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Abstract

We consider, for a bounded open domain 2 in R™ and a function u: € — IR™, the

quasilinear elliptic system

—dive (z,u (x) , Du(x = x z,u) in
ons) 0 D) = Sl o

where f belongs to the dual space W17’ (Q,w*, R™) of Wol’p (Q,w, IR™), g satisfy some
standard continuity and growth conditions. We prove existence of a regularity, growth

and coercivity conditions for o, but with only very mild monotonicity.

1 Introduction and statement of results

Throughout all this work, £ will denotes a bounded open domain in IR™. This work is
devoted to establish existence results for the Dirichlet problem in divergence form of type

(1.1) below. We study this quasilinear elliptic system in a weighted sobolev space and with
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mild monotonicity assumptions on ¢ and various hypotheses of monotonicity and ¢ satisfy
some standard continuity and growth conditions. We consider the quasilinear elliptic system:
—divo (z,u(z),Du(z)) = f(z)+g(z,u) in Q

(QES) (L.1)
u = 0 on 0,

where f belongs to the dual space W~ 1# (Q,w*, R™) of Wol’p (Q,w, R™) (% + z% =1, p> 1)

and w = {w;; |0<i<n, 1<j<m} is a family of weight functions defined on © with

/

wij(x) > 0 for almost every z €  and w* = {wj; = wiljfp, 0<i<mn, 1<j<m}
0 = (0rs)1<s<n, 1<r<m and which satisfies some hypotheses (see below).
We denote by IM™*™ the real vector space of m x n matrices equipped with the inner product
M:N = Z M;;Ni;. The Jacobian matrix of a function u : 2 — IR™ is denoted by

g

Du(x) = (Diu(z), Dou(x), ....., Dpu(z)) with D; = 0/0(x;)

The first goal of this paper is that we treat a class of problems for which the classical
monotone operator methods developed by Visik [16], Brezis [2], Browder [3], Lions [14], Minty
[15] and others do not apply. The reason for this is that o does not need to satisfy the strict
monotonicity condition of typical Leray-Lions operator. The tool we use in order to prove
the needed compactness of approximating solutions is Young measures. The second goal of
this paper is to treat the degenerated or singular case. To do this, we replace the classical
Sobolev spaces W1P(€2, IR™) by a general setting of weighted Sobolev spaces WP (Q, w, IR™).
So the existence results are proved in this general setting. This paper can be seen as a
generalization of Quasilinear elliptic systems with W~ -data, by N. Hungerbiihler [9], [10]
and as a continuation of Y. Akdim [1]. Let w = {w;; | 0<i<n, 1<j<m}, and @y =
(wpj) for all 1 < j < m the weight functions system defined in € satisfying the following
integrability conditions:

—1

wij € Lipu(Q), w[}j € L},.(), for some p €]1, 00[ and s > 0 such that w;;” € LY(Q).
(1.2)
The space W1P(Q,w, IR™) is the set of functions

ou’
895 7

{U =u(z) | u € LP(Q,wy, R™), Diju= € LP(Q,wij, IR™), 1<i<n, 1<j< m}}
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with

LP(Q, wij, R™) = {“ = u(@) | | u|wy? € LP(QJRm)}'

The weighted space WP (2, w, IR™) can be equipped by the norm

m 5
lalpo = (X [ fulwnde+ S [ Dguleyda |
=179 1<i<n 1<j<m /¢

The norm ||.||1,,p is equivalent to the norm ||| . ||| on Wol’p(Q,w,Rm), defined by ||| u |||=

1
(> /Q | DijulPwijdx)e.

1<i<n,1<j<m

Proposition 1.1 The weighted Sobolev space WP(Q, w, IR™) is a Banach space, separable
and reflexive. The weighted Sobolev space Wol’p(Q,w,Rm) is the closure of C3°(2, IR™) in
WLP(Q,w, IR™) equipped by the norm 11 -

Proof: see [4] (with a slight modification).

Definition 1.1 /7] A Young measure (9;)qcq is called WP-gradient young measures (1 <

p < 00) if it is associated to a sequence of gradients Duy, such that uy, is bounded in Wl’p(Q).

Definition 1.2 The WP-gradient young measures (U;)zeq is called homogeneous, if it does

not depend on x, i.e, if ¥, =1 for a.e. x € Q.

Definition 1.3 Let u: Q — IR™ be a measurable function. We say that u is approximately

differentiable at x € Q if there exists a matriz F, € M™ ™ such that for all € > O we have

lim i]y € By(x): | uly) —u(z) — Fp(y —x) |> re| = 0.

r—0 rn

In this case, F, is unique and write apDu(x) = F.

Hypotheses
(Hp) (Hardy-Type inequalities):

There exist some constant ¢ > 0, some weight function v and some real ¢ (1 < ¢ < co) such

(i | ruj<x>|%<w>dx)q Sc( > |Dz~jurpwij)p

that

1<i<n; 1<j<m
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for all u € Wy P(Q,w, R™), with v = {; | 1 < j < m}.
The injection WyP (€2, w, R™) << LI(Q, 7, IR™) is compact, and
Wol’p(Q,w, R™) —<— L"(Q, IR™) is compact, with

r>1 if n(s+1) <ps
(Hp) Continuity :
o:Qx R™x M™" — IM™*" is a Carathéodory function
(i.e: z+— o(z,u, F) is measurable for every (u, F') € R™xIM™*" and (u, F) — o(z,u, F)
is continuous for almost every = € 2).
(H2) Growth and coercivity conditions:
There exist ¢; >0, ¢ >0, A\ € LP(Q), Ay € LY(Q), A3 € LW/ (Q), 0<a<p, 1<
g <ooand > 0suchthat forall 1 <r <n, 1< s < m, we have:
m
lors (@, u, F)| < BwllPM(z) + e > [y ug] 7P + e > wilj/p | DijulP'] (1.3)
j=1 1<i<n; 1<j<m
and
m
a(x,u, F)  F > —)\2(:1:) — Zwoj(x)o‘/px\g(a:)|uj|°‘ + c2 Z wij(ac) . |Fij|p (1.4)
Jj=1 1<i<n; 1<5<m

(H3) Monotonicity conditions: o satisfies one of the following conditions:

a) For all x € Q, and all w € IR™, the map F +—— o(x,u, F) is a C'-function and is
monotone i.e, (o(z,u,F) —o(z,u,G)) : (F—G) >0, for all z € Q, all u € R™ and
all F,G € DI™<™).

b) There exists a function W : Q x R™ x M™*™ — IM™™ such that o(z,u, F) =

8({;;;(9;, u, F) and F — W (z,u, F) is convex and C! function.

c) For all x € Q, and for all u € IR™ the map F +— o(x,u, F') is strictly monotone i.e,

o(z,u,.) is monotone and, (o(z,u, F') —o(x,u,G)) : (F —G) = 0 implies that F' = G).

d) o(x,u, F) is strictly p-quasi-monotone in F, i.e:

/ (0(2,u, ) — o(z,u, ) : (A= N))dI(A) > 0,
men

for all homogeneous W!P-gradient young measures ¥ with center of mass A = (9, id)

which are not a single Dirac mass.
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(Gp) : (continuity) the map g : Q x R™ — IM™*™ is a Carathéodory function.
(G1): (growth condition) there exist : by € L¥' (Q)

1 L q
‘grs| < wfs[bQ + ZF}/jp |uj|pl]
J
Foralll<r<nand1l<s<m.

(Fp):( continuity) f : Q x R™ — IR™ is a Carathéodory function i-e: x — f(x,u) is
measurable for every u € IR™, and , u — f(x,u) is continuous for almost every = € 0 .
(F1): (growth condition ): The exist : by € LP' (Q) such that :

1

7 a. L .
[fj (@, w)| < [br(z) + )" |uy[7 Jwgy; V1 <j<m

Our aim of this paper is to prove the existence of the problem (1.1) in the space
WO1 ’P(Q,W,Rm). The main point is that we do not require strict monotonicity or
monotonicity in the variables (u, F') in (Hg3) as it is usually assumed in previous work

see ([12] or [13]).

Our aim of this paper is to prove the existence of the problem (QES) in the space WO1 P(Q,w, R™),

when the second member f is lying in W(;l’p/ (Q,w*, R™).

Theorem 1.1 If p € (1,00) and o satisfies the conditions (Hy1) — (H3), then the Dirichlet
problem (QES) has a weak solution u € Wol’p(Q,w,]Rm), for every [ € W*I’p/(Q,w*,IRm)
and g satisfies (Fo) and (F1).

Lemma 1.1 For arbitrary u € Wol’p(Q,w,Bm) and f € W_l’p/(Q,w*,]Rm), the functional

F(u): WoP(Q,w, R") — IR
v — / o(x,u(x), Du(z)) : Dv(z)dz — (f,v) +/ g(z,u) : vdz,
Q Q

1s well defined, linear and bounded.
Proof For all u € W&’p(Q,w, IR™), we denote
Fu)(v) =L — I+ I3,

with
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and
I = <f,’l)> .
I3 = /Qg(x,u) :vdx

We define
Irs :/ UTS(:C,U(Z‘),DU(.’E)) : Drsv(x)dx.
Q

Firstly, by virtue of the growth conditions (Hz) and the Holder inequality, one has

Lo < /y%mu 2), Du(x))| : | Drsv()|da
< 5 1/p 1/p q/p
< w, +C1Z\7 lu(z)]

T a Z z‘lj/p |Dij|p 1]|Drsvld$

1<i<n; 1<j<m

5[ @P o) ([ 1Drw(o) o)
+ 01(/Q]Drsv(x)|pwrs)1/p(2/ IUquWjdx)l/pl

+ Cl( Z /’Dzju|pw13dx 1/]) /|Drsv|pwrsdx) /p

1<i<n; 1<5<m

IN

with p = p/(p — 1), and thanks to the Hardy-Type inequalities (Hp) we have:

+c HDU

Lp,wrs

+c1 Z ”DU||p7wij |‘Du||p,wr5‘|
]

Il < cﬁlumup/ v e ([ ultyd)' "
Q

< By 0l s+ 10N, Nl Helly s 01

with ¢ = max(e, 1), we have:

q/v

1] < B[]l + llull] Lpw

+llullplllolhpw < o0

and
=3 | o)

We denote I3 ; = | [ fi(z,u)p;(x)dz|.

2] < [ 1Flloldz < (£ e 0

1pw

I < /Q £ (@, w)l[v; ()| da]
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S/le(x)\vj(x)\w(%-d:v—I—/Q’yfll\uj\g’]vj(x)\wdl'}d:v
< ([ 1@ ([ Jos@)Pwnsda)s + ([ @it ([ o @)Poda)?
b2 g +(52 [ @) 10 o
<[ b1 llpll o lipw +e |l Duflipell v 1 pw

< (o +ell Dullipw) [0 lhpw

hence I < ¢z || v |1 pw- With ¢z < o0.

Finally the functional F'(-) is bounded. O

Lemma 1.2 The restriction of F' to a finite dimensional linear subspace V' of Wol’p(Q, w, IR™)

18 continuous.

Proof Let d be the dimension of V' and (ey, e, ..., e4) a basis of V. Let u; = Z a?ei be a
1<i<d
sequence in V' which converges to u = Z a'e; in V. The sequence (a;) converge to a € R,
1<i<d
s0 uj — u and Duj — Du a.e. On the other hand [ju;]|, , , and [[Dusl|,, , are bounded by

a constant c. Thus, it follows by the continuity conditions (Hy), that

o(x,uj, Duj) : Dv — o(x,u, Du) : Dv

for all v € Wol P(Q,w,R™) and a.e. in Q. Let Q' be a measurable subset of Q) and let
vE Wol’p(Q,w,ij).

ISSN: 2231-5373 http://www.ijmttjournal.org Page 21
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Thanks to the condition (Hz), we get
/Q/ lo(z,uj, Duj) : Dvldx < oo,
By the continuity conditions (Fj) we have:
g(z,uj)v — g(z,u).v

almost everywhere. Moreover we infer from the growth conditions (F) that the sequences:
(o(x,uj, Duj) : Dv) and (g(z,u;).v)
Are equiintegrable. Indeed, if ' C Q is a measurable subset and v € VVO1 P(Q, w, IR™) then:
Jor l9(x, uj).v|dx < oo (by (F1) and Holder inequality )
Joy lo(z,uj, Duj) : Dv|dz < oo (by Hélder inequality)
which implies that o(x, uj, Du;) : Dv is equiintegrable. And by applying the Vitali’s theorem,
it follows that

/Qa(x,uj,Duj) : Dvdx — /Qa(a:,u,Du) : Dudz,
for all v € Wol’p(Q,w, R™.

Finally
.hm <F(Uj),’l)> = <F(u),v>,

Jj—00
which means that

F(uj) — F(u) in W (Q,w*, R™).

2 Galerkin approximation

Let V1 € Vo C ... C T/VO1 P(Q,w, IR™) be a sequence of finite dimensional subspaces with
Urewv Vi dense in T/VO1 P(Q,w, IR™). Let us fix some k, We assume that Vj, has dimension d

and that (e, ea, ....,eq) is a basis of Vj. Then, we define the map
G: R? — IR?
t
(a1, .....,aq)t — ( <F(Z§l:1 a;e;), 61> ey <F(Zf:1 aie;), ed> ) .

Proposition 2.1 The map G is continuous and G(a) - a tends to infinity when |la|| pr tends

to infinity.

ISSN: 2231-5373 http://www.ijmttjournal.org Page 22
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Proof Since F restricted to Vj is continuous by Lemma 1.2, so G is continuous.
Let a = (a1, .....,aq)" and u = 3" ;g a'e;, Then G(a)-a = (F(u),u) and the fact that ||a| za

tends to infinity is equivalent to the fact that ||ull, , , tends to infinity. In fact, we have:

G(a)-a= Z (F(u),a'e;) = (F(u),u)

1<i<d

p p
Z ’al‘ ) Hel ‘l,p,w
1<i<d

1pw »
1P . Z ¢
< max, (Jleilf) ( a |)

1<i<d

and

IN

[ulll pw =

g a‘e;

1<i<d

N

< c-lallga,
which implies that |a|| ga tends to infinity if [[ull; , , tends to infinity. Now, it suffices to
prove that

(F(u),u) — oo when ||ull1pw — 0.

Indeed, thanks to the first coercivity condition and the Hélder inequality, we obtain

I :/ o(z,u, Du) : Dudz > — || A2, —/ )\3ng/p|uj|0‘d93 + ¢ Z / | DyjulPw;jda.
Q Q Q

1<i<n, 1<j<m

By the Holder inequality, we have

a/p (p/ar)- a/p
/Q/\g|uj|%0j e < [sll ey (/QWOJIW\ rre adaz)
S c’ ||)‘3||(p/oz)’ HujHl,p,wO]- ,

where ¢’ is a constant positive. For [|ul[, , , large enough, we can write
bl b

p
1,p,w;;

1

v

— [ A2lly — || As]] pla) HUJH? wo; TC2° Zlgi,jgn,m | Duj
(p/e) D03

v

—R2lly = & sl ooy - 1ull e + 26 Ul -

And since
I'= | <f7 U> | < Hfol,p/,w* ’ ”qu,p,w7

Finally , it follows from the growth condition F} that :

11 =1 [ fu)ada] < (Il + I Dul i)l
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< ez Jlullipw

With; 0 < a < pand p > 1, we get :

I-I'—1">cy.d . |Ju

p
1

[y o = € M8l Ul o = IA2lly = €5 el

(2.1)

Dw Hval,p’,w* ’

Consequently, by using (2.1), we deduce

I-I'-1"— oo as lully p — 00

(F(u),u) — o0 as [ully,,, — o0

The properties of G allows us to construct our Galerkin approximations.
Corollary 2.1 For allk € IN, there exists (uy) C Vi such that (F(ux),v) =0, for allv € V.

Proof By the proposition 2.1, there exists R > 0, such that for all
a € OBr(0) € IR?, we have G(a)-a > 0. And the usual topological argument see e.g [14]
or [15], implies that G(z) = 0 has a solution x € Br(0). Hence, for all k € IV, there exists
(ug) C Vi, such that

((Fug),v) =0, for all v € V.

Taking (uj, = &zt e;) O
Proposition 2.2 The Galerkin approximations sequence constructed in Corollary 2.1 is uni-
formly bounded in Wol’p(Q,w,]Rm); i.e:

there exists a constant R > 0, such that |ukl|,, , < R, for all k € IN.

Lemma 2.1 Let p > 1 and uy be a sequence which is uniformly bounded in Wol’p(Q, w, R™).

There exists a subsequence of uy ( for convenience not relabeled ) and a function u €
Wol’p(Q,w, R™) such that ux, — u in Wol’p(Q,w,]Rm)

And such that ui, — u in measure on Q@ and in L"(Q, R™), with :

r>1 if n(s+1)<ps

ISSN: 2231-5373 http://www.ijmttjournal.org Page 24
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Lemma 2.2 Let p > 1 and up be a sequence which is uniformly bounded in Wol’p(Q, w, R™).
There exists a subsequence of ug ( for convenience not relabeled ) and a function u €
Wol’p(Q,w, R™) such that up, — u in Wol’p(Q,w,lRm)

And such that up — u in measure on Q@ and in L"(Q, IR™), with :

1§T<$ Zf ps%n(s—I—l)

r>1 if n(s+1)<ps

For the Proof, see [9], [10], with a slight modification.

Proof As in the proof of Proposition 2.1, we can see that (F(u),u) — oo as ||ull; , , —
oco. Then, there exists R satisfying (F'(u),u) > 1 when |[ul|; , , > R. Now, for the sequence
of Galerkin approximations (uy) C Vi of Corollary 2.1, which satisfy (F(ug),ur) = 0, we
have the uniform bound [lug|,,, < R for all k € IN. And there exists a subsequence (uy) of

the sequence (uy) C Vi, such that:
up — u in Wol’p(ﬂ,w, IR™) and uy — u in measure in L" (2, IR™).

The gradient sequence (Duy) generates the Young measure ¥,. Since vy — u in measure,We
have that (uy, Dug) generates the Young measure (8,(,)®9,), see e.g [5]. Moreover, for almost

all x in Q, we have,
(i) Y, is a probability measure, i.e, [|[Ug]),,.s = 1.
(ii) 9, is a homogeneous WP - gradient Young measure.

(iii) (Vg,id) = Du(z), see e.g [3].

Proof. See [5] and [6].

3 Passage to the limit in (QES)

Now, we are in a position to prove our main result under convenient hypotheses.
Let
I, = (o(x,u, Dug) — o(x,u, Du)) : (Dug, — Du). (3.1)

Lemma 3.1 (Type-Fatou lemma)(See [5]) Let F' : Qx IR™ x IM™*™ — IR be a Carathéodory

function, and uy, : Q@ — IR™ a measurable sequence, such that (Duy) generates the Young

ISSN: 2231-5373 http://www.ijmttjournal.org Page 25


vts-1
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 66 Issue 2 - Feb 2020


vts-1
Text Box
ISSN: 2231-5373                              http://www.ijmttjournal.org                              Page 25


International Journal of Mathematics Trends and Technology (IJMTT) - Volume 66 Issue 2 - Feb 2020

measure Uy, with |||, ., =1, for a.e. x € Q. Then

mes

lim inf F(x,uk,Duk)da:Z// F(z,u, )dd;({)dz, (3.2)
Q mxXn

k—oo JQ

provided that the negative part of F(x,uy, Duy) is equiintegrable.
Lemma 3.2 The sequence (Iy)y is equiintegrable.

Proof We have

Iy = (o(z,u, Dug) — o(x,u, Du)) : (Dup — Du)
= [o(x,ug, Dug) : Dug] — [o(x, ug, Dug) : Du] — [o(z,uw, Du) : Dug| + [o(z,u, Du) : Du]
= 4+ IR+ + 1k

(3.3)
We denote (I})™ = —[o(z,ug, Dug : Dug]”. Thanks to the coercivity condition (Hs), we
have
lde < [ Palver 30 whbal-fuglt e Y wylDyuld
& 0 1<j<m 1<i<n, 1<j<m 3.4)
< ||>\2||1+//( > wf);/pmkj!a)p/a||)\3||(p/a)'+02||uk||117,w,p
¥ 1<j<m

which p/a > 1. Therefore,

_ a/p
(@) e < alli+ (D2 woslueg?)™ sl ey + ez el

|
¥ 1<j<m

IN

X2l 4 llurllp zo0 1 A3 ey + c2 lurllf

< o0

for all Q' C Q.
Similarly for (|(I})7].
Now, by using the growth condition (H2) and the Hardy-Type inequalities (Hp), we have

@) lde = [ ot Duy) s Dulda
0% o

< ﬂ/ w%p)\l(w)Dmukdx
Q/

+ aB >, /7;/p,’lbkj’q/p/Drsukde‘ (3.5)
1<j<m Y

+ ap Z /lwilj/p |Dijuk]p*1Drsukdw.

1<i<n, 1<j<m
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Thus, by the Holder inequality, we obtain

1/p
@ lae < 8| Inaly ([ IDrpor.ds)

|
Ql

% 1/p
l/p 1/ / /
+ < (/, |Drsuk|pwrsdl’) // Z 7 P |ukj|q/p dr
“ ¥ \igjsm (3.6)
/ 1/p’
+ Z / (|D2]uk({£)|p (p_l)wijdx) P
1<i<n 1<j<m "’
1/p
X (/ \DTSuk\pwrsdx> }
Q/
So, by combining (3.5) and (3.6), we deduce that
/Q, |0, up, Duy) : Dug|dz < B (M lly[[lunll1pw + uell1pew) < oo (3.7)

Similarly to (|(I2)~|, we obtain (|(Z3)~|. Finally: Iy is equiintegrable.
We choose a sequence ¢ such that ¢y belongs to the same space Vi and ¢ — ¢ in

WP Q,w, IR™) this allows us in particular, to use up—yyg as a test function in (2.1). We have :
0 ¥

/Q‘U(xaukaDuk) : (Dug, — Dog)|dx = (v, u, — ox)

(3.8)
+Lﬂ%w%Wrwmm

The first term on the right in (3.8) converge to zero since (ug — @) — 0 in Wy ?(Q,w, R™).
By the choice of ¢, the sequence ¢, uniformly bounded in WO1 P(Q,w, R™).

By the equivalence of the norm in Wol P(Q,w, IR™) and the sequence (uy is uniformly
bounded in Wol’p(Q, w, R™), ||uk||1,pw is bounded. Moreover, by the construction of ¢y, and

lemma (2.2) we have :

lur — @rll1pw < lluk — ull1pw + v — il pw

(lur = ullpe + llu = ¢rll1pw) =0

We infer that the second term in (3.8) vanishes as k — oo. Finally, for the last term And
lemma (2.1) Next, for the second term: I} = / f(z,ug)(up, — ¢r)dx in (3.8) it follows from
Q

the growth condition F} and the Holder inequality that :

(L] < (o1l + e 1D (ur = o) ll1pw)lur = @xll1pw
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< (b1l + e 1D (ur — or)ll1,p0)- 1wk — @rll1pew-

By the equivalence of the norm in VVO1 P(Q,w, IR™) and the sequence (uy is uniformly bounded
in Wol’p(Q,w, R™), ||ug||1,pw is bounded. We infer that the second term in (3.8) vanishes as
b= 09 ok — e = 0 g — e — 0 and Jlug — gellfy — 0

. Now, we consider (I)" = (o(x, u, Dug) : (Duy — Du). We have that I} is equiintegrable

because [ is. So, we define
X — lim inf / Tpdz = lim inf / (I,)dz > / / (0(2,1,A) : (A = Du)dd ().
k Q k (9] Q J M mXn
So to prove (3.2), it suffices to prove that
X <0. (3.9)

Let € > 0, so there exists kg € IN such that, for all & > kg, we have dist(u, Vx) < € since
liminfy, ey, lu —vklly,,, <& (ur — ).

Or in an equivalent manner dist(ux — u, Vi) < €, Vk > ko Then for all v, € Vi, we have

X = liminf [ o(x,uk, Dug) : (Duy, — Du)dx

k—oo JO
= liminf { o(x,uk, Dug) : D(up —u — vg)dx +/ o(x, ug, Dug) : D(vg)dx
k—oo [¢) QO

Combining (Hz) and (1.1), we get

n,m

. . 1/p’ / 1/p _

X < lim inf (/ Bt a3 P |7 e Y wlf | Diulr !
e Ja 1<j<m i=1,j=1

|Drs(uk i Uk)|dx)
+ <f, Uk>.

For all € > 0, we choice v; € V; such that
Jue —w = vy, < 2€, (3.10)
for all £ > ky. Which implies that

| (From) [ < T oe 4 (w =) |+ (fyue —u) [ <2 |[f]] 2y 4y e + 0(R).
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Hence limy o0 (f, up — v) = 0. According to the Hoélder and Hardy-Type inequalities, and by

Lemma 3.1 we deduce that

1
X < liminf cB(H)\al’(/ | Dys(ug, —u — vk)]pwrsdx) w
k—00 Q

1/p' 1/p
41 </Q |uk|q7) (/Q |Dys(u, —u — vk)|pwrsdz>
o1 1/p 1/p
ver (X [l Dl ) ([ Dt —u =) ) + 1)

< liminfe (H/\al' g —u — Uk”l,p,w) el o e — v = villy oy + 26 [ fIl 2y o + 0(R).

p,w

Therefore,
X <2208 (I Mlly + lullf oo + 171|100 -

This proves that X < 0, and finally

/Q/ . o(z,u,\) : Adizdr < /Q/ . o(xz,u,\) : Dudd,(\)dzx.
Proof of Theorem 1.1 For arbitrary v in VVO1 P(Q,w, R™). Tt follows from the continuity
condition (Fp) that
9(x, up)v(z) — g(z, u)v(z)
almost everywhere. Since, by the growth conditions (F}) and the uniform bound of wy,

g(x,ux)v(x) is equiintegrable, it follows that the Vitali’s theorem . This implies that:

klingo/ng(x,uk)v(x)d$:/Qf(:c,u)v(x)dx

for allv € U2V},

We will start with the easiest case
(d) F +— o(z,u, F) is stictly p-quasi-monotone. (3.11)

Indeed, we assume that 1, is not a Dirac mass on the set M with z € M of positive Lebesgue
measure |M| > 0. Moreover, by the strict p-quasi-monotonicity of o(x,u, ) and ¥, is a
homogeneous W!'P-gradient Young measure for a.e. x € M. So, for a.e. = € M, with

A = (g, Id) = apDu(x)), Where apDu(x)) is the differentiable approximation in x. We get
/ o(x,u,A) : (A= Du)dd,(N) > [pgmxn 0(x,u, Du) 0 (A — Du)dd, ()
I Xn
> o(x,u,Du) : / Add ()
IV Xn
— o(z,u, Du) : Du [pmxn d¥(N)
(o(x,u, Du) : Du— o(x,u, Du) : Du)) =0

> 0.
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On the other hand by (3.9), integrating over 2, and using the div-cul inequality(See [9]) we

have:

/ / o(x,u,\) : Addig(N)dz > / / o(x,u,\) : Dudd,(\)dx
Q JIMmxn Q Jmxn
>

o(x,u,A) : Addd,(N)dz.
QJIMmXxn

This contradicts (3.8). Thus ¥, = 5 = dpy(y) for a.e. x € Q. Therefore, Duy, — Du
in measure when k tends to infinity. And thus, o(x,ug, Dug) — o(z,u, Du) almost ev-
erywhere. Since, by the growth condition in (Hs), o(x,ug, Dug) is equiintegrable, it follows
that o(z, uy, Duy) — o(z,u, Du) in L'(Q2) by the Vitali’s theorem. The other hand, for all

ve U Y we have that o(x,ug, Dug) : Dv — o(x,u, Du) : Dv a.e. z € 2. Moveover, for
kelN
all Q' C Q measurable, it is easy to see that:

[ o, Dug) s Dodo < 8 (Al + e 220 + i FEL) i, < o0,
because [lug, ,,, < R. And thanks to Vitali’s theorem, we obtain:

(F(u),v) =0, for all v € U V.
kelN

Which proves the theorem in this case.

Remark 3.1 Before treating the cases (a), (b) and (¢) of (Hs), we note that

/ / (0(2, 1, \) — o(,u, Du)) = (A — Du)ddp(N)dz < 0. (3.12)
Q men
We conclude that
/ / (@, u,\) : (A — Du)ddy(\)da = 0,
(9] M'mxn
thanks to the (3.9). On the other hand, the integrand in (3.12) is non negative, by the

monotonicity of o. Consequently, the integrating should be null, a.e., with respect to the

product measure di¥, ® dxr, which means
(o(xz,u, \) — o(x,u, Du)) : (A — Du) =0 in sptd,. (3.13)

Thus,
sptdy C {X € M™" | (o(z,u, \) — o(z,u, Du)) : (A — Du) = 0}. (3.14)

Case c: We prove that the map F' —— o(z,u, F') is strictly monotone for all z € ) and for

all uw € IR™.
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Since ¢ is strictly monotone, and according to (3.14),

sptdy = {Du}, i.e, 9, = dpy, a.e. in

which implies that, Duy — Dwu in measure. The rest of our prove is similarly to case d.

Case b: We start by showing that for almost all z € €2, the support of ¥, is contained in

the set where W agrees with the supporting hyper-plane.

L={(\W(w,u,X) +o(@u): (A=X)} with X = Du(z

So, it suffices to prove that

sptd, C K, = {)\ e M™ " | W(z,u,\) = W(z,u,\) +o(z,u,A) : (A= X)

If A € sptd,, thanks to (3.14), we have

).

(1—-1t) (o(x,u, Du) — o(x,u,\)) : (Du— ) =0, for all t € [0,1].

On the other hand, since ¢ is monotone, for all ¢ € [0, 1] we have

(1—-1)(o(z,u, Du+t. (A — Du)) —o(z,u,N)) : (Du—A) > 0.

By subtracting (3.16) from (3.17), we get

(1= 1) [o(z,u, X + A = X)) = o, u, )] : (A= A) >0,
for all ¢ € [0, 1]. Doing the same by the monotonicity in (3.18), we obtain

(1= 1) [o(z,u, X+t = X)) = o(@,u, )] : A=) <0.
Combining (3.18) and (3.19), we conclude that

(1= 1) [o(z,u, X + A = X)) = o, u, V)] : (A= A) =0,

for all ¢t € [0, 1] and for all A € sptd,.
Now, it follows from (3.19) that

W(z,u,\) = W(x,u,\)+ (V[l/'(x,u, A) — W(z,u,\))
= W(z,u,\) + /0 [o(z,u, A+ t(A = X))] : (A=
= W(z,u,\) +o(z,u,A): (A= X).
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This proves (3.15).

Now, by the coercivity of W, we get

W(z,u,A) > W(x,u,\) +o(x,u,\): (A= A),
for all A € M™*"™, Therefore,
L is a supporting hyper-plane, for all A € K. (3.21)
Moveover, the mapping A — W (x,u, \) is continuously differentiable, so we obtain
o(z,u,\) = o(z,u, ), for all A € K. (3.22)
Thus,

5(x) = /]men o (2, u, 9o (N) = o (x,u, ). (3.23)

Now, we consider the Carathéodory function

W, u, p) = [(o(z, u, p) — ()],

and observe that hy(z) = h(x,ug, Duy) is equiintegrable. Thus, thanks to Ball’s theorem,
see [8]and [11] hy — h weakly in L(Q), and the weak limit of & is given by

A(z) = / /}RWWM 0(,1,A) — T(@)|d () (1) ® dia(N)

= o (z, u(x), A) = ()|ddz(A)
Spt.

= 0.
According to (3.22) and (3.23), and since hy > 0, it follow that h;, — 0 strongly in L'(f)
by Fatou’s lemma, which gives

lim [ o(x,ug, Dug): Dv.dz = / o(x,u, Du) : Dvdzx.
k—o0 JQ Q

Thus

(F(u),v) =0, Yoe |J Vi
keIN

This completes the proof of the case (b).

Case (a): In this case, on sptd,, we affirm that,

o(x,u,\): M = o(x,u, Du) : M + (Vpo(z,u, Du) : M) : (Du— X), (3.24)
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for all M € IM™*", where V is the derivative with respect to the third variable of o and
A = Du(z).

Thanks to the monotonicity of o, we have
(o(xz,u,\) —o(x,u, Du+tM)): (A—Du—tM) >0, for all t € IR.

By invoking (3.19), we obtain

—o(z,u,\) : (tM) > —o(x,u, Du) : (A — Du) + o(x,u, Du+tM) : (A — Du—tM).
On the other hand, F — o(x,u, F') is a C! function, so

o(z,u, Du+tM) = o(z,u, Du) + Vpo(z,u, Du).(tM) + o(t).

Thus

—o(z,u,A) : (tM) > —o(z,u, Du) : (tM) + Vpo(z,u, Du)(tM) : (A — Du) + o(t),
which gives

—o(z,u,A) : (tM) > t[(Vpo(z,u, Du) : (M) : (A — Du) — o(z,u, Du) : (M)] + o(t).

The claim follows from this inequality since the sign of ¢ is arbitrary in (3.24). Finally for all
v € Urenw Vi the sequence o(x, uy, Duy) : Dv is equiintegrable. Then, by the Ball’s theorem,
see [8Jand [11] the weak limit is [ghty o(z,u,A) : Dvddy(A) By choosing M = Du in (3.24),
we obtain /Spt (Du — X)(o(x,u, A) : Dv) : Dvudid, ()

x

= / o(x,u, Du) : Dvdiz(\) + (Vpo(z,u, Du) : Dv)t/ (Du — A\)di4 ()
spto. sptd,

= (o(x,u, Du) : Dv)/ dd;(\) = o(x,u, Du) : Dv.
Sptde

Hence we have

o(x,ur, Dug) : Dv — o(x,u, Du) : Dv strongly .

This proves that
(F(u),v) =0 for all v € | | Vi.

And since |J V} is dense in WO1 ’P(Q, w, IR™), u is a weak solution of (QES), as desired. O

ISSN: 2231-5373 http://www.ijmttjournal.org Page 33



vts-1
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 66 Issue 2 - Feb 2020


vts-1
Text Box
ISSN: 2231-5373                              http://www.ijmttjournal.org                              Page 33


International Journal of Mathematics Trends and Technology (IJMTT) - Volume 66 Issue 2 - Feb 2020

Remark 3.2 In case (b) we have o(x,uy, Duy) : Dv — o(x,u, Du) : Dv strongly, but in

the case (c¢) and (d) Duy — Du in measure.

Exemple 3.1 We shall suppose that the weight functions satisfy: w;,; =0, j =1,2,...,m for
some ig € I¢; and wij(x) = w(z);x € Q, with I°UI = {0;1;2;.....;n}, foralli e TUIC, j=
1,2,...,m, and i # ig with w(z) > 0 a.e in Q. Let us consider the Carathéodory functions o

defined by
O'Z'j(.’B,’I],{[) = w(:):)|§7;j]p_1sign(£ij), j = 1, 2, ....m ,i cl
O_ij(xa 77751‘3) = w(x)‘glj‘p_lszgn(52])7 .7 = 17 27 - 7i € Ic7i 7é iO
Uioj(l',n,fjc) :0; j:1,2,...,m
L 1
fiw,u) =) gl oy, VI<j<m

The functions o satisfies the growth conditions (Ha).

In particular, let us the special weight function w, v expressed in term of the distance to the
boundary 02 denoted by d(x) = dist(x;0Q) and w(z) = d*(z), v;(x) = d*(z). The Hardy- Type

nequalities reads:

(i /. \Uj(w)!qd"(w)dm) SC( > \Dijurpd%:)) ,

1<i<n; 1<j<m
for every u € Wol’p(ﬂjw,Bm) with a constant ¢ > 0 independent of u and for some q > p'
and the corresponding embedding Wol’p(Q; w; R™) < L1(Q;~; R™) is compact if:

i) For1<p<qg<oo

A
A<p—1, Z-lqas0 B2 Tags
q p q p q p

it) For 1 < g <p < o0

A<p—1, 21>,
q

B
p q

A1 1
S~ t1>0
p qg p

iii) For ¢ > 1

/

w(q" —1) < 1, by the simple modifications of the example in [1]. Moreover, the monotonicity

condition are satisfied:

> (oij(,m, 1) — oij(2,m,€0) (&5 — &)

ij
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= w(z) Z(\ &ij P71 sign(&ij)— | & P sign(€);)) (& — &) = 0
ij
for almost all x € Q and for all, £,&' € M™. This last inequality can not be strict, since for
Ere # Epe with & # ‘Sz/‘oj forall j=1,2,...,m. But&; = §Z’»j forie I i#ig, j=1,2,....,m

the corresponding expression is zero.
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