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1. Introduction 

The study of regular, conservative and multiplicative matrices is important in the theory of summability for the first time, 

Lorentz [14] defined almost convergence of a sequences. Mazhar and Siddiqui [15] proved the important result i.e. a 

convergence sequence is almost convergent and the limits are the same. The almost summability methods are defined by the 

idea of almost convergence of a sequences. King [16] used the concept of almost convergence of a sequence introduced by 

Lorentz to define more general classes of matrices then those of regular and conservatives ones. Zygmund [17] has defined the 

approximation to a function by trigonometrical polynomials. It is familiar that every method fails to sum divergent series 

whose divergent series is too rapid and it, also fails to the sum the series whose divergence is too slow. The theorems which 

emody this principle belong to the class called “Tauberian theorems”. 

1.1 Definition 

If 𝑎𝑛𝑘 = 0 for n> 𝑘, A is called a lower semi-matrix or lower triangular matrix, if 𝑎𝑛𝑘 = 0 for n<𝑘, A is called an upper semi-

matrix or an upper triangular matrix. Further if 𝑎𝑛𝑛 ≠ 0 for each n, A is said to be normal. The subject of infinite matrices, 

being a recent one, abounding inn good research problems. A very important application of matrices, namely to the theory of 

summability of divergent sequence and the series was initiated by Toeplitz [8,9,10,11 and 13] in 1911, Since then, it has 

attached almost all researchers in the field of summability methods. In 2008, ML Mittle and VN Mishra [18] established a 

theorem on approximation of signals (functions) belonging to the Weighted W ( Lp, ξ (t)),(p≥ 1)- class by almost matrix 

summability method of its Fourier series. In 2014 L.N Mishra, VN Mishra, K. Khatri, and Deepmala [19], established a 

theorem on the trigonometric approximation of signals belonging to generalized weighted Lipschitz W (𝐿𝑟 , ξ (t))(r≥ 1)- class 

by matrix (𝐶1. 𝑁𝑝) operator of conjugate series of its Fourier series. Although, the concept of absolute summability was 

introduced as early as in 1911 by Fekete [2,12] in case of Cesaro methods, and the same for Riesz and Abel method was 

defined by Obreachcoff [1,3] and Whittaker [4] in 1928 and 1932 respectively for matrix transformation in general this was 

considered. In 1937 by Mears [7], Sunouchi [5] proof that in an RF- transformation. 

𝛾𝑛 =  ∑ 𝐽𝑛𝑘𝑢𝑘
∞
𝑘=1 , in order that           (1.1.1) 

     ∑ |𝑢𝑘|∞
𝑘=1 < ∞  ⇒  ∑ |𝛾𝑛 − 𝛾𝑛−1| ∞

𝑘=2 < ∞,           (1.1.2) 

It is necessary and sufficient that     

∑ | 𝐽𝑛𝑘 − 𝐽𝑛−1𝑘 |
∞
𝑛=2    < 𝑀(𝐺)                (1.1.3) 

However, it was reviewed by Bosanquet [6], that for the RF- transformation (1.1) to exist, it is necessary that  

 | 𝐽𝑛𝑘 |   < 𝑘𝑛(𝐺)            (1.1.4) 

https://www.ijmttjournal.org/archive/ijmtt-v66i12p517
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holds; the constant M(G) and 𝑘𝑛(𝐺) being independent of k. that is to say that the RF-transformation (1.1.1) is absolute 

convergence preserving if the transformation matrix G = 𝐽𝑛𝑘 is 𝐵𝐴 - matrix. 

2. Preliminaries 

In this research paper, we proof the following theorems 

Theorem 2.1: 
In RF- transformation 

𝛾𝑛 = ∑ 𝐽𝑛𝑘𝑢𝑘
∞
𝑘=1  necessary and sufficient condition for  

∑ |𝑢𝑘|∞
𝑘=1   < ∞   ⇒ ∑ |  𝛾𝑛 − 𝛾𝑛−1|∞

𝑛=2  < ∞  And  

∑ 𝑢𝑘
∞
𝑘=1  = lim

𝑛→∞
𝛾𝑛    are that 

 ∑ |  𝐽𝑛𝑘 − 𝐽𝑛−1𝑘|∞
𝑛=2 < 𝑀(𝐺) Independent of k;        (2.1.1) 

| 𝐽𝑛𝑘 | < 𝑘𝑛(𝐺); Independent of k;            (2.1.2) 

lim
𝑛→∞

𝐽𝑛𝑘  =   1∀ k = 1, 2 …         (2.1.3) 

Theorem 2.2: 

Corresponding to every absolutely permanent FF- transformation matrix  

P = (𝑝𝑛𝑘), it is possible to construct an absolutely permanent RF- transformation matrix  

 G = (𝐽𝑛𝑘) by defining, 

𝐽𝑛𝑘 =∑ 𝑝𝑛𝑗
∞
𝑗=𝑘 ,            (2.2.1) 

Moreover, the sequence of partial sums of a series: if bounded, is absolutely summable by A to S iff, the corresponding series 

is summed absolutely by G to S. In case of permanent FF and RF- transformation matrix the result analogous to the theorem 2 

is well known. Richard has given a converse of this result.  

 

Remarks on theorem 2.2: 

The process given in theorem 2.2 is not reversible. If G is an absolutely permanent RF-transformation matrix and the matrix  P 

= (𝑝𝑛𝑘) is defined as 𝑝𝑛𝑘= 𝐽𝑛𝑘 − 𝐽𝑛𝑘+1, then the transformation by P need not be absolutely permanent. For Example, let 𝐽𝑛𝑘= 1 

for all values of n and k, so that G = (𝐽𝑛𝑘) is an absolutely permanent RF- transformation matrix, but when we define 𝑃𝑛𝑘 = 𝐽𝑛𝑘 

- 𝐽𝑛,𝑘+1 then for all values of n and k, 𝑝𝑛𝑘 = 0 then the matrix P = (𝑝𝑛𝑘) so defined does not satisfy the condition lim
𝑛→∞

(∑∞ k =

1 𝑝𝑛𝑘) = 1 and according the corresponding transformation is not absolutely permanent. 

 

Theorem 2.3: 

Corresponding to every absolutely permanent RF- transformation 𝐺 = (𝑔𝑛𝑘) it is possible to construct absolutely permanent FF 

transformation matrix P = (𝑝𝑛𝑘) by defining 𝑝𝑛𝑘= 𝑗𝑛𝑘 - 𝑔𝑛,𝑘+1 provided that lim
𝑘→∞

𝑔𝑛𝑘 = 0 for each fixed n. 

We shall need the following basic results in the proof of our theorems. 
 

3. Lemmas 

Lemma 3.1: The FF -transformation matrix 

σ𝑛=∑ 𝑝𝑛𝑘𝑠𝑘
∞
𝑘=1 ;         n=1,2,3, …           (3.1.1) 

is absolutely permanent iff, 

∑ |∑ (𝑝𝑛𝑗 − 𝑝𝑛−1,𝑗)∞
𝑗=𝑘 | < 𝑀(𝑝)∞

𝑛=2  for 1,2,3.        (3.1.2) 

lim
𝑛→∞

𝑝𝑛𝑘 = 0 for k=1,2,…          (3.1.3) 
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lim
𝑛→∞

(∑ 𝑝𝑛𝑘
∞
𝑘=1 ) = 1           (3.1.4) 

Lemma 3.2 

The RR- transformation matrix 𝛾𝑛= ∑ 𝑏𝑛𝑘𝑢𝑘
∞
𝑘=1 ,   n= 1,2,3,…       (3.2.1) 

is absolutely permanent iff the conditions 

∑ |𝑏𝑛𝑘|∞
𝑛=1 <M(B),           (3.2.2) 

|𝑏𝑛𝑘|< 𝑘𝑛(𝐵)            (3.2.3) 

Where, the constant M(B), 𝑘𝑛(𝐵)are independent of k, and ∑ 𝑏𝑛𝑘 = 1,∞
𝑛=1  for k=1,2,… are satisfied. 

4. Proof of the theorems are known as follows 

4.1 Proof of the theorem 2.1 

Let the sequence {𝑎𝑛} be defined as follows: - 

𝛼1 = 𝛾1, 

𝛼𝑛= 𝛾𝑛 − 𝛾𝑛−1 set the matrix B = (𝑏𝑛𝑘)for which  

𝑏𝑖𝑘=𝑔𝑖𝑘 (𝑘 ≥ 1)  

𝑏𝑛𝑘 =𝑔𝑛𝑘 − 𝑔𝑛−1,𝑘,         (n > 1 , 𝑘 ≥ 1)     (4.1.1) 

Then we have, 

𝛼𝑛= ∑ 𝑏𝑛𝑘𝑢𝑘
∞
𝑘=1 ,          n =1, 2,…  

The proof of the follows from corresponding conditions of lemma 3.2 for  

∑ |𝑏𝑛𝑘|∞
𝑛=1    < 𝑀(𝐵) Independent of k. is the same as  

∑ |𝑔𝑛𝑘 − 𝑔𝑛−1,𝑘| < 𝑀(𝐺)∞
𝑛=2  In dependent of k.          (4.1.2) 

Also,  

∑ 𝑏𝑛𝑘 = ∞
𝑛=2 𝑏1𝑘 + ∑ 𝑏𝑛𝑘

∞
𝑛=2   

                 = 𝑔1𝑘 + ∑ (𝑔𝑛𝑘 − 𝑔𝑛−1,𝑘)∞
𝑛=2  

                 = 𝑔𝑚𝑘  

Hence,  

∑ 𝑏𝑛𝑘 = 1∞
𝑛=1  For k=1, 2,.. is same as 

lim
𝑛→∞

𝑔𝑚𝑘 = 1 For k=1, 2, …           (4.1.3) 

  Finally, by definition (3.1) of (𝑔𝑛𝑘) 

We have,  

  𝑔𝑛𝑘=∑ 𝑏𝑗𝑘𝑏𝑛𝑘
𝑛
𝑗=1  ,      consequently, the condition 

|𝑏𝑛𝑘|  < 𝑘𝑛(𝐵)  is same as  

|𝑔𝑛𝑘| < 𝑘𝑛(𝐺) when the constant 𝑘𝑛 is independent of k. 
 

4.2 Proof of the Theorem 2.2 
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For the proof of the first part of the theorem, we deduce the required condition on the matrix G from the given condition on the 

matrix P. By hypothesis of the theorem and conditions (3.1.2) of the lemma 3.1, 

∑ |∑ (𝑝𝑛𝑗 − 𝑝𝑛−1,𝑗)𝑚
𝑗=𝑘 |∞

𝑛=2  = ∑ |𝑔𝑛𝑘 − 𝑔𝑛−1,𝑘|∞
𝑛=2  < M(G) for k =1,2,… which h is condition (3.2.1) of theorem 2.1. Also, by 

hypothesis, 

We have, 

𝑔𝑛𝑘 = ∑ 𝑝𝑛𝑗
∞
𝑗=𝑘  

      = ∑ 𝑝𝑛𝑗 − ∑ 𝑝𝑛𝑗
𝑘−1
𝑗=1

∞
𝑗=1  

Therefore, by condition (3.1.3) of lemma 3.1, 

lim
𝑛→∞

𝑔𝑛𝑘 =  lim
𝑛→∞

{∑  𝑝𝑛𝑗 − ∑ 𝑝𝑛𝑗
𝑘−1
𝑗=1

∞
𝑗=1 }  for k=1,2, … 

              = 1 

 i.e.  The condition (2.1.3) of Theorem 2.1 is also satisfied from condition (3.1.4) of lemma 3.1, it follows that  

|𝑔𝑛𝑘| = |∑ 𝑝𝑛𝑗
∞
𝑗=𝑘 | < |∑ 𝑝𝑛𝑗

∞
𝑗=1 | 

          = 𝑝𝑛   say  

Hence|𝑔𝑛𝑘| < 𝑘𝑛(𝐺),  

Where 𝑘𝑛(𝐺) is independent of k. Thus, all three condition of the theorem are reduced. In order to show that the condition of 

partial sums being bonded is essential in the second part of the theorem.  

We consider the following example, 

 Let,  𝑝𝑛𝑘  = 0 for n≥ 1   and odd k 

                   = 0 for even k < 2n 

                   =   2  n − 
𝑘

  2
 −1     for even k≥ 2𝑛. 

This matrix P = (𝑝𝑛𝑘) gives absolutely permanent FF- transformation. The element  𝑔𝑛𝑘 of the corresponding matrix, 

G = (𝑔𝑛𝑘)   as follows: -  

∴ 𝑔𝑛𝑘 = ∑ 𝑝𝑛𝑘
∞
𝑗=𝑘  

         = 
1

2
+

1

22 +
1

23 + ⋯ 

         = 1     for k ≤ 2𝑛  

         = 2n − 
𝑘

2
 −1 (1 +

1

2
+

1

22 + ⋯ ) 

  = 2𝑛−
𝑘

2   for even k ≥ 2𝑛    and  

 𝑔𝑛𝑘 = 2𝑛−
𝑘+1

2
 − 1

 ((1 +
1

2
+

1

22 + ⋯ )) 

         = 2𝑛−
𝑘+1

2        for odd k> 2𝑛 

Thus, for all values of k, when n takes greater than k, 

   𝑔𝑛𝑘 = 1  

i.e.   lim
𝑛→∞

𝑔𝑛𝑘 = 1 for    k = 1, 2, 3, …  and,        (4.2.1)    

 |𝑔𝑛𝑘| < 2𝑛 < 𝑘𝑛(𝐺) Independent of k.           (4.2.2) 

Again,  
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   𝑔𝑛𝑘 −   𝑔𝑛−1,𝑘 = o for k< 2𝑛   ⇒ 2(𝑛 − 1),  

= 
1

2
  for k = 2n, 

= 2𝑛−
𝑘+1

2
  −   1

   for odd k> 2𝑛, 

= 2𝑛−
𝑘

2
  −   1

    for even k > 2𝑛. 

Accordingly, we have  

∑ |𝑔𝑛𝑘 − 𝑔𝑛−1,𝑘|∞
𝑛=2   = 0 for k≤ 2𝑛, 

= ∑   2𝑛  −  
𝑘+1

2
 − 1

𝑘−1

2
𝑛=1  

= 1−2−
1

2
(𝑘+1)

< 1  for odd k> 2𝑛, 

∑ |𝑔𝑛𝑘 − 𝑔𝑛−1,𝑘|∞
𝑛=2  = ∑ 2𝑛− 

𝑘

2
−1

𝑘

2
𝑘=1

 

= 1−2−
𝑘

2 

  < 1 For even k> 2𝑛,   

Thus, in all cases, 

∑   |𝑔𝑛𝑘 − 𝑔𝑛−1,𝑘|∞
𝑛=2  < 𝑀(𝐺)          (4.2.3) 

For independent of k.  

Hence (4.2.1) −(4.2.3) show that the matrix G = (𝑔𝑛𝑘), s completed is the matrix of the theorem 2.1.  

The sequence {𝑆𝑛}   of the partial sum of the series ∑ 𝑢𝑛
∞
𝑛=1  = 2-2+4-4+8-8+… is not bounded. This sequence {𝑆𝑛}   is summed 

absolutely by p to 0, where as none of the series ∑ 𝑔𝑛𝑘𝑣𝑘 
∞
𝑘=1    converges. 

This proves the necessity of the boundness condition. 

 We have, 

∑ 𝑝𝑛𝑘𝑠𝑘
∞
𝑘=1 =  ∑ |𝑔𝑛𝑘 − 𝑔𝑛,𝑘+1|𝑚

𝑘=1   

                     = ∑ 𝑔𝑛𝑘 𝑢𝑘 − 𝑔𝑛,𝑚+1𝑆𝑚
∞
𝑘=1  

Therefore, 

∑ 𝑝𝑛𝑘𝑠𝑘
∞
𝑘=1  = lim

𝑚→∞
{∑ 𝑔𝑛𝑘𝑣𝑘 − 𝑔𝑛,𝑚+1𝑠𝑛

𝑚
𝑘=1 } 

                   = ∑ 𝑔𝑛𝑘𝑣𝑘
∞
𝑘=1             (4.2.4) 

Since, 𝑔𝑛,𝑚+1 → 0 as m→ ∞ . 

 By definition of 𝑔𝑛𝑘, and {𝑆𝑛} is given to be bounded. 

 The existence of the expression either side of equality (4.2.4) implies that of the other. Hence, the proof of the theorem is 

complete. 
 

4.3 Proof of the theorem 2.3 

The condition (2.1.3) of the theorem 2.1 and the definition of 𝑝𝑛𝑘 gives  

lim
𝑛→∞

𝑝𝑛𝑘 =  lim
𝑛→∞

(𝑔𝑛𝑘 − 𝑔𝑛,𝑘+1) 

               = 0 for k =1,2, … 

Which is the condition (3.1.3) of lemma 3.1 

Next, 

∑ 𝑝𝑛𝑘
∞
𝑘=1  = ∑ (𝑔𝑛𝑘 − 𝑔𝑛,𝑘+1

∞
𝑘=1 ) 

    = 𝑔𝑛1 + lim
𝑘→∞

𝑔𝑛,𝑘+1 

    = 𝑔𝑛1  

By hypothesis, therefore  
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lim
𝑛→∞

(∑ 𝑝𝑛𝑘
∞
𝑘=1 )  = lim

𝑛→∞
𝑔𝑛1 = 1       by theorem 2.1. 

Again, 

By definition of 𝑝𝑛𝑘,  

We have,  

∑ | ∑ (𝑝𝑛𝑗 − 𝑝𝑛−1,𝑗)∞
𝑗=𝑘 |∞

𝑛=2  = ∑ |∑ (𝛼𝑛−1,𝑗+1 − 𝛼𝑛−1,𝑗)∞
𝑗=𝑘 |∞

𝑛=2  

Where, 

𝛼𝑛𝑗 = 𝑔𝑛−1,𝑗 − 𝑔𝑛𝑗 

Now, 

             lim
𝑚→∞

(  ∑ (𝛼𝑛−1,𝑗+1 − 𝛼𝑛−1,𝑘)∞
𝑗=𝑘 )  

             = lim
𝑚→∞

 (𝛼𝑛−1,𝑚+1 − 𝛼𝑛−1,𝑘)  

             = −𝛼𝑛−1,𝑘 

Then,    ∑ |  ∑ (  𝑝𝑛𝑗 − 𝑝𝑛−1,𝑗) ∞
𝑗=𝑘 | ∞

𝑛=2  

          = ∑ |  𝑔𝑛𝑘 − 𝑔𝑛−1,𝑘|∞
𝑛=2  < 𝑀(𝐺) 

By condition (2.1.1) of theorem 2.1. The proof of the theorem is thus complete. It may be noted here, that because of the 

stronger hypothesis lim
𝑘→∞

𝑔𝑛𝑘 = 0 for each fixed n, we did not use the condition (2.1.2) of the theorem 2.1 in the proof of this 

theorem.   

5. Conclusion 

In every absolutely permanent RF- transformation 𝐺 = (𝑔𝑛𝑘) it is possible to construct absolutely permanent FF- 

transformation matrix 𝑃 = (𝑝𝑛𝑘) by defining  𝑝𝑛𝑘 = 𝑗𝑛𝑘 − 𝑔𝑛,𝑘+1 provided that lim
𝑛→∞

𝑔𝑛𝑘 = 0 for each fixed n and RF-

transformation 𝛾𝑛= ∑ 𝐽𝑛𝑘𝑢𝑘 ,∞
𝑘=1  for independent of k is absolute convergence preserving iff the transformation matrix 𝐺 =

(𝐽𝑛𝑘) is 𝐵𝐴- matrix. Corresponding to every permanent FF- transformation matrix 𝑃 = (𝑝𝑛𝑘) by defining 𝐽𝑛𝑘= ∑ 𝑝𝑛𝑗
∞
𝑗=𝑘 , 

moreover how the sequence of partial sum of the series, if bounded, is absolutely summable by A to S iff the corresponding 

series is summed absolutely by G to S.   
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