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Abstract - Here in this study we have introduced a two-parameter new distribution. We have discussed some mathematical and 
statistical characteristics of the distribution such as the probability density function, cumulative distribution function and 

hazard rate function, survival function, quantile function, the skewness, and kurtosis measures. The model parameters of the 

proposed distribution are estimated using three well-accepted estimation techniques which are least-square estimation (LSE), 

maximum likelihood estimation (MLE), and Cramer-Von-Mises estimation (CVME) methods. of The proposed distribution's 

goodness of fit is also evaluated by fitting it in comparison with some other existing distributions using a real data set. 
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I. INTRODUCTION 
Lifetime models are generally used to study the life span of components of a system, a device, and in general, reliability and 

survival analysis. In fields like life science, medicine, biology, engineering, insurance, etc. where life-time distributions are 

frequently used. Many continuous probability distributions such as exponential, Cauchy, Weibull have been frequently applied 

in statistical literature for analyzing lifetime data. For a few years, most of the researchers are attracted towards the exponential 

distribution for its potential in modeling lifetime data, and excellent performance has been observed in many applications due 

to the existence of closed form solutions to many survival analyses. It can easily be justified under the assumption of stable 

failure rate but in the practice, the failure rates are not always stable. Hence, random use of exponential lifetime model seems 

to be inappropriate and unrealistic. In recent time, new classes of models have been proposed based on modifications of the 
existing classical probability models, Marshall and Olkin(2007)[9]. Many attempts are seen, in recent times  to generate new 

distributions to broaden established distributions and at the same time, provide considerable flexibility in the practice of 

modeling data. By adding extra criteria, many procedures may be used to shape a larger family from an existing 

established distribution. Thus several groups were introduced in the statistical literature by incorporating one or more 

parameters to create new models, Rinne(2009) and Pham and Lai (2007)[14][16]. Some of the well-known life time models are 

A. Lindley distribution : A random variable T follows Lindley distribution (Lindley, 1958)[8] with parameter θ and its 

probability density function (pdf) is shown as follows, 

 

    1 ;  t 0, 0
1

tf t t e 




   


         

B. Exponential power: The exponential power distribution has been given by (Srivastava & Kumar, 2011)[19] for 

evaluating the software reliability data. The PDF of the exponential power distribution is  
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C. Logistic-exponential power : The PDF of the logistic-exponential power distribution introduced by (Joshi et al., 

2020)[5] is 

  
    

  

1
1

2

exp 1 exp 1 1
;   ( , , 0),   0

1 exp 1 1

x x x

x

x e e e
f x x

e

  




   




   


   

  
 
   

 

 

D. Lindley exponential power: The Lindley exponential power distribution (Joshi & Kumar, 2020)[3] with three 

parameters (α, λ, θ) for the random variable ( , , )X L EP     whose probability density function (PDF) is as 

follows, 
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E. Weibull distribution: The Weibull distribution defined by (Weibull, 1951)[21] having two positive parameters α and 

β whose density function is 

1( ) exp( ) ; 0, 0f x x x x       

F. Inverse Weibull: In the literature of probability models and applied statistics, the inverse Weibull distribution has 

established a degree of recognition. Keller et al. (1982) studies the failure rate and density functions' shapes for the 

basic inverse model [2]. The inverse Weibull distribution with parameters α (scale parameter) and β (shape parameter) 

with the PDF of a random variable X is given as follows, 

   ( 1) exp ;   0,  0,  0g x x x x            

G. Lindley inverse Weibull (LIW): The PDF of Lindley inverse Weibull (LIW) distribution introduced by (Joshi & 

Kumar, 2020)[4] can be expressed as, 
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 Where  = scale parameter,  and  are shape parameters of the LIW distribution. 

H. Exponentiated Weibull: The exponentiated Weibull distribution defined by (Mudholkar et al., 1995)[11] having 

three positive parameters α, β and λ whose density function is 
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The key objective of this article is to put forward a more flexible model to attain a better fit for the lifetime datasets. The rest of 

the article shows following structure. In Section 2 we have introduced the new distribution and illustrated its important 

mathematical and statistical properties. In Section 3 we present methods of parameter estimation. We have made use of some 

well-known estimation methods, namely the maximum likelihood estimation (MLE), least-square estimation (LSE) and 

Cramer-Von-Mises estimation (CVME) methods. We have created the asymptotic confidence intervals for model parameters 

using the observed information matrix through ML estimates. A real data set has been evaluated to investigate the applications 

and capabilities of the proposed distribution are shown in Section 4. In this section, we present the estimated value of the 
parameters and log-likelihood, AIC, BIC and AICC criterion for ML, LSE, and CVME methods. The goodness of fit of the 

proposed distribution is evaluated by fitting it and compare with some other existing distributions using a real data set. 

Conclusions were presented in Section 5. 

II. NEW DISTRIBUTION 
A two-parameter new distribution (ND) is introduced in this section. The CDF of ND can be expressed as 
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The corresponding PDF can be expressed as, 
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The survival function is 
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Similarly, the hazard rate function (HRF) is 
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2.1 Quantile and Generating Functions 

Quantile Function 

The quantile function related to the random variable's probability distribution, in probability statistics, defines the value of the 

random variable in a way that the probability of the variable being less than or equal to the value is equal to the probability 

assigned. It is also called the inverse cumulative distribution function or percent-point function. The definition of the pth 

quantile is following equation's real solution. 

    1Q p F p  

the quantile function of ND is attained by inverting CDF (2.1) as 
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Generation of the random numbers: 

 For the random numbers generation of the ND distribution, we stimulate values of random variable X with CDF 

(2.1). Let V represent a uniform random variable in (0, 1), then the simulated values of X are obtained by 
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Skewness and Kurtosis: 

The coefficient of skewness based on quantile can be calculated as 
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The coefficient of kurtosis based on octiles was defined by (Moors, 1988)[10] which can be obtained as 
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The various probability density function and hazard rate function's shapes of ND (α, β, λ) with different values of parameters 

are illustrated in Figure 1. 

 

Figure 1. For different values of α, β, and λ, graphs of hazard function (left panel) and density function (right 

panel) 
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III. METHODS OF PARAMETER ESTIMATION 

3.1 Maximum Likelihood Estimation (MLE) Method 

In this portion, we have discussed the MLEs of the ND distribution. Let  1  , , nx x x   be a random sample of 

size ‘n’ from ND (α, λ) then the log likelihood function l(α, λ / x̠) can be written as, 

      /

1 1 1

, | ln 2 ln 3 ln (1/ ) 1 ln 1 1 ( / ) i

n n n
x

i i i

i i i

l x n n x x x e
       

  

              (3.1.1) 

By differentiating (3.1.1) with respect to unknown parameters α, and λ, we get 
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After equating these non-linear equations to zero and solving for the unknown parameters (α, λ) we will obtain the ML 

estimators of the ND distribution. Manually, it is difficult to solve hence using appropriate computer software one can solve 

these equations. Let parameter vector represented by ( , )   and the corresponding MLE of   as ˆˆ( , )   , then the 

asymptotic normality results in,     
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In practice, we don’t know   hence it is useless that the MLE has an asymptotic variance   
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where Hessian matrix is denoted by H 

To maximize the likelihood, the Newton-Raphson algorithm gives the observed information matrix. Hence, the variance-

covariance matrix can be expressed as, 
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Therefore from the asymptotic normality of Maximul Likelihood Estimates, approximate 100(1-a) % confidence intervals for 

α, and λ can be built as, 
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where  upper percentile of standard normal variate is denoted by /2Z . 
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3.2. Method of Least-Square Estimation (LSE) 

Swain et al. (1988) have introduced the weighted least square estimators and ordinary least square estimators for estimating the 

parameters of Beta distributions[20]. The least-square estimators of the unknown parameters α and λ of ND distribution can be 

calculated by minimizing  

  
2

1

; , ( )
1

n

i

i

i
Q X F X

n
 



 
   
  (3.2.1) 
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Consider ( )iF X  represent the distribution function of the ordered random variables 
     1 2 n

X  X   X    and 

 1 2, ,  , nX X X  denote random sample of size n from a distribution function F(.). The least-square estimators of α and λ say 

ˆˆ  and   respectively, can be attained by minimizing 

 

   

2

/

1

; , 1 1 1  ; 0, , 0.
1

n
x

i

i
Q X e x

x n




   



   
         

    
  (3.2.2) 

 

with respect to α and λ. 

 

Differentiating (3.2.2) with respect to α, β and λ we get, 
 

/ / /

1

2 1 1 1 1 1 ln 1 1
1

i i i

n
x x x

i i i i

Q i
e e e

x n x x

 

    



  



                 
                    

                  

  

1

/ / /

1

2 1 1 1 1 1
1

i i i

n
x x x

i i i i

Q i
e e e

x n x x

 

    






  



           
             

            

  

 

Similarly the weighted least square estimators can be acquired by minimizing 
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Hence, the weighted least square estimators of α and λ respectively can be acquired by minimizing, 
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with respect to α and λ. 

 

3.3. Method of Cramer-Von-Mises estimation (CVME) 

The Cramer-Von-Mises estimators of α and λ are acquired by minimizing the function 
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Differentiating (3.3.1) with respect to α and λ we get, 
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 simultaneously we will get the CVM estimators. 

IV. ILLUSTRATION WITH REAL DATASET 
From accelerated life test of 59 conductors, the failure time data in hours with no censored observation provided in this section 

was derived (Nelson & Doganaksoy, 1995)[13]. Owing to the diffusion of atoms in the coils in the circuit, we may see 

microcircuit failure; such phenomenon is known as electro-migration.   

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 6.958, 4.288, 6.522, 4.137, 

7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 

6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 
6.515, 6.476, 6.071, 10.491, 5.923. 

We have obtained the estimated values of the parameters using MLE method by utilizing the optim() function in R software (R 

Core Team, 2020)[15] and (Schmuller, J., 2017)[17] by maximizing the likelihood function (3.1). We have obtained the Log-

Likelihood value is l = -111.8084. The contour plot and fitted CDF with empirical distribution function are depicted in figure 2, 

(Kumar & Ligges, 2011)[6] 

 
Figure 2. Contour plot (left panel) and fitted CDF with empirical distribution function (right panel) 

We have presented the MLE’s with their standard errors (SE) and 95% confidence interval for α and λ in Table 1.  
Table 1 

MLE and SE and 95% confidence interval for α and λ 

Parameter MLE SE 95% ACI 

alpha 32.285 3.824 (24.7900, 39.7800) 

lambda 39.565 1.486 (36.6524, 42.4776) 

 

In Figure 3 we have plotted the Q-Q plot and P-P plot and it is seen that the proposed distribution fits the data very well.  
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Figure 3. The P-P plot (left panel) and Q-Q plot (right panel) of the ND distribution. 

 

We have displayed the graph of the profile log-likelihood function of α and λ in Figure. 4 and observed that the MLEs are 

unique. 
 

  
Figure 4. Graph of profile log-likelihood function of α and λ of the ND distribution. 

 

We have presented the estimated value of the parameters of ND distribution using MLE, LSE and CVE method and their 

corresponding negative log-likelihood, and AIC, BIC and CAIC criterion in Table 2.  
Table 2 

Estimated parameters, log-likelihood, and AIC 

Method of 

Estimation 
̂  ̂  -LL AIC BIC CAIC 

MLE 32.2852 39.5652 111.8084 227.6168 231.7719 227.8311 

LSE 37.3710 40.9357 111.8692 227.7384 231.8935 227.9527 

CVE 42.3754 41.9483 112.0107 228.0213 232.1764 228.2356 
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In Table 3 we have presented The KS, W and A2 statistics with their corresponding p-value of MLE, LSE and CVE estimates. 
Table 3 

The KS, W and A2 statistics with a p-value 

Method of 

Estimation 
KS(p-value) W(p-value) A2(p-value) 

MLE 0.0658(0.9453) 0.0334(0.9649) 0.2150(0.9858) 

LSE 0.0545(0.9906) 0.0271(0.9855) 0.2060(0.9887) 

CVE 0.0506(0.9963) 0.0259(0.9882) 0.2302(0.9798) 

 

 
Figure 5. The Histogram and the density function of fitted distributions of estimation methods MLE, LSE and CVM. 

 

To illustrate the goodness of fit of the ND distribution, we have selected some well known distribution for comparison purpose 

which are listed blew, 

A. Modified Weibull (MW) 

The MW distribution was given by (Lai et al., 2003)[7] with PDF of 

  1( ) exp(   ;( ) 0, 0x

MWf x x x x x e x           
 

B. Exponential power (EP) distribution: 

The PDF of  Exponential power (EP) distribution (Smith & Bain, 1975)[18] is 

   1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
 

       
    

 
. 

 where α and λ are the shape and scale parameters, respectively. 

C. Generalized Exponential (GE) distribution 

The PDF of generalized exponential distribution (Gupta & Kundu, 1999)[1] 

     
1

1 ; 0 0x x
GEf x; , e e , , x


      


     . 

D. Gompertz distribution (GZ) 

The PDF of Gompertz distribution (Murthy et al., 2003)[12] with parameters α and θ is 

   1 0 0x x
GZf x e exp e ;x , , . 

  


 
        

 
 

For the assessment of potentiality of the proposed model we have calculated the Bayesian information criterion (BIC), 

Corrected Akaike information criterion (CAIC), Akaike information criterion (AIC), and Hannan-Quinn information criterion 
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(HQIC) which are presented in Table 4.  

Table 4 

Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Distribution -LL AIC BIC CAIC HQIC 

ND 111.8084 227.6168 231.7719 227.8311 229.2388 

MW 112.5218 231.0435 237.2761 231.4799 233.4765 

GE 114.9473 233.8946 238.0497 234.1089 235.5166 

EP 116.5015 237.0029 241.1580 237.2098 238.6249 

GZ 117.1740 238.3480 242.5031 238.5623 239.9700 

 

The Histogram and the density function of fitted distributions and Empirical distribution function with the estimated 

distribution function of ND distribution and some selected distributions are presented in Figure 5. 

  
Figure 5. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution 

function with estimated distribution function (right panel). 

 

For comparison of the goodness-of-fit of the NEEE distribution with well established distributions we have presented the value 

of Kolmogorov-Simnorov (KS), the Anderson-Darling (W) and the Cramer-Von Mises (A2) statistics in Table 5. It is observed 
that the ND distribution has the minimum value of the test statistic and higher p-value thus we conclude that the ND 

distribution gets quite better fit and more consistent and reliable results from others taken for comparison. 

Table 5 

The goodness-of-fit statistics and their corresponding p-value 

Distribution KS(p-value) W(p-value) A2(p-value) 

ND  0.0658(0.9453)  0.0334(0.9649)  0.2150(0.9858)  

MW 0.0914(0.6738) 0.0821(0.6816) 0.4839(0.7626) 

GE 0.1042(0.5103) 0.1173(0.5079) 0.7368(0.5282)  

EP  0.1365(0.2021)  0.2398(0.2021)  1.3735(0.2098)  

GZ  0.1306(0.2464)  0.216( 0.2387)  1.3143(0.2277)  

V. CONCLUSION 

This paper introduces a two-parameter continuous distribution named ND distribution. Some important statistical properties of 

the ND distribution are illustrated such as the shapes of the probability density, cumulative density and hazard rate functions, 

survival function, reverse hazard rate function. Further quantile function, the skewness, and kurtosis measures are derived and 

established. We have employed three well-known estimation methods which are maximum likelihood estimation (MLE), least-

square estimation (LSE), and Cramer-Von-Mises estimation (CVME) methods to estimate the model parameters and we 
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concluded that the MLEs are quite better than LSE, and CVM estimators. A real dataset is considered to explore the 

applicability of the ND distribution and found that it is quite better than other lifetime models taken into consideration. We 

expect this distribution may be an alternative in the field of reliability analysis, probability theory and applied statistics. 
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