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 Abstract 

 

We study a nonlinear random reaction-diffusion problem in abstract Banach spaces, driven by a real noise, with 

random diffusion coefficient and random initial condition. The reaction-diffusion equation belongs to the class 

of parabolic stochastic partial differential equations. Given a Gelfand triplet  with dense 

embeddings .Let A (t) be a family of nonlinear random operations, acting from , , which satisfies 
the following assumptions: strong measurability, continuity, monotony, and coercivity. We assume that the 

initial condition is an element of Hilbert space. We construct a suitable stochastic basis and define the solution 

of reaction-diffusion problem in the weak sense. We define the stationary process in abstract Banach spaces in 

the strong sense of Doob-Rozanov. That is, the probability density function of the stochastic process is 
independent of time shift. In other words, we define the invariant measure for random dynamical system, 

associated with random reaction-diffusion problem. We prove the existence of an invariant measure and the 

existence of a stationary solution for nonlinear random reaction-diffusion problem. The obtained theoretical 

results have several applications in Quantum Physics, Biology, Medicine, and Economic Sciences. Especially, 

we can study the existence of stationary solution for the stochastic models of tumor growth. 

 

Keywords — random reaction-diffusion problem, real noise stationary solution 

 

Introduction 

Random reaction-diffusion equations form an important part of the theory of random partial differential 

equations that is both very rich changelings mathematically and is related in physics, chemistry, biology, 

medicine, astronomy, and Economic Sciences. To be specific, in this paper we consider a random reaction-
diffusion equation with a polynomial nonlinearity. Of course, we can consider more general mathematical 

models. For example, we can investigate the random nerve equations, random Lotka- Volterra equations, 

random Boussinesq- Glover equations, random superfluid equations, random Belousov-Zhabotinsky reaction 

equations in chemical dynamics, etc. 

Let  be a stochastic basis, and let  be a standard m-

dimensional Wiener process defined on . Let  be a stationary solution of the Ito equation in 

 

                                                                                  (1) 

where a  and b    satisfy the assumptions of section 2.1 below. We look at the process 

 as a model of real noise, stationary in time. Having assumed that the noise process is 

given, we consider the random nonlinear evolution equation in Hilbert spaces driven by the real noise  : 

                                                               (2)                                                                                                                               

Where { } is a family of monotone operators in a Gelfand triplet  , 

and f is a function from  (see section 2.2.1 for detailed assumptions on A and f). The aim of this paper 
is to prove the existence of a stationary solution of equation (2). Note that this equation does not contain Ito 

differential. 

In the last few years a lot of papers appeared on invariant measures and stationary solutions for Ito type 

equations in Hilbert spaces. The case of real noise is not treated. In comparison with the existing literature, we 

mention two aspects of this paper. 

The first one is that we want to consider the real noise  as a given Markov process, stationary in time. 

Corresponding to this process , we would find a stationary solution of equation (2). This fact motivates some 
technical details of the following analysis, like the choice of a special stochastic basis (see section 3.1) and 

Theorem 3.1, which are novel with respect to the literature conceding with Ito equations. 
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The second point is that we shall not assume any compactness. At our knowledge, all the methods know in the 

literature to prove the existence of invariant measures or stationary solutions use some compactness, coming 

from the topologies of the function spaces involved. It is well-know that the structure of the monotonicity allows 

to prove existence of solutions without any compactness assumption. However, a similar result for the existence 

of invariant measures and stationary solutions is not known, because the usual approach to construct invariant 

measures, so it uses some compactness arguments.   
At the end of the paper we give some applications, which contributed to motivate our analysis. 

 

1. Preliminaries 

 

1.1 The Noise Equation 

Denote by the space of linear operators from  and by  the Hilbert-Schimdt norm 

of linear operator from .  
Assume that: 

 (a.1) the mappings  and   are locally Lipchitz continuous and satisfy the 
dissipativity condition  

2  

for some real constants  

(a.2)  
Consider the stochastic differential equation  

                                                                                                    (3)                                                                                                                                  

with the initial condition  

                                                                                                                                                              (4)  
 

The following two facts are well –known: 

(i) under the assumption (a.1), for every p  and for every , the equation (3)-(4) has 

a unique progressively measurable solution defines for  with  , for 

each T>0 

This solution if a Markov process with the Feller property;  

(ii)  if in addition (a.2) holds true , there exists an invariant measure  for equation (3) with finite 

moments of all orders. 

These results can be found in [9] and [14] for instance. We recall the basic steps of the proof, for future 

reference. Let us start with (1). The local Lipschitz condition on the coefficients implies existence and 

uniqueness of a maximal solution. The solution is global, and satisfies , by the 
following estimate. 

By Ito formula and the dissipativity condition in (a.1), we have: 

 

 

 

 
for some constant , given by Young inequality. Since , we have: 
 

                                                                       (5) 

 

In fact, since we deal with a local solution defined a priori on a random time interval, one should use stopping 

times; moreover, instead of (5) we could prove, by means of classical martingale inequalities, an estimate for the 

expectation of the supremmum in time of . The details can be found in [9]. These estimates give the a 

priori bound which implies the global existence of the solution and its integrability. The Markov and Feller 

properties are classical. 

 The proof of (ii) also follow from (5), under the assumption (a.2). Indeed, choose . Then, (5) and (a.2) 

imply that for every p  there exists a constant  such that 
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                                                                                                                                    (6) 

 

This implies the existence of an invariant measure , by the standard Krylov- Bogoliubov method. Moreover 

(see [14], for every p , 
 

                                                                                                                                     (7) 

 

This proves (ii). 

 

The uniqueness of invariant measures for equation (3) has been studied in detail. For instance, if  is 

positive definite, uniformly in , the invariant measure is unique. We don’t require uniqueness in the 

sequel, but just fix one invariant measure  with all finite moments (moments up to order r, given the 
assumption (A4) below, would suffice). 

With appropriate minor modifications, we could study the case when the noise  is also a stochastic process 
in a Hilbert space, defined by an infinite dimensional stochastic evolution equation (see [4], [11], [13]). For sake 

of simplicity, we restrict the attention to the finite-dimensional case. 

 

 2.2.      The Random Evolution Equation with Monotone Operators 

 

2.2.1 Assumptions 

Let H be a real separable Hilbert space and   be a real reflexive separable Banach space  

(norms respectively , inner product  in H), ,and  Let  and  be their dual 

spaces. Identifying  with its dual , and with a subspace of , we can write  , with dense 

embeddings.We shall denote also the dual pairing between and  by , since its restriction to  

coincides with inner product of . 

Let be a family of nonlinear operators from be to  which satisfy the following assumptions. 

(A.1) for every  ,  is a strong measurable mapping from  to  ,bounded in bounded sets,  
 

(A.2) for every   , the function 

  is continuous on R. 
 

(A.3) there is a constant  such that for every  ,  

2  
 

(A.4) there are a function  and constants  such that for 

every , 

2  and 

) 

(A.5) with p as above, there is a constant  such that for every  ,  , 

) 

Finally, let  be a given strong measurable function which satisfies the assumption 

(f.1) there is constant   , such that for all  

) 

Where  is the conjugate exponent of p (i.e  

Remark 1. In some application it is natural to assume that the noise processes entering in  and are different; 

but this can be accomplished just by considering as  the joint noise process. 
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Remark 2. One can incorporate  into  without restriction, but we leave them separated to emphasize the role 

of the coercively of . 

 

2.2.2 The Equation 

Let a stochastic basis be given, with a standard -dimensional. 

Wiener process   under the assumption (a.1) of section 2.1, 

given , let   be the corresponding solution of the problem (3) - (4). Here  is the 
same as in assumption (A.4). 

We consider the random evolution equation  

                      , u(                                                        (8)   

With the initial condition 

                                                                                                                        (9) 
We assume that  

                                                                                                                                             (10) 
We interpret the previous equation in the weak form: 

      (11) 

 

By solution of the equation (8) – (9) we mean a progressively measurable process  , defined for 

, with the property  
 

We have the following fact: 

(iii) Under the assumption (a.1) of section 2.1, given , given the corresponding 

solution of equation (3) – (4), and under the assumptions (A.1) – (A.5), (f.1), and (10), there exists a 

unique solution of the problem (8) – (9). We outline the proof. Since the solution  of (3) is given, one 

can take an arbitrary given (P- a. s.) and apply to problem (8) – (9) (which is now deterministic) the 

result of [12], to have a unique solution 

   
(it is a solution in the sense of equation (11) ). The progressive measurability easily follows from the 

construction of the solution as a limit of progressively measurable solutions of finite dimensional Galerkin 

approximations. Finally, the property (12) follows from estimates like those of Lemma 2.1 below. 

 

 

 

2.2.3 An a Priori Estimate  

The a priori estimate proved in this section will be used in Theorem 3.1 below. We prove it here since it is not 

based on the additional hypotheses of Theorem 3.1, but it depends only the framework introduced up to now. 

Let , …  be a complete orthonormal system in  formed by elements of  Denote by  the finite 

dimensional space spanned by  ,  and let  be the linear operator from  to  defined as  

                                                        

Restricted to  it is the orthogonal projector onto . 

Let  be the operator in . Defined as  

                                       

and let  

=  

Moreover, let a sequence  of initial conditions be given, where    and  

 in . 
given 

                                                                                                                                            (13) 
Let as consider the Galerkin approximation of equation (8) coupled with equation (3): 

 

                                                                        (14) 
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                                                                                                 (15) 

 

With initial conditions 

                                                                                                             (16) 

Let  be a constant satisfying the (Poincare type) inequality 

,     

 

Lemma 2.1 Consider system (14)-(15)-(16) under the hypotheses (a.1), (A.1)-(A.5), (f.1), (13), and under 

assumption that there exists a constant C , independent of n, such that  
 

                      ,                                                                                                                  (17) 

 

Then the following properties hold true: 

 

(i) System (14)-(15)-(16) has a unique progressively measurable and continuous path solution  

taking values in . Moreover, system (14)-(15) defines a Markov process with the Feller property in 

. 

(ii) For every  there exists a constant  such that 

 for all  

 

                                                                                                                           (18) 

Where . 

 

(iii) For every T  there exist constants  independent of n, such that 

                                                       (19) 

 

                ,                                                                        (20)  

 

                                                     (21)            

 

                                                     (22) 

Proof 

Part (i). First, the equation (15) is considered independently, with given initial condition , and the unique 

progressively measurable and continuous solution  is found. Then, we can take a given  (P-a.s), apply 

to equation (14) with the initial condition   ( which is now a deterministic problem) the results of [12], to 
have a unique solution 

 
The progressive measurability of   easily follows from the construction of   as a limit of 
progressively measurable Peano-type approximations. The proof of Markov and Feller properties is classical. 

 

Part (ii). From equation (14) we have  

 

                                                                          (23) 

  

Therefore, from assumptions we have 

 

 
 

Whence , using also assumption (f.1), for every  we have 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 2 - Feb 2020 

 

ISSN: 2231-5373                                  http://www.ijmttjournal.org                              Page 63 

        

                     

 
Where    by  Young inequality. Recalling the definition of  the assumption p  and using the 

fact that  , we have 
 

                                              (25) 

 

Inequality (18) follows now from the Gromwell lemma. 

Part (iii). Given , denoted by  the supreme of  from (18) we have 

                    (26) 

Recall (5), take the supremum in   and the expectation, to have (19) 

Going back to inequality (24), we integrate it over   and take the expectation with  

we get  

        
Using (17), (19), and (5), we obtain (20). 
From (20) and assumption (A.5) we also have (22). The proof is complete. 

 

Conclusion 

 

In this paper we investigate the existence and uniqueness of stationary solution for nonlinear random reaction-

diffusion equation in Banach spaces, driven by a real noise. We assume that diffusion coefficient is a random 

variable and the initial condition is a random function. The real noise process is defined as a stationary solution 

of ito stochastic differential equation in finite dimensional Euclidian space or Hilbert space. We consider a 

multiplicative noise term, which is more general than additive noise term introduced by P.L Chow or other 

researchers, see Kuttler [12], M. Metivier [14]. To be specific, we consider a random reaction – diffusion 

equation with a polynomial nonlinearity. Of course, we can investigate more general mathematical models, and 

suggest several applications, especially Boussinesq –Glover equation.      
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