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Abstract — In this paper, based on the control and bifurcation theory, a PD controller is proposed to control the Hopf 

bifurcation of the fluid flow model in the wireless network congestion control system. First, communication delay is 

selected as a bifurcation parameter to obtain the critical value of communication delay that keeps the original system and 

the controlled system stable. When the delay value exceeds the critical value, the system will lose stability at the 

equilibrium point and generate Hopf bifurcation. It is found that the addition of PD controller can effectively delay the 

generation of Hopf bifurcation, increase the critical value of bifurcation parameters, and expand the stability region. 

Besides, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are studied by using the 

center manifold theorem and the normal form theory. At last, some numerical simulation results with mathematical 

software are confirmed that the feasibility of the theoretical analysis. 

 

Keywords — Center manifold theorem, Hopf bifurcation, Normal form theory, PD controller, Stability 

I. INTRODUCTION 

In recent years, with the popularization and application of wireless network technology, people pay more and more 

attention to the research of wireless network congestion control. A large number of experiments show that the network 

congestion control system has nonlinear characteristics, and the system is in an unstable state under abnormal conditions 

with bifurcation, chaos and other dynamic characteristics [1]. And congestion may directly lead to higher packet loss rate 

the increase of end-to-end delay, and even the crash of the whole system [2-4]. At present, in order to ensure the stable 

operation of the network, using bifurcation theory to solve the Internet bifurcation problem has become a research hotspot 

for scholars [5-8]. Literature [9-11] studies the Hopf bifurcation problem of wireless network congestion control model, 

and selects communication delay as bifurcation parameter. When the delay exceeds the critical value, the system loses 

stability and Hopf bifurcation occurs, thus reducing the performance of the system. In the face of these bad behaviors, the 

wireless network must be controlled to delay Hopf bifurcation so as to improve the stability of the system. For this reason, 

many effective control methods have been proposed, such as delay feedback control [12-13], dynamic delay feedback 

control [14], state feedback control [15], mixed control [16-17], etc..In this paper, the proportional differential controller is 

applied to the wireless network congestion control system to control the Hopf bifurcation of the system. 

II. MODEL BUILDING 

According to literature [10], a simplified fluid flow model for wireless network congestion control is presented 

                                                        

Na Han, School of mathematical science, Tiangong University, Tianjin 300387, Tianjin, PR China  

Yan-hui Zhai, School of mathematical science, Tiangong University, Tianjin 300387, Tianjin, PR China  
 

https://www.ijmttjournal.org/archive/ijmtt-v66i12p514
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;


Na Han & Yanhui Zhai / IJMTT, 66(12), 91-105, 2020 

 

92 




















,)(
)1(

)(

),(
2

)(2)()1(

R

1
)(

2

CtW
R

PN
tq

RtP
R

tWPtWP
tW

ul

dldl

．

．

                       (1) 

where W(t) represents the average TCP window size (packets), q(t) is the average queue length (packets), p(t) is the packet 

identification probability function, N is the number of TCP connections, C is the queue bandwidth (packet·s-1), and R is 

the round trip time (seconds). When the queue delay is much less than the transmission delay, it can be assumed that 

p(t)=Kq(t). Pul and Pdl represent the packet loss probability of downlink and uplink channel respectively and are assumed 

to be constant. 

First, let the equilibrium point of model (1) be (W0，q0), then it satisfies the following equation: 
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Solve the above equation, and get 
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A conclusion can be drawn from the reference [10]: for the uncontrolled system, equation (1), when 
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(1) When 0RR  , the system is locally asymptotically stable at the equilibrium point. 

(2) When 0RR  , The system is unstable at the equilibrium point. 

(3) When 0RR  , The system generates Hopf bifurcation near the equilibrium point, and periodic solution appears. 

In recent years, many scholars have studied the Hopf bifurcation of wireless network congestion model. In literature 

[18], the author studied the Hopf bifurcation problem after adding a state feedback controller to the wireless network 

congestion model. In literature [21], the author studied the network congestion model by adding a delay feedback 

controller. 

Inspired by the above studies, this paper aims to delay the generation of Hopf branch, proportional differential 

controller (PD) is added to the wireless network congestion model. In order to add PD controller (PD) to system (1), the 

general rule of PD control is first introduced. PD control refers to proportional and differential control, and its rule 

expression is as follows: 

),()()( te
dt

d
ktektu dp                                      (4) 

where kp represents the proportional control parameter, kd belongs to the differential control parameter, and e(t) is the 

difference between the real-time state variable and the state equilibrium point. 

According to Equations (1) and (2), the controlled system with PD controller is obtained： 
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For the convenience of writing, write down   RPP uldl ,, , then the above model is further rewritten as 
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III. STABPLPTY AND LOCAL HOPF BIFURCATION ANALYSIS 

Obviously, the equilibrium point of the controlled system (5) is the same as that of the original system (1),  which 

means that the structure of the original system will not be changed after PD controller is added. 

Let 01 )()( WtWtY  , and 02 )()( qtqtY  . After linearizing the controlled system (3) at the equilibrium point, the 

linearization equation is 
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The characteristic equation of the system (6) is 
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2   ebaa                                      (7) 

Lemma 1. when 0  , the characteristic roots of equation (7) have a negative real part. 
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Routh-Hurwitz stability criterion shows that the closed-loop system is stable if and only if all values are greater than 

zero, that is, the following coefficient conditions are satisfied 
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that is 

012 ba  , .01 a  

As gradually approaches zero, equation (7) has no non-negative real part roots, and the system (5) is stable; 

When increases gradually, as long as is small enough, the system (5) is still stable with critical delay 0 , so that 

when )0( 0 ， , 0)Re(  in equation (7), the proof is done. 
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Proof. First we assume that )0(   i  is a root of the characteristic equation (6), then it satisfies the following 

equation 
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That is, when 0  , 0 i is a pair of pure virtual roots of the characteristic equation (6), the proof is done. 
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The proof is done. 

Lemma 4. When 0  , equation (7) has at least one root with a positive real part. 

According to the above lemma and the Hopf branch theorem of delay differential equation in reference [22], we can 

reach the following conclusion. 

Theorem 1. For the controlled system (5), the following conclusion holds: 

(1) When 0  , the controlled system is asymptotically and uniformly stable near the equilibrium point (W0，q0); 

(2) When 0  , the controlled system generates Hopf branch at the equilibrium point (W0，q0); 

(3) When 0  , the controlled system is unstable at the equilibrium point (W0，q0). 

 

IV. DIRECTION AND STABILITY OF THE HOPF BIFURCATION 

In the analysis in the previous section, we have obtained the conditions for the system to generate Hopf branch. In this 

section, we will use the normative theory and the central manifold theorem in literature [19-20] to study the characteristics 

of model (5), such as the direction of generating Hopf branch and stability of periodic solution of branch.  

First we consider the Taylor expansion of model (5) at equilibrium (W0，q0)： 
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From (19) and (21), (26) can be written as 
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Then
si

eVsq 0)(
  , we make

si
eDVsq 0)(

  . 

Now let's prove that *, 1q q  and *, 1q q  , from equation (25), we get 
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                  (28) 
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So, let 1-
20 ][ 00 VBVeVVD

T
i

T
 

 , we can obtain *, 1q q  . 

Since  ,,  AA , we have  

0 0 0, , , , , .i q q q Aq A q q i q q i q q                          (29) 

Therefore 
*, 0q q  , this completes the proof. 

Next, we will use the method proposed by Hassard et al. to construct coordinates on the central epidemic 0C
 

at 

)(20 W . Define 

( ) , tz t q u  ,                           (30) 

and 

( , ) ( ) 2Re{ ( ) ( )}.tW t u z t q                              (31) 

On the center manifold 0C , we have  

( , ) ( ( ), ( ), )W t W z t z t  .                             (32) 

Where 

2 2

20 11 02( , , ) ( ) ( ) ( )
2 2

z z
W z z W W zz W        . 

For central manifold 0C , z and z represent the local coordinates of the central epidemic in the directions of q and 

q respectively. If ut is real, then W is real, and we're only looking at the real solution here, Since 0  , it is easy to see 

that 

( ) , , ( (0) (0))t tz t q q A R          

, ,t tq A q R                                     (33) 

*

0 0 ( , ).Ti z q f z z   

Abbreviate (33) as follows 

0( ) ( , ),z t i z g z z                                     (34) 

Where 

2 2

20 11 02( , ) ,
2 2

z z
g z z g g zz g                                (35) 

from (23) and (35), we have 
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qzzfqAW
qzqzuW

T

T

t
           (36) 

The above equation can be rewritten as 

( , , )W AW H z z   .                               (37) 

Where 

2 2

20 11 02( , , ) ( ) ( ) ( )
2 2

z z
H z z H H zz H        .              (38) 
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On the other hand, on the central manifold 
0C , there is 

z zW W z W z  .                                     (39) 

Substitute Equations (33) and (35) for 
zW and z  into (39), respectively, we can get another expression of W  

2 2

0 20 0 02( ) ( ) .W i W z i W z                         (40) 

Comparing the coefficients of the above equation with those of (38) and (41), we get 

0 20 20

11 11

0 02 02

( 2 ) ( ) ( ),

( ) ( ),

( 2 ) ( ) ( ).

A i W H
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                         (41) 

Notice that ( ) ( ( ), ( ), )tu W z t z t zq zq     and 0

1( ) (1, )
iTq e
   , we have 

0 0
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1
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2 1 1

1( ) 1( , , )
.
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i i
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u z e z e
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 
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          (42) 

Therefore, we can obtain 
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Therefore, we have 

2 2
(1) (1) (1)

1 20 11 02(0) (0) (0) (0)
2 2

z z
z z W W zz W       , 

 zzWWzzzz 2)1(
20

)1(
11

222
1 )]0()0(2[2)0( , 




2
)(

2
)()()(

2

0
)2(

02

2

0
)2(

200
)2(

111102
0000

z
W

z
WzzWezez

ii   , 









zzWeWeWW

zezzeeze

ii

iiii

2)1(
111

)1(
2010

)2(
200

)2(
11

2
111

2
1021

)]0()0(
2

1
)(

2

1
)([

)()()0(

0000

00000000









, 




zzee
ii 2

1102
2

1 )2()()0( 0000   . 

From (34) and (35), we obtain 
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Since 
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Comparing the coefficients of the above equation with those in (35), we have 
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In order to get the value of 
21g , we also need to compute 

20 ( )W   and 
11( )W  . For )0,[ 0  , we have  
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Comparing the coefficients of the above equation with those in (38), we have 
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When 0  , we have  
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Comparing the coefficients with (44), we have 
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Using (46) and (50), we obtain 
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Where 22
2

)1(
22

22
1

)1(
11 ),(,),( REEEREEE  are two two-dimensional vectors. 

According to the definition of (0)A and formula (41), we have 
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By calculation, we have  
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Based on the above analysis, we next determine several important values of the properties of Hopf periodic solutions at 

the critical value 0 : 
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                    (51) 

Theorem 2. In the case of system (5), the conclusion holds: 

(1) The direction of the Hopf bifurcation is determined by the parameter 
2 . If

2 0  (
2 0  ), the Hopf 

bifurcation is supercritical (subcritical) . 

(2) The value of 
2 determines the stability of Hopf bifurcation periodic solution. If

2 0  (
2 0  ), then the 

branching periodic solution is asymptotically stable (unstable). 

(3) The value of 
2T determines the period of the Hopf bifurcation periodic solution. If 02 T )0( 2 T , then the 

period of the periodic solution increases (decreases). 

V. NUMERICAL SIMULATION 

In this section, we verified the validity of the above theoretical analysis results by using mathematica, a mathematical 

software, for numerical simulation. In order to facilitate the comparison, we chose the same parameters as the literature: 

.1.0,1000,001.0,50  CKN  

When 0 qd kk , the system (5) is in the state of no control system, which can be obtained by calculation: 

,0620.3,2103.0,0960.0,4444.4 0000  pW  

When 02.0   is taken and ),0( 0   is known, the system (1) is asymptotically stable at the equilibrium point, as 

shown in Fig. 1. When 024.0   , the system (1) loses stability at the equilibrium point, Hopf bifurcation occurs and 

the system is in the limit cycle state, as shown in Fig. 2. Next, the control effect is verified. The above parameters are still 

selected. By selecting an appropriate PD control coefficient of 5.0dk and 5.0qk , when 24.0 , the system finally 

stabilizes at the equilibrium point, as shown in Fig. 3. However, as continues to increase, as in 29.0 , the wireless 

network congestion model with PD controller added still generates Hopf branch, and the system loses stability, generating 

limit cycle, as shown in Fig 4. Then, by selecting PD control coefficient 5dk and 5dk , when 29.0 , the system 

finally stabilizes at the equilibrium point, as shown in Fig. 5. Therefore, choosing an appropriate PD control coefficient 

can delay the Hopf branch. 

VI. CONCLUSIONS 

Based on the simplified mathematical model of wireless congestion control algorithm, this paper studies a wireless 

congestion control fluid flow model with PD controller. On the basis of theoretical analysis, we simply introduce the Hopf 

bifurcation behavior of the controlless system model. In order to delay this behavior, PD controller is added. By selecting 

appropriate control parameters, we can get the critical value of communication delay to keep the controlled system stable, 

thus effectively delaying the generation of Hopf branch.However, when the delay is large, the system will still block, or 

even crash.The numerical simulation results verify the correctness of the theoretical analysis. Therefore, we come to the 

conclusion that although the bifurcation behavior is not eliminated by PD controller, we can effectively delay the 

generation of Hopf branch, expand the stable interval of wireless network, and achieve better service performance of 

wireless network. 
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Fig. 1  State and Phase plot of )(tW and )(tp with 2.0 . 
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Fig. 2  State and Phase plot of )(tW and )(tp with 24.0  . 
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Fig. 3  State and Phase plot of )(tW and )(tp with 24.0  
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Fig. 4  State and Phase plot of )(tW and )(tp with 29.0  
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