepts of ii-open sets, int-open sets and obtained their properties. In 2020, Hamant [5] introduced the concepts of ii-normal spaces and its properties.

II. Preliminaries

In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated and $f: (X, \Im) \rightarrow (Y, \sigma)$ (or simply $f: X \rightarrow Y$) denotes a function f of a space (X, ℑ) into a space (Y, σ). Let A be a subset of a space X. The closure and the interior of A are denoted by CL(A) and INT(A), respectively.

2.1 Definition. A subset A of a space X is said to be:

(1) regular open[7] if A = INT(CL(A)).

(2) **int-open [1]** if there exist an open set $G \in \mathfrak{I}$, such that

(i)) G $\neq \phi, X$

(ii) INT(A) = G

(3) **ii-open** [1] set if there exists an open set $G \in \mathfrak{I}$, such that

(i) $G \neq \phi, X$

(ii) $A \subseteq CL(A \cap G)$

(iii) INT(A) = G

The complement of a regular open (resp. int-open, ii-open) set is called **regular closed** (resp. **int-closed**, **ii-closed**).

The intersection of all ii-closed (resp. int-closed) sets containing A is called the **ii-closure** (**resp. int-closure**) of A and is denoted by **ii-CL(A)** (**resp. intCL(A**)). Dually, the **ii-interior**(**resp. int-interior**) of A, denoted by **ii-INT(A**) (**resp. int-INT(A**)) is defined to be the union of all ii-open (resp. int-open) sets contained in A.

The family of all regular open(resp. regular closed, ii-open, ii-closed, int-open, int-closed) sets of a space X is denoted by R-O(X)(resp. R-C(X), ii-O(X), ii-O(X), int-O(X), int-O(X)).

We have the following implications for the properties of subsets:

open \Rightarrow ii-open \Rightarrow int-open

Where none of the implications is reversible as can be seen from the following examples:

2.2 Example Let X = {a, b, c, d} and ℑ = {φ, {a}, {b}, {a, b}, {a, c}, {a, b, c}, X}. Then
(1) closed sets in (X, ℑ) are φ, X, {d}, {b,d}, {c,d}, {a,c,d}, {b,c,d}.
(2) ii-open sets in (X, ℑ) are φ, X, {a}, {b}, {a,c}, {a,c}, {a,d}, {b,d}, {a,b,c}, {a,b,d}, {a,c,d}.
(3)int-open sets in (X, ℑ) are φ, X, {a}, {b}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}.
Here {b,c} is int-open but not ii-open also not open.

2.3 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then (1) cosed sets in (X, \mathfrak{I}) are $\varphi, X, \{d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}$. (2) ii-open sets in (X, \mathfrak{I}) are $\varphi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, (3) \text{ int -open sets in } (X, \mathfrak{I}) \text{ are } \varphi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, c, c\}, \{a, c,$

{a, b, d}, {a, c, d}, {b, c, d}. {a, b, d}, {a, c, d}, {b, c, d}.

III. int-normal spaces

3.1 Definition A topological space X is termed as **int-normal** if for any pair of disjoint closed sets A and B, there exist disjoint int-open sets G and H such that $A \subset G$ and $B \subset H$.

3.2 Definition A topological space X is termed as **ii-normal** [5] if for any pair of disjoint closed sets A and B, there exist disjoint ii-open sets G and H such that $A \subset G$ and $B \subset H$.

3.3 Remark. The following diagram holds for a topological space (X, \mathfrak{I}) :

normal \Rightarrow ii-normal \Rightarrow int-normal

None of these implications is reversible as shown by the following examples.

3.3 Example. Let $X = \{a, b, c, d\}$ and $\Im = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Let $A = \{c\}$ and $B = \{d\}$ be disjoints closed sets, there exist disjoint ii-open sets $G = \{a, c\}$ and $H = \{b, d\}$ such that $A \subset G$ and $B \subset H$. Then the space (X, \Im) is ii-normal and int-normal since every ii-open set is int-open. But it is not normal since G and H are not open set.

3.4 Example. Let $X=\{a,b,c,d\}$ and $\mathfrak{I}=\{\varphi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, X\}$. Take $A=\{b\}$, $B=\{d\}$ disjoints closed sets ,there exist disjoint int-open sets $G=\{a,d\}$ and $H=\{b,c\}$ such that $A \subset G$ and $B \subset H$. Then the space (X, \mathfrak{I}) is int-normal. But it is not ii-normal as there does not exist any disjoint ii-open sets containing A and B. Also space (X, \mathfrak{I}) is not normal space.

3.5 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{X, \phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$. Let $A = \{a\}$ and $B = \{c\}$ be disjoints closed sets, there does not exist any pair of disjoint open sets G and H such that $A \subset G$ and $B \subset H$. Then the space (X, \mathfrak{I}) is not normal, also it is neither ii-normal nor int-normal space.

3.6 Example. Let $X = \{a, b, c\}$ and $\Im = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then the space (X, \Im) is normal as well as intnormal.

3.7 Theorem. For a space X, the following are equivalent:

(1) X is int-normal,

(2) For every pair of open sets G and H whose union is X, there exist int-closed sets A and B such that $A \subset G$, $B \subset H$ and $A \cup B = X$,

(3) For every closed set P and every open set Q containing P, there exists an int-open set G such that $P \subset G \subset int-CL(G) \subset Q$.

Proof: (1) \Rightarrow (2) : Let G and H be a pair of open sets in an int-normal space X such that $X = G \cup H$. Then X - G and X- H are disjoint closed sets. Since X is int-normal, there exist disjoint int-open sets G₁ and H₁ such that $X - G \subset G_1$ and X - H \subset H₁. Let $A = X - G_1$, $B = X - H_1$. Then A and B are int-closed sets such that $A \subset G$, $B \subset H$ and $A \cup B = X$.

 $(2) \Rightarrow (3): Let P is a closed set and Q is an open set containing P. Then X - P and Q be open sets whose union is X. Then by (2), there exist int-closed sets C₁ and C₂ such that C₁ <math>\subset$ X - P and C₂ \subset Q and C₁ \cup C₂ = X. Then P \subset X - C₁, X - Q \subset X - C₂ and (X - C₁) \cap (X - C₂) = ϕ . Let G = X - C₁ and H = X - C₂. Then G and H are disjoint int-open sets such that P \subset G \subset X - H \subset Q. As X - H is int-closed set, we have int-CL(U) \subset X - H and P \subset G \subset int-CL(G) \subset Q.

 $\begin{array}{ll} (3) \Rightarrow (1): \text{Let } P_1 \text{ and } P_2 \text{ are any two disjoint closed sets of } X. \text{ Put } Q = X - P_2, \text{ then } P_2 \cap Q = \phi. P_1 \subset Q, \text{ where } Q \text{ is an open set.} \\ \text{set. Then by (3), there exists an int-open set } G \text{ of } X \text{ such that} \\ = H \text{ , say, then } H \text{ is int-open and} \\ G \cap H = \phi. \text{ Hence } P_1 \text{ and } P_2 \text{ are separated by int-open sets } G \text{ and } H. \text{ Therefore } X \text{ is int-open and} \\ \text{normal.} \end{array}$

IV. Some functions with int-normal spaces

4.1 Definition . Let X be a topological space. A subset $N \subset X$ is called an **int-neighbourhood** (briefly **int-nhd**) of a point $x \in X$ if there exist an int-open set M such that $x \in M \subset N$.

4.2 Definition . A function $f: X \rightarrow Y$ is called

(1) **R-map [3]** if $f^{-1}(A)$ be a regular open in X for every regular open set A of Y,

(2) completely continuous [2] if $f^{-1}(A)$ be a regular open in X for every open set A of Y,

(3) **rc-continuous** [4] if for each regular closed set B in Y, $f^{-1}(B)$ be a regular closed in X.

4.3 Definition . A function $f: X \rightarrow Y$ is called

(1) softly int-open if $f(U) \in int-O(Y)$ for each $U \in int-O(X)$,

(2) softly int-closed if $f(U) \in int-C(Y)$ for each $U \in int-C(X)$,

(3) **almost int-irresolute** if for every $a \in X$ and each int-neighbourhood V of f(x), int-CL($f^{-1}(V)$) is an int-neighbourhood of a.

4.4 Theorem. A function $f: X \to Y$ be a softly int-closed if and only if for each subset A in Y and for each int-open set U in X containing $f^{-1}(A)$, there exists an int-open set V containing A such that $f^{-1}(V) \subset U$.

Proof: (\Rightarrow) : Suppose that f is softly int-closed. Let A be a subset of Y and U \in int-O(X) containing f⁻¹(A). Put V = Y - f(X - U), then V is an int-open set of Y such that A \subset V and f⁻¹(V) \subset U.

 (\Leftarrow) : Let K be any int-closed set of X. Then $f^{-1}(Y - f(K)) \subset X - K$ and $X - K \in int-O(X)$. There exists an int-open set V of Y such that $Y - f(K) \subset V$ and $f^{-1}(V) \subset X - K$. Therefore, we have $f(K) \supset Y - V$ and $K \subset f^{-1}(Y - V)$. Hence, we obtain f(K) = Y - V and f(K) is int-closed in Y. This shows that f is softly int-closed.

4.5 Lemma. For a function $f : X \rightarrow Y$, the following are equivalent:

(1) f is almost int-irresolute,

(2) $f^{-1}(V) \subset \text{int-INT(int -CL}(f^{-1}(V)))$ for every $V \in \text{int-O}(Y)$.

4.6 Theorem. A function $f: X \to Y$ is almost int-irresolute if and only if $f(int-CL(U)) \subset int-CL(f(U))$ for every $U \in int-O(X)$.

Proof: (\Rightarrow) : Let $U \in int-O(X)$. Suppose $y \notin int-CL(f(U))$. Then there exists $V \in int-O(Y)$ such that $V \cap f(U) = \phi$. Hence, f $^{-1}(V) \cap U = \phi$. Since $U \in int-O(X)$, we have **4.5**, f $^{-1}(V) \cap int-CL(U) = \phi$ and hence $V \cap f(int-CL(U)) = \phi$. This implies that $y \notin f(int-CL(U))$.

 $(\Leftarrow): If V \in int-O(Y), then M = X - int-CLl(f^{-1}(V)) \in int-O(X). By hypothesis, f(int-CL(M)) \subset int-CL(f(M)) and hence X - int-INT(int-CL(f^{-1}(V))) = int-CL(M) \subset f^{-1}(int-CL(f(M))) \subset f^{-1}(int-CL(f(X - f^{-1}(V)))) \subset f^{-1}(int-CL(Y - V)) = f^{-1}(Y - V) = X - f^{-1}(V). Therefore, f^{-1}(V) \subset int-INT(int-CL(f^{-1}(V))). By Lemma 4.5, f is almost int-irresolute.$

4.7 Theorem. If $f: X \to Y$ is a softly int-open continuous almost int-irresolute function from an int-normal space X onto a space Y, then Y is int-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, $f^{-1}(A)$ is closed and $f^{-1}(B)$ is an open set of X such that $f^{-1}(A) \subset f^{-1}(B)$. As X is int-normal, there exists an int-open set U in X such that $f^{-1}(A) \subset U \subset$ int-CL(U) $\subset f^{-1}(B)$ by **Theorem 3.7**. Then, $f(f^{-1}(A)) \subset f(U) \subset f(int-CL(U)) \subset f(f^{-1}(B))$. Since f is softly int -open almost int-irresolute surjection, we obtain $A \subset f(U) \subset$ int-CL(f(U)) $\subset B$. Then again by **Theorem 3.7**, the space Y is int-normal.

4.8 Theorem. If $f: X \to Y$ is a softly int-closed continuous function from an int-normal space X onto a space Y, then Y is int-normal.

Proof: Let M_1 and M_2 be disjoint closed sets. Then $f^{-1}(M_1)$ and $f^{-1}(M_2)$ are closed sets. Since X is int-normal, then there exist disjoint int-open sets U and V such that $f^{-1}(M_1) \subset U$ and $f^{-1}(M_2) \subset V$. By **Theorem 4.4**, there exist int-open sets A and B such that $M_1 \subset A$, $M_2 \subset B$, $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Also, A and B are disjoint. Thus, Y is int-normal.

4.9 Definition. A function $f: X \to Y$ is called **\alpha-closed** [6] if for each closed set in X, f(U) is α -closed set in Y.

4.10 Theorem. If $f: X \to Y$ is an α -closed continuous surjection and X is normal, then Y is int-normal.

Proof: Let A and B be disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed sets of X by continuity of f. Since X is normal, there exist disjoint open sets U and V in X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. By theorem 4.3 in [6] there exist disjoint α -open sets G and H in Y such that $A \subset G$ and $B \subset H$. Since every α -open set is int-open, G and H are disjoint int-open sets containing A and B, respectively. Therefore, Y is int-normal.

References

- [1] Amir Mohammed and S. Beyda Abdullah, ii-open sets in topological spaces, International Mathematical Forum, Vol. 14, 1(2019), 41-48.
- [2] S. P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. J., 14 (1974), 131-141.
- [3] D. Carnahan, Some properties related to compactness in topological spaces, PhD thesis, University of Arkansas, 1973.
- [4] D. S. Jankovic', A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46 (1-2) (1985), 83-92.
- [5] Hamant Kumar, ii-normal spaces in topological spaces, Journal of Emerging Technologies and Innovative Research (JETIR), Vol. 7, Issue 8, (2020), 1510-1520.
- [6] T. Noiri, Almost continuity and some separation axioms, Glasnik Math., 9(3), (1974), 131-135.
- [7] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-381.