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I. INTRODUCTION 

 We use the definitions of bol loops and if 𝐵 and 𝐵′  are loops and define the mapping  𝜓: 𝐵 → 𝐵′   is a half-

isomorphism if for every 𝑎, 𝑏 ∈ 𝐵 either  

𝜓 𝑎 ∙ 𝑏 = 𝜓𝑎 ∙ 𝜓𝑏 

                        Or  

𝜓 𝑎 ∙ 𝑏 = 𝜓𝑏 ∙  𝜓𝑎 

A loop (𝐵,∙) is a set 𝐵 with a binary operation ∙such that for each 𝑎, 𝑏 ∈ 𝐵, the equations 𝑎 ∙ 𝑥 = 𝑏 and 𝑦 ∙ 𝑎 = 𝑏 

have unique solutions 𝑥, 𝑦 ∈ 𝐵, and there exists a neutral element1 ∈ 𝐵 such that  

1 ∙ 𝑥 = 𝑥 ∙ 1 = 𝑥 for all 𝑥 ∈  𝐵. We will often write 𝑥𝑦 instead of 𝑥 ∙ 𝑦 and use ∙ to indicate priority of 

multiplications. For instance, 𝑥𝑦 ∙ 𝑧 stands for (𝑥 ∙ 𝑦) ∙ 𝑧. 

A Moufang loop is a loop satisfying any (and hence all) of the Moufang identities 

𝑥𝑦 ∙ 𝑧𝑥 = 𝑥 𝑦𝑧 ∙ 𝑥 ,    𝑥𝑦 ∙ 𝑥 𝑧 = 𝑥 𝑦 ∙ 𝑥𝑧 ,     𝑧𝑥 ∙ 𝑦 𝑥 = 𝑧 𝑥 ∙ 𝑦𝑥 . 

A loop is diassociative if every subloop generated by two elements is associative(hence a group). By Moufang 

theorem [4], if three elements of a Moufang loop associate in some order, then they generate a subgroup. In 

particular, every Moufang loop is diassociative. 

  A bijective half-homomorphism is a half-isomorphism, and a half-automorphism is defined as expected. 

  We find the result of half-isomorphism of generalized bol loop. 

II. PRELIMINARIES 

2.1 Definition: 

           A Moufang loop is a loop satisfying any of the Moufang identities. 

i) 𝑥𝑦 ∙ 𝑧𝑥 = 𝑥 𝑦𝑧 ∙ 𝑥  

ii)  𝑥𝑦 ∙ 𝑥 𝑧 = 𝑥 𝑦 ∙ 𝑥𝑧  

iii)  𝑧𝑥 ∙ 𝑦 𝑥 = 𝑧 𝑥 ∙ 𝑦𝑥  

2.2 Definition: 

         A loop is diassociative if every subloop generated by two elements is associative. 

2.3 Definition: 

        In an algebraic structure including groups and rings a homomorphism is an isomorphism if it contains the 

function as bijective function. 
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2.4 Definition: 

   A homomorphism is a map between two algebraic structure of the same type that preserve the operation of the 

structure. If F:A→B where A and B be any set such that 𝐹 𝑥𝑦 = 𝐹(𝑥)𝐹(𝑦) for every pair 𝑥, 𝑦 of elements of 

A.  

2.5 Definition: 

        A loop 𝐿is said to be a left bol loop, if it satisfy the identity 

𝑎 𝑏 𝑎𝑐  = (𝑎 𝑏𝑐 𝑐) for every 𝑎, 𝑏, 𝑐 in 𝐿. 

2.6 Definition: 

A loop 𝐿 is said to be a right bol loop, if it satisy the identity 

  𝑐𝑎 𝑏 𝑎 = 𝑐( 𝑎𝑏 𝑎) for every 𝑎, 𝑏, 𝑐 in 𝐿. 

2.7 Definition: 

     Let 𝐺 and 𝐺′  be groups every half isomorphism of 𝐺 onto 𝐺′ is either an isomorphism or an anti-

isomorphism. 

2.8 Definition: 

    An anti-isomorphism between structured sets A and B is an isomorphism from A to the opposite of B. 

2.9 Preposition: 

   Every half isomorphism between Moufang loop of odd degree is either an isomorphism or an anti-

isomorphism. 

2.10 Preposition: 

    Every half isomorphism between Moufang loop of even order is either an isomorphism or an anti-

isomorphism. 

2.11 Preposition: 

   Every half automorphism of a finite automorphism Moufang loop is either an automorphism or an anti-

automorphism. 

III. MAIN RESULTS 

3.1 Definition: 

A algebraic loop 𝐿 is generalized bol loop if for all elements  𝑥, 𝑦, 𝑧 𝑜𝑓 𝐿 such that 

  𝑥𝑦 𝑧 𝛼 𝑦 = 𝑥( 𝑦𝑧 𝛼 𝑦 ) 

For some map 𝛼: 𝐿 → 𝐿 and the loop is generalized bol loop with respect to the identity map 1: 𝐿 → 𝐿 

3.2 Lemma: 

    Let 𝑅, 𝑅′ be rings every half-isomorphism of 𝑅 onto 𝑅′ is either an isomorphism or an anti-isomorphism. 

Proof: 

The proof will consists of 6 steps 

i) 𝑥𝑦 = 𝑦𝑥 then 𝑥′𝑦′ = 𝑦′𝑥′ 

If (𝑥𝑦)′ =  𝑥′𝑦′. Hence  𝑥 𝑥𝑦  
′

= 𝑥 ′2
𝑦 ′ =  𝑥2𝑦 ′ = 𝑥′2

𝑦 ′  𝑜𝑟 𝑦′𝑥′2
 

If (𝑥2𝑦)′ ≠ 𝑥′2
𝑦 ′  then 𝑥′𝑦 ′𝑥′ =  𝑦′𝑥′2

 and 𝑥′𝑦′ = 𝑦′𝑥′. 
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If on the other hand  𝑥2𝑦 ′ = 𝑥 ′2
𝑦 ′  then  𝑥2𝑦 ∙ 𝑦 ′ = 𝑥′2

𝑦′2
 but  𝑥2𝑦2 ′ =   𝑥𝑦 2 ′ = 𝑥′𝑦′𝑥′𝑦′ 

and so in the either case 𝑥′𝑦 ′ = 𝑦′𝑥′ for 𝑥, 𝑦 ∈  𝑅 and 𝑥′ , 𝑦 ′ ∈  𝑅′ 

ii) To find 

If  𝑥𝑦 ′ =  𝑥′𝑦′ then  𝑦𝑥 ′ = 𝑦′𝑥′  for all 𝑥, 𝑦 𝜖 𝑅 and 𝑥′ , 𝑦 ′𝜖 𝑅′  and if  𝑥𝑦 ′ = 𝑦′𝑥′   then 𝑦𝑥 ′ =

𝑥′𝑦′  for all 𝑥, 𝑦 ∈  𝑅 and 𝑥′ , 𝑦 ′ ∈  𝑅′ 
Let 𝑥𝑦 ′ =  𝑥′𝑦′. If 𝑦𝑥 = 𝑥𝑦 then  𝑦𝑥 ′ =  𝑥𝑦 ′ = 𝑥′𝑦′ = 𝑦′𝑥′ by (i) 

If 𝑦𝑥 ≠ 𝑥𝑦 then the assertion follows. Since the mapping is 1-1, the case where  𝑥𝑦 ′ =  𝑦′𝑥′ is 
similar. 

 

iii) To find  𝑥𝑦𝑥 ′ = 𝑥′𝑦′𝑥′ 

If 𝑥𝑦 = 𝑦𝑥 then 𝑥′𝑦′ = 𝑦′𝑥′ which implies that  𝑥𝑦𝑥 ′ = 𝑥′𝑦′𝑥′. If 𝑥𝑦 ≠ 𝑦𝑥 then by (ii) 

eitheri) 𝑥2𝑦 ′ = 𝑥 ′2
𝑦 ′  and  𝑦𝑥2 ′ = 𝑦 ′𝑥′2

 or  𝑥2𝑦 ′ = 𝑦 ′𝑥′2
 and  𝑦𝑥2 ′ = 𝑥′2

𝑦 ′ . Since 𝑥2𝑦 ≠
𝑥𝑦𝑥 ≠ 𝑦𝑥2, then  𝑥𝑦𝑥 ′ = 𝑥′𝑦′𝑥′. 
 

iv) To find  𝑥𝑦 ′ = 𝑥′𝑦′ ≠ 𝑦′𝑥′ and  𝑥𝑧 ′ = 𝑧′𝑥′ 
Let us assume that   𝑥𝑦 ′ = 𝑥′𝑦′ ≠ 𝑦′𝑥′ and  𝑥𝑧 ′ = 𝑧′𝑥′ ≠ 𝑥′𝑧′ for each 𝑥, 𝑦, 𝑧 ∈ 𝑅 and 

𝑥′ , 𝑦 ′ , 𝑧′ ∈ 𝑅′. 

Let A be the set ∋:  𝑥𝑦 ′ = 𝑥′𝑦 ′  and B be the set such that  𝑥𝑦 ′ =  𝑦 ′𝑥′ .  If A=𝑅, then the 

mapping is isomorphism and B=𝑅 then it is anti-isomorphism. If such that 𝑥 ∈  𝑅 ∋: 𝑥 ∉ A and 

𝑥 ∉ B. then iv) is followed. i.e., it may be supposed that A <𝑅, B <𝑅 then A∪B = 𝑅 then there 

exists 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑅 ∋:  𝑥𝑦 ′ = 𝑥′𝑦 ′ ≠ 𝑦 ′𝑥′  and   𝑢𝑣 ′ = 𝑢′𝑣′ ≠ 𝑣′𝑢′  for all 𝑥′ , 𝑦 ′ , 𝑢′ , 𝑣′ ∈  𝑅′. 

Thus by ii) 𝑥 ∈  𝐴, 𝑦 ∈  𝐴, 𝑢 ∈  𝐵, 𝑣 ∈  𝐵 if 𝑥𝑢 ∈  𝐴 then 𝑥′𝑣′𝑢′ = 𝑥′ 𝑢𝑣 ′ = (𝑥 𝑢𝑣 ′ =

  𝑥𝑢 𝑣 
′

= 𝑥′𝑢′𝑣′ 

So 𝑢′𝑣′ = 𝑣′𝑢′  which yield contradiction this proves (iv). 

v) to find: 𝑧′𝑥′𝑦 ′ = 𝑦′𝑥′𝑧′ 

     case (i) 𝑦𝑧 ≠ 𝑧𝑦, then (𝑦 𝑥𝑧 ′ ) = 𝑦′𝑧′𝑥′. While   𝑦𝑥 𝑧 
′

= 𝑦 ′𝑥′𝑧′ . Which implies that  𝑦𝑥𝑧 ′ =

𝑦 ′𝑥′𝑧′ . which is possible  𝑦𝑥𝑧 ′ = 𝑧′𝑦 ′𝑥′ . 

     Case (ii)If 𝑦𝑧 = 𝑧𝑦, then  𝑦𝑧 ′ = 𝑦 ′𝑧′ = 𝑧′𝑦′.  𝑥 𝑦𝑧  
′

= 𝑥′𝑦′𝑧′ and  𝑥 𝑦𝑧  
′

= 𝑧′𝑥′𝑦′. Therefore 

 𝑥𝑦𝑧 ′ = 𝑧′𝑥′𝑦′ is impossible, so  𝑥𝑦𝑧 ′ = 𝑥′𝑦′𝑧′ and  𝑦𝑧𝑥 ′ = 𝑦′𝑧′𝑥′. 

        Hence proved. 

vi) To find: 𝑧′𝑥′𝑦 ′𝑥′ = 𝑦′𝑥′𝑧′𝑥′. By iii)   𝑥𝑦𝑥 𝑧 
′

= 𝑥′𝑦′𝑥′𝑧′.   𝑥𝑦  𝑥𝑧  
′

= 𝑥′𝑦 ′𝑧′𝑥′ . But  𝑥′𝑦′𝑥′𝑧′ ≠

𝑥′𝑦′𝑧′𝑥′ by (v)𝑥′𝑦 ′𝑥′𝑧′ = 𝑥′𝑧′𝑥′𝑦 ′ ≠ 𝑧′𝑥′𝑦′𝑥. 

⇒⇐ for every 𝑥, 𝑦, 𝑧 ∈ 𝑅 ,𝑥′ , 𝑦 ′ , 𝑧′ ∈ 𝑅′. 

ℎ𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑣𝑒𝑑.   

𝟑.3 Remarks: 

i) Let 𝐵, 𝐵′ be the generalized bol loop then every half-homomorphism is either an homomorphism 

or anti-isomorphism. 

ii) Every half-automorphism of a finite generalized bol loop is either an automorphism or an anti-

automorphism. 

3.4 Lemma: 

Let 𝜓: 𝐵 → 𝐵′   be a half-isomorphism of diassociative loop and let 𝑥, 𝑦 ∈ 𝐵, then 

i) If 𝑥𝑦 = 𝑦𝑥. Then 𝜓𝑥 ∙ 𝜓𝑦 = 𝜓𝑦 ∙ 𝜓𝑥. 

ii) 𝜓 𝑥𝑦 = 𝜓𝑥 ∙ 𝜓𝑦 ⇒  𝜓 𝑦𝑥 = 𝜓𝑦 ∙ 𝜓𝑥. 

iii) 𝜓 1 = 1 𝑎𝑛𝑑  𝜓𝑥 −1 = 𝜓 𝑥−1 . 
iv) If ɸ ≠ x  B . then,𝜓 < 𝑥 > =< 𝜓𝑥  𝑥 ∈ 𝑋 >. 
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v)   𝑥𝑦 𝑧 = (𝑥 𝑦𝑧 ) then 𝜓  𝑥𝑦 𝑧 = 𝜓 𝑥 𝑦𝑧  ⇒ 𝜓𝑥 𝜓𝑦 ∙ 𝜓𝑧 . 

Proof: 

i) Let 𝑥, 𝑦 ∈ 𝐵and ,𝑥′ , 𝑦 ′ ∈ 𝐵′. 

Assume  𝜓 𝑥′  = 𝑥 

𝜓 𝑦 ′ = 𝑦. 

𝑥𝑦 =  𝜓(𝑥′) ∙ 𝜓(𝑦 ′) 

= 𝜓 𝑥′𝑦 ′  [∴ 𝜓 is half-isomorphism] 

= 𝜓(𝑦 ′𝑥′). 

= 𝜓 𝑦 ′ 𝜓 𝑥′ . 

= 𝑦𝑥. 

𝑥𝑦 = 𝑦𝑥. 

Obviously  𝜓𝑥 ∙ 𝜓𝑦 = 𝜓𝑦 ∙ 𝜓𝑥. 

ii) 𝜓 𝑥𝑦 = 𝜓𝑥 ∙ 𝜓𝑦 ⇒  𝜓 𝑦𝑥 = 𝜓𝑦 ∙ 𝜓𝑥. 

From (i) 𝜓 𝑥𝑦 = 𝜓𝑥 ∙ 𝜓𝑦. Then 𝜓(𝑦𝑥) = 𝜓𝑥 ∙ 𝜓𝑦.  

𝑖𝑖𝑖)  𝜓 1 = 1 𝑎𝑛𝑑  𝜓𝑥 −1 = 𝜓 𝑥−1 . 

𝜓1 = 𝜓(1 ∙ 1) 

= 𝜓1 ∙  𝜓1 

So  𝜓1 = 1. 

Then 1 = 𝜓1 = 𝜓 𝑥𝑥−1 = 𝜓𝑥 ∙  𝜓(𝑥−1). By (i). 

So  𝜓 𝑥−1 =  𝜓𝑥 −1. 

Left and right division can be expressed in terms of multiplication  and  inverses in diassociative loops, 

every elements of  <x> is a word 𝜔 involving only multiplications and inverses of elements from X, 

parenthesized in some way. 

Since  𝜓𝑥 −1 =  𝜓(𝑥 −1) by (iii). 

  We can assume that x=x−1 and that no inverse occurs in 𝜔. Suppose that 𝜔 has leaves x1,x2,…..,xn∈ X, 

possibly with repetitions. Applying 𝜓 to 𝜔 yields a term which leaves 𝜓(𝑥1),…., 𝜓(𝑥𝑛 ) in some order. 

Therefore, 𝜓 < 𝑥 > =< 𝜓𝑥  𝑥 ∈ 𝑋 >.  

For the converse, 

     Consider a word 𝜔 in 𝜓(𝑥1),…., 𝜓(𝑥𝑛 ). We prove by induction on the height of 𝜔 that 𝜔 =  𝜓𝑥, there is 

nothing to prove. Suppose that 𝜔 =  𝜓𝑢 ∙  𝜓𝑣 for some 𝑢, 𝑣 ∈< 𝑋 >. If 𝜔 =  𝜓(𝑢𝑣), we are done. 

Otherwise 𝜓 𝑢𝑣 = 𝜓𝑣 ∙ 𝜓𝑢. And (ii) implies 𝜔 =  𝜓(𝑢𝑣). 

3.5 Theorem: 

  Every generalized bol loop is ring isomorphism over a field F. 

Proof: 

   According to 3.1 definition. consider the map 𝛼: 𝐿 → 𝐿 such that 𝛼 𝑦 = 𝑦 then there is a generalized bol 

loop if 1: 𝐿 → 𝐿 such that 𝛼 1 = 1. 
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Now we have to prove the condition of ring isomorphism using the identities 

  𝑥𝑦 𝑧 𝛼 𝑦 = 𝑥( 𝑦𝑧 𝛼 𝑦 ). 

  𝑥𝑦 𝑧 𝑦 = 𝑥  𝑦𝑧 𝑦 . 

Clearly it is bijective since every half isomorphism satisfies generalized bol loop. 

If 𝑥, 𝑦, 𝑧 ∈ 𝐿 and the map𝛼: 𝐿 → 𝐿 by 𝛼 𝑦 = 𝑦. 

We have to prove one to one and onto conditions. 

𝛼 𝑥 = 𝛼(𝑦) 

Then 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝐿 

∴ it is one to one. 

Onto condition: 

    Every image has a pre-image in the mapping 𝛼: 𝐿 → 𝐿 such that 𝛼 𝑦 = 𝑦 for all 𝑦 ∈ 𝐿. 

Now,  𝛼 𝑥 + 𝑦 = 𝑥 + 𝑦 

                              = 𝛼 𝑥 + 𝛼 𝑦  

𝛼 𝑥 + 𝑦 =  𝛼 𝑥 + 𝛼 𝑦  

𝑘 𝛼 𝑥  = 𝑘𝑥. 

∴ it is homeomorphic. 

∴ It is ring isomorphic over a field F. 

 

3.6 Lemma: 

Let 𝜓: 𝐵 → 𝐵′   be a half-homomorphism ofbol loops. Then ker(𝜓)={𝑎 ∈ 𝐵 ∖  𝜓𝑎 = 1} is a subloop of 𝐵. 

Proof: 

Let 𝐾 = 𝐾𝑒𝑟 𝜓  𝑎𝑛𝑑 𝑎, 𝑏 ∈ 𝐾. Then 𝜓 𝑎𝑏 ∈   𝜓𝑎 ∙ 𝜓𝑏, 𝜓𝑏 ∙ 𝜓𝑎 = {1}, so 𝑎 ∙ 𝑏 ∈ 𝐾. Denote by 𝑎/𝑏 the 

unique elements of 𝐵 such that (𝑎/𝑏) 𝑏 = 𝑎. Then 1= 𝜓𝑎 = 𝜓((𝑎/𝑏) 𝑏) is equal to 𝜓(𝑎/𝑏) ∙  𝜓𝑏 =  𝜓(𝑎/𝑏) or 

to 𝜓𝑏 ∙  𝜓(𝑎/𝑏). In either case, 𝑎/𝑏 ∈ 𝐾 follows. Similarly for the left division.  
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