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Abstract: This paper uses Stein’s method for Poisson and negative binomial distributions together with the 

covariance associated with the generalized Waring random variable to determine error bounds for measuring 

the accuracy of approximations of generalized Waring distribution with parameters ( , , )a kt   in a generalized 

Waring process, where 0,  0,  >0a k    and 0.t  The bounds in the present study are pointed out that (i) for
 

1
0

k
c


  , the generalized Waring distribution can be approximated by the negative binomial distribution with 

parameters  , c
c t

a


 when c  and/or k  are large and (ii) for 0a
c

   , the generalized Waring distribution with 

parameters ( , , )a kt c  can be approximated by the Poisson distribution with mean t  when c
 
is large or t  is 

small. 
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method. 

I. INTRODUCTION 

Let
 
the counting process

 
{ ( ),  0}N t t   be a generalized Waring process with parameters ( , , ),a k   where 

0,  0a k   and 2.   Then the process has to satisfy the following conditions: (i) (0) 0,N   (ii) ( )N t  is a 

Markov process, (iii) ( ) ( )N t h N t   has a generalized Waring distribution with parameters ( , , )a kh   for 0h 
 

and ([12]). The condition (iii) indicates that ( )N t  has a generalized Waring distribution ( , , )GW a kt   with the 

probability function as follows: 
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0  and 0.   The mean and variance of ( )N t  are ( )N t   

1
[ ( )] aktE N t


  and 2

( )N t   

2

( 1)( 1)

( 2)( 1)
[ ( )] ,

akt kt a
Var N t

 

 

   

 
 respectively. Applications of the generalized Waring process can be found in 

modeling informetric data ([3]) and in the context of modeling web access patterns ([12]). 

 Let us consider the probability function in (1.1), it can be expressed as     
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Replacing 
( ) ( )

( ) ( )
( , , )

a kt

kt a
a kt

 

 
 

   

   
  in to (2), we obtain 
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From (4), it can be seen that if ,k   and 
1
kt

kt 
 tends to a constant, then by the property (15) in [7] and 

using [11], it follows that  1

1
( , , )

a

kt
a kt




 



 
  and ( ( ) )P N t n      ( ) 1

( ) ! 1 1

n a
a n kt
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 for every 

{0,1,...}.n  That is, if ,k   and 
1

0
k

c


   is a constant, then    ( )

( ) !
( ( ) )

n aa n t c
a n c t c t

P N t n
 

  
   for every 

{0,1,...}.n  Thus the generalized Waring distribution with  parameters ( , , )a kt c  can be approximated by the 

negative binomial distribution with parameters  , c
c t

a
  

when c  and/or k  are large. Let ( )M t  be the negative 

binomial random variable with the probability function  

( )
( ( ) ) ,  {0,1,...}.

( ) !

n a
a n t c

P M t n n
a n c t c t
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Let ( )Z t  be the Poisson random variable with the probability function  

( )
( ( ) ) ,  {0,1,...}.

!

t ne t
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Additionally, in the case of 
1

ka c





   and 0  , the probability function in (1.5) can be written as 
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From which, if c   and t  remains a constant, then ( ( ) ) ( ( ) )P M t n P Z t n    for every {0,1,...}.n  Therefore, 

the negative binomial distribution with parameters  , c
c t

a


 converges to the Poisson distribution with mean t
 

when c  is large. 

 The results mentioned above indicate that both negative binomial and Poisson distribution are limiting 

distributions of the generalized Waring distribution in the process. However, these limiting forms do not give 

any criteria for measuring the accuracy of each approximation. In this paper, we give two error bounds to be the 

mentioned criteria, that is, one bound for the total variation distance between the distributions of ( )N t  and 

( ),M t  denoted by ( ( ), ( )),d N t M t  and the other bound for the total variation distance between the distributions of 

( )N t  and ( ),Z t
 
denoted by ( ( ), ( )).d N t Z t  The distances can be defined as follows:  

N {0}

( ( ), ( )) sup ( ( ) ) ( ( ) )
A

d N t M t P N t A P M t A
 

               (8) 

and 
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N {0}

( ( ), ( )) sup ( ( ) ) ( ( ) ) .
A

d N t Z t P N t A P Z t A
 

                          (9) 

 The following theorems present two error bounds for ( ( ), ( ))d N t M t  and ( ( ), ( ))d N t Z t  which are our main 

results.    

Theorem 1.1.  For N {0},A   let ,c
c t

p


   then the following inequality holds: 

                                

1( )(1 )
( ( ), ( )) min 1, .

1

aa k c t p
d N t M t
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                      (10) 

Theorem 1.2.  For N {0},A   let ,a
c

    then we have the following: 

                                

1 ( 1)( )
( ( ), ( )) .

1
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Remark. 1. Theorem 1.1 tell us that the generalized Waring distribution with parameters ( , , )a kt c  can be 

approximated by the negative binomial distribution with parameters  , c
c t

a


 when c  and/or k  are large. 

Similarly, the result in Theorem 1.2 indicates that the generalized Waring distribution
 
with parameters ( , , )a kt c  

can be approximated by the Poisson distribution with mean t  when c  is large or t  is small. In these 

situations, simpler forms of both negative binomial and Poisson distributions are appropriate choices for 

approximating the generalized Waring distribution. 

 2. Consider the bounds in Theorems 1.1 and 1.2, because 
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 Therefore, it can be concluded that the 

bound in Theorem 1.1 is sharper than the bound in Theorem 1.2. In addition, it is seen that 
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. Because the 

second term is obtained from Theorem 1.C (ii) in [1]. Thus, the shaper bound for ( ( ), ( ))d N t Z t  in Theorem 1.2 is 

of the form 

        ( ( ), ( ))d N t Z t
11 ( )(1 )

(1 ) min 1, ,
1

a
t a k c t p

e t
c k ck





     

    
    

                               (12) 

which yields a good approximation when c  is large or k  and c  are large.   

II. METHOD 

 The tools for giving the desired results are Stein’s method for negative binomial and Poisson distributions and 

the covariance associated with the generalized Waring random variable ( ).N t   

 For Stein’s method, Stein [8] introduced a power full method to give a bound on the normal approximation to 

the distribution of a sum of dependent random variables. Later, Chen [5] applied this method to give a bound on 

the Poisson approximation to the distribution of a sum of dependent Bernoulli random variables. Brown and 

Phillips [2] also applied this method to give a bound on the negative binomial approximation to the distribution 

of a sum of dependent Bernoulli random variables. Additionally, this method was applied to other discrete 

distributions, including binomial, hypergeometric and geometric. The important tool of Stein’s method for   

each approximation is called Stein’s equation. Stein’s equation of each distribution is a simple tool for giving a 
bound on the distance between the two interesting distributions.  

In this study, Stein’s equations for Poisson and negative binomial distributions are used to give bounds for 

approximating the generalized Waring distribution. Stein’s equation for the Poisson distribution with parameter 

0t  , for given h, is of the form 

    ( ) ( ) ( 1) ( )th x h tg x xg x    P ,           (13) 

where 
( )

!0
( ) ( )

t ie t
t ii

h h k
 






P  and g and h are bounded real valued functions defined on N {0} . Similarly, 

Stein’s equation for the negative binomial distribution with parameters 0a   and 0 1 1p q    , for given h, is 

of the form 

    ,( ) ( ) ( ) ( 1) ( )a ph x h q a x f x xf x    NB ,          (14) 
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where 
( )

, ! ( )0
( ) ( )

a k a k
a p k ak

h h k p q
  


NB  and f and h are bounded real valued functions defined on N {0} . 

For N {0}A  , let : N {0} RAh    be defined by 

     
1  , if  ,

( )
0 , if  .

A

x A
h x
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          (15) 

Following [1], the solution Ag  of (13) can be expressed as 
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where Nx  and 1 {0,..., 1}xC x   . For negative binomial approximation, by [2] and [9], the solution Af  of (14) 

is as follows: 

   

, , ,1 1
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! ( )

( ) ( ) ( )
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 Let ( ) ( 1) ( )A A Ag x g x g x     and ( ) ( 1) ( ).A A Af x f x f x     The following lemma gives bounds for Ag  and 

.Af  

Lemma 2.1. For N {0}A   and N,x  then we have the following:  

1
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1
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a x q

 


 

([10]).        (20) 

For the covariance associated with the random variable
 

( ),N t  by following [4], the covariance of ( )N t  and 

( ( ))Ag N t  and the covariance of ( )N t  and ( ( ))Af N t  can be expressed as   
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0 0
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A A N t
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and 
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respectively. 

 

Lemma 2.2. With the above definitions, we have the following.
 

   
1

( ), ( ( )) ( ( ))( ( ))( ( ))A ACov N t g N t E g N t kt N t a N t
ck

                                 (23) 

and 

   
1

( ), ( ( )) ( ( ))( ( ))( ( )) .A ACov N t f N t E f N t kt N t a N t
ck

                                 (24) 

Proof. Because the proof of (24) is similar to that of (23), it suffices to show that (23) holds. The probability 

function of 
1

( ),  ,
k

N t c


  can be expressed as  
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 by mathematical induction, (25) is obtained. 

Substituting (25) into (21), it becomes 

                  

 
0

( )( )( )
( ), ( ( )) ( ( ) )A

A

n

g n kt n a n
Cov N t g N t P N t n

ck





   
  

 
               

   
1

( ( ))( ( ))( ( )) ,AE g N t kt N t a N t
ck

     

this implies that (23) holds.                       

III. PROOF OF MAIN RESULTS 

This section uses Stein’s method for negative binomial and Poisson distributions and the covariance associated 

with the random variable ( )N t  to prove our main results, Theorems 1.1 and 1.2.  

Proof of Theorem 1.1. From (14), substituting h  by Ah  and x  by ( )N t and taking expectation in this equation, 

we have  

   ( ( ) ) ( ( ) )P N t A P N t A    ( ( )) ( ( ) 1) ( ) ( ( ))E q a N t f N t N t f N t                          

    ( ( ) 1) ( ) ( ( )) ( ) ( ( ))E aqf N t qN t f N t pN t f N t      

      ( ( ) 1) ( ) ( ( ))aqE f N t qE N t f N t        ( )( ), ( ( )) ( ( ))N tp Cov N t f N t E f N t   

      ( ( )) ( ) ( ( ))k k kaqE f N t qE N t f N t      ( ), ( ( )) ,p Cov N t f N t  

where Af f  is defined in (17). By applying (6) and (24), we obtain 

                     ( ( ), ( ))d N t M t     sup ( ( )) ( ) ( ( ))
A

aqE f N t qE N t f N t      ( ( ))( ( ))( ( ))
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ck
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From (26), we also obtain 

        ( ( ), ( ))d N t M t  
( )( ( )) 1

( ( ))

N t a N t
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ck a N t q

 
  

 
 (by (20)) 

.
a

ck
                (28) 

Hence, following (27) and (28), the result in Theorem 1.1 is obtained.                   
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Proof of Theorem 1.2. From (13), substituting h  by Ah  and x  by ( )N t and taking expectation in this equation, 

we have  

                ( ( ) ) ( ( ) )P N t A P Z t A    ( ( ) 1) ( ) ( ( )) ,E tg N t N t g N t         

where Ag g  is defined in (16). Applying (7), we have 

                       ( ( ), ( ))d N t Z t    sup ( ( ) 1) ( ) ( ( ))
A

tE g N t E N t g N t    

     ( )sup ( ( ) 1) ( ), ( ( )) ( ( ))N t
A

tE g N t Cov N t g N t E g N t      

      sup ( ( )) ( ), ( ( )) .
A

tE g N t Cov N t g N t    

By (23), we obtain 

                       ( ( ), ( ))d N t Z t    
1
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A
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E g N t E g N t kt N t a N t
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A
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E at g N t

c k
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sup ( ( ))

A

ktN t N t a N t
E g N t

c k

  
   

 
 

1 ( ) ( )( ( ))te ktN t N t a N t
E
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 (by (18)) 

1 ( 1)( )
,

1

te a c t
t

c ck

   
   

 

which gives the Theorem 1.2.                 

IV. CONCLUSION 

In a generalized Waring process with parameters ( , , )a k  , the negative binomial and Poisson distribution are 

limiting distribution forms of the generalized Waring distribution. However, these limiting forms do not give 

any criteria for measuring the accuracy of each approximation. This study gave these criteria in the terms of two 

error bounds for the total variations distances, the total variations distance between the generalized Waring 

distribution with parameters ( , , )a kt c
 
and the negative binomial distribution with parameters  , c

c t
a


 and the 

total variations distances between the generalized Waring distribution with parameters ( , , )a kt c
 
and the Poisson 

distribution with mean ,t  where 1
0

k
c


  . With these bounds, it is pointed out that (i) the generalized 

Waring distribution can be approximated by the negative binomial distribution when c  and/or k  are large and 

(ii) for 0a
c

   , the generalized Waring distribution can be approximated by the Poisson distribution when c
 

is large or t  is small. Following these conditions, each distribution, negative binomial and Poisson, can be 

used as an appropriate approximation of the generalized Waring distribution.     
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