On The Classes of $(1, 2)^* - \beta c$ -Open Sets In Bitopological Spaces

R.Bhavani¹, A.Arivu Chelvam², A.Hamarichoudhi³

¹Assistant. Professor, Dept. of Mathematics, Mannar Thirumalai Naicker College (Autonomous), Madurai-4., Tamil Nadu, India

²Assistant. Professor, Dept. of Mathematics, Mannar Thirumalai Naicker College (Autonomous), Madurai-4. Tamil Nadu, India

³Associate Professor, Dept. of Mathematics, Mannar Thirumalai Naicker College (Autonomous), Madurai -4 Tamil Nadu, India

Abstract: A new class of generalized open sets in a bitopological space, called $(1,2)^* - \beta c$ open sets, is introduced and studied. This class is contained in the class of $(1,2)^* - \beta$ -open sets and contains all $(1,2)^* - bc$ -open sets and $(1,2)^* - \theta$ - semi-open sets. We show that the class of $(1,2)^* - \beta c$ -open sets generates the same bitopology as the class of $\theta - (1,2)^*$ -open sets in alexandroff spaces.

Keywords $-(1,2)^*$ - βc open sets, generated by $(1,2)^*$ -- βc open sets, $\tau_{1,2-\delta}, \tau_{1,2-\beta c}$

1. Introduction :

Levine introduced generalized closed set in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved the notions of $(1,2)^*$ - semi-open sets, $(1,2)^*$ - α -open sets, $(1,2)^*$ -pre open sets, $(1,2)^*$ -semi-preopen sets or $(1,2)^* - \beta$ -open sets have been introduced and studied respectively

Lellis Thivagar.M and O.Ravi gave a new class of $(1,2)^*$ generalized open sets which contained $(1,2)^*$ semi open sets and $(1,2)^*$ -semi preopen sets call it $(1,2)^*$ - β -open sets. Chandrashekhara Rao and Vaithilingham introduced a special class of $(1,2)^*$ -b-open sets name it $(1,2)^*$ -bc open sets and studied its fundamental properties and compare it with some other types of sets.khalaf.A and Ameen.z.[10][11] introduced sc-open sets and sc-continuity in topological space and pc-open sets and pc-continuity in general topology. In this paper we introduce a new class of sets namely $(1,2)^*$ - β c-open sets in bitopological spaces and investigate the bitopology generated by its family, then compare this bitopology with other well known bitopological spaces. Throughout this paper (X, τ_1, τ_2) (briefly X) will denote bitopological space.

Definition 1.1; Let S be a subset of a bitopological space X then

(i) The $\tau_{1,2}$ -closer of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\bigcap \{F; S \subseteq F \text{ and } F \text{ is } \tau_{1,2}$ -closed}

(ii) The $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as $\bigcup \{F; S \subseteq F \text{ and } F \text{ is } \tau_{1,2}$ open}

Definition 1.2 [2], [3], [4], [5], [6], [7] : Let X be a bitopological space, a nonempty subset A of X is called:

- 1. (1,2)*-semi-open if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)).
- 2. (1,2)*-pre-open if $A \subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl(A)).
- 3. $(1,2)^*$ - α -open if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))).
- 4. $(1,2)^*$ -semi-preopen or $(1,2)^*$ β -open if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A))).
- 5. $(1,2)^*$ -b-open if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \cup \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).
- 6. (1,2)*-regular-open if $A = \tau_{1,2}$ -int(cl(A)).

The complement of $(1,2)^*$ -semi-open sets, $(1,2)^*$ - α -open sets, $(1,2)^*$ -pre-open sets, $(1,2)^*$ -semi-preopen sets, $(1,2)^*$ -semi-preopen sets, $(1,2)^*$ -a-closed sets, $(1,2)^*$ -pre-closed sets, $(1,2)^*$ -semi-preclosed sets, $(1,2)^*$ -b-closed and $(1,2)^*$ -regular closed sets respectively. The family of $(1,2)^*$ -semi-open sets, $(1,2)^*$ - α -open sets, $(1,2)^*$ -pre-open sets, $(1,2)^*$ -semi-preopen sets, $(1,2)^*$ -b-closed and $(1,2)^*$ -regular closed sets respectively. The family of $(1,2)^*$ -semi-open sets, $(1,2)^*$ - α -open sets, $(1,2)^*$ -pre-open sets, $(1,2)^*$ -semi-preopen sets, $(1,2)^*$ -b-open, $(1,2)^*$ -regular open and $(1,2)^*$ -regular closed sets are denoted by $(1,2)^*$ -SO(X), $(1,2)^*$ - α O(X), $(1,2)^*$ -PO(X), $(1,2)^*$ -BO(X), $(1,2)^*$ -RO(X) and $(1,2)^*$ -RC(X) respectively.

Definition 1.3 [10] : A subset A of a space X is called $(1,2)^*$ -sc-open if for each $x \in A \in (1,2)^*$ -SO(X), there exists a $(1,2)^*$ -closed set F such that $x \in F \subseteq A$. The family of all $(1,2)^*$ -sc-open subsets of a bitopological space (X, τ_1, τ_2) is denoted by $(1,2)^*$ -SCO(X).

Definition 1.4 [11] : A $(1,2)^*$ - pre-open subset of a space X is called $(1,2)^*$ -pc-open if for each $x \in A$, there exists a $(1,2)^*$ -closed set F such that $x \in F \subseteq A$. The family of all $(1,2)^*$ -pc-open subsets of a bitopological space (X, τ_1, τ_2) is denoted by $(1,2)^*$ -PCO(X).

Definition 1.5 [7]: Let X be a bitopological space, a nonempty subset A of X is called $(1,2)^*$ -bc-open if :

i. A is $(1,2)^*$ -b-open and

ii. for each $x \in A$ there is a $(1,2)^*$ -closed set F such that $x \in F \subseteq A$.

The family of all $(1,2)^*$ -bc-open subsets of a bitopological space (X, τ_1, τ_2) is denoted by $(1,2)^*$ -BCO(X).

Definition 1.6 [9] : A set A of a bitopological space is called $(1,2)^*$ - θ -open if for each $x \in A$ there exists an $\tau_{1,2}$ -open set G such that, $x \in G \subseteq \tau_{1,2}$ -cl(G) $\subseteq A$.

Definition 1.7 [8] : A set A of a bitopological space is called $(1,2)^*$ - δ -open if for each x \in A there exists an $\tau_{1,2}$ -open set G such that, $x \in G \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(G)) \subseteq A.

Remark : The collection of $(1,2)^*$ - θ -open sets in a bitopological space (X, τ_1, τ_2) forms the bitopology on X which is denoted by $\tau_{1,2-\theta}$. Also the family of $(1,2)^*$ - δ -open sets in a bitopological space (X, τ_1, τ_2) forms a bitopology $\tau_{1,2-\delta}$ - such that $\tau_{1,2-\delta} \subseteq \tau_{1,2}$

Definition 1.8 [9] : A subset A of a space X is θ -(1,2)*-semi-open if for each x \in A, there exists a (1,2)*semi-open set G such that $x \in G \subseteq \tau_{1,2}$ -cl(G) \subseteq A.

Definition 1.9 [6], [12] : A bitopological space X is called:

i. A locally indiscrete if and only if every $\tau_{1,2}$ -open set is $\tau_{1,2}$ -closed.

ii. A regular space if for each $x \in X$ and for each $\tau_{1,2}$ -open set G containing x, there exist an $\tau_{1,2}$ -open

set H such that $x \in H \subseteq \tau_{1,2}$ -cl(H) $\subseteq G$.

iii. An extremely disconnected if the closure of any $\tau_{1,2}$ -open set is $\tau_{1,2}$ -open.

Definition 1.10 [12]: A bitopological space X is said to be an alexandroff space, if any arbitrary intersection of $\tau_{1,2}$ -open sets is $\tau_{1,2}$ -open.

Remark : Note that in an alexandroff space, arbitrary union of $\tau_{1,2}$ -closed sets is $\tau_{1,2}$ -closed.

Lemma 1.11 [5]: Arbitrary union of $(1,2)^*$ - β -open sets is $(1,2)^*$ - β -open set.

Lemma 1.12 [5] : For every $\tau_{1,2}$ -open set G in a bitopological space X and every $A \subseteq X$

we have, $\tau_{1,2}$ - cl(A) \cap G $\subseteq \tau_{1,2}$ -cl(A \cap G).

Theorem 1.13 [5] : If V is $\tau_{1,2}$ -open and A is $(1,2)^*$ - β -open, then V \cap A is $(1,2)^*$ - β -open.

2. (1, 2)*-βc-Open Sets

Now we consider a new class of generalized $\tau_{1,2}$ -open sets.

Definition 2.1: Let X be a bitopological space, a nonempty subset A of X is called $(1,2)^*-\beta c$ -open set if :

i. A is $(1,2)^*$ - β -open and

ii. for each $x \in A$ there is a $\tau_{1,2}$ -closed set F such that $x \in F \subseteq A$. The family of all

 $(1,2)^*$ - β c-open sets in X is denoted by $(1,2)^*$ - β co(X).

Proposition 2.2: A subset A in a bitopological space X is $(1,2)^*-\beta c$ -open if and only if A is $(1,2)^*-\beta$ -open and it is a union of $\tau_{1,2}$ -closed sets.

Proof : Clear from the definition 2.1.

Remark : Every $(1,2)^*-\beta c$ -open is $(1,2)^*-\beta$ -open but the converse need not be true as in the following example.

Example 2.3: Let X = {a, b, c} with a topology $\tau_1 = \{\emptyset, X, \}, \tau_2 = \{\{a\}, \{b\}, \{a, b\}\}, \text{ then:}$

i. The family of $\tau_{1,2}$ -closed sets is: { \emptyset , X, {c}, {a, c}, {b, c}}.

ii. The family of $(1,2)^*\beta$ -open sets is: $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$.

iii. The family of $(1,2)^*$ - βc -open sets is: { \emptyset , X, {a, c}, {b, c}}.

iv. Here {a} is $(1,2)^*$ - β open set but not $(1,2)^*$ - β c-open set.

Remark : The $(1,2)^*$ - βc -open set need not be a $\tau_{1,2}$ -closed set as in the following example.

Example 2.4 :

Let x={a,b,c,d}with bi-topology $\tau_1 = \{\emptyset, X, \{a, d\}, \{c, d\}, \{a, c, d\}\},\$ $\tau_2 = \{\emptyset, X, \{d\}, \{a, b\}, \{a, b, d\}$ then $\tau_{1,2} - o(x) = \{\emptyset, X, \{d\}, \{a, b\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{a, b, d\}\},\$ $\tau_{1,2} - c(x) = \{\emptyset, X, \{d\}, \{a, b, c\}, \{c, d\}, \{b, c\}, \{a, b\}, , \{c\}\}$ and $(1,2)^* - \beta o(x) = \{\emptyset, X, \{a\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\},\$ $(1,2)^* - \beta co(x) = \{\emptyset, X, \{c, d\}, \{b, c, d\}, \{a, b\}, \{b, d\}\},\$

Clearly, the set {b,c,d} is a $(1,2)^*-\beta co(x)$ but it is not a $\tau_{1,2}$ -closed set in X.

Proposition 2.5: Arbitrary union of $(1,2)^*$ - βc -open sets is $(1,2)^*$ - βc -open set.

Proof : First, Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of $(1,2)^*$ - βc -open sets in a bi-topological space X, then A_{α} is $(1,2)^*$ - β -open set for each $\alpha \in \Delta$ so by Lemma 1.12, $\bigcup_{\alpha \in \Delta_A} A_{\alpha}$ is $(1,2)^*$ - β -open set. Second, let $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}$, then there exists $\gamma \in \Delta$ such that $\in A_{\gamma}$. Since A_{γ} is $(1,2)^*$ - βc -open set, there exists a $\tau_{1,2}$ -closed set F such that $x \in F \subseteq A_{\gamma} \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha}$ so, $x \in F \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha}$ and $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is $(1,2)^*$ - βc -open set.

Proposition 2.6 : A subset A in a bi-topological space X is $(1,2)^*$ - β copen if and only if for each $x \in A$, there exists $(1,2)^*$ - β c-open set B such that $x \in B \subseteq A$.

Proof : Clearly by using definition 2.1 and proposition 2.5.

Proposition 2.7: If the bi-topological space X is locally indiscrete, then every $(1,2)^*$ -semi-open set is $(1,2)^*-\beta c$ -open.

Proof: Let A be a $(1,2)^*$ -semi-open, then $A \subseteq \tau_{1,2} - \operatorname{cl}(\tau_{1,2} - \operatorname{int}(A)) \subseteq \tau_{1,2} - \operatorname{cl}(\tau_{1,2} - \operatorname{cl}(\tau_{1,2} - \operatorname{cl}(A)))$ so A is $(1,2)^* - \beta$ -open. Since X is locally indiscrete, then $\tau_{1,2}$ -int(A) is closed and $A \subseteq \tau_{1,2} - \operatorname{cl}(\tau_{1,2} - \operatorname{int}(A)) = \tau_{1,2} - \operatorname{int}(A)$ which implies, A is $\tau_{1,2}$ -open set and for any x $\in A, x \in \tau_{1,2}^-$ int (A) $\subseteq A$. Hence, A is $(1,2)^* - \beta c$ -open.

Remark : Since every $\tau_{1,2}$ -open set is $(1,2)^*$ -semi-open, then by proposition 2.7, in a locally indiscrete space, every $\tau_{1,2}$ -open set is $(1,2)^*$ - β c-open set.

Proposition 2.8: Let X be a bi-topological space, if X is regular space, then every $\tau_{1,2}$ -open set is a $(1,2)^*$ - βc -open set in X.

Proof: Let A be $\tau_{1,2}$ -open, then A is $(1,2)^*$ - β -open. Since X is regular, then for each $x \in A$, there exists an $\tau_{1,2}$ -open set G such that $x \in G \subseteq \tau_{1,2} - cl(G) \subseteq A$. So that, $x \in \tau_{1,2} - cl(G) \subseteq A$ and therefore, A is $(1,2)^*$ - β c-open set.

Proposition 2.9: Let X be an extremely disconnected bi-topological space and let A and B be subsets of X. If A is a $(1,2)^*$ - βc -open set and B is $(1,2)^*$ -regular open, then $A \cap B$ is a $(1,2)^*$ - βc -open set.

Proof : Let X be an extremely disconnected bi-topological space and let A and B be subsets of X. If A is a $(1,2)^*-\beta c$ -open set and B is $(1,2)^*$ -regular open, then $A \cap B$ is a $(1,2)^*-\beta$ -open. If $x \in A \cap B$ then, there exists a $\tau_{1,2}$ -closed set F such that $x \in F \subseteq A$ and so, $x \in F \cap B \subseteq A \cap B$, but B is $(1,2)^*$ regular open in an extremely disconnected space so, B is $\tau_{1,2}$ -closed and hence $F \cap B$ is $\tau_{1,2}$ -closed set. Therefore, $A \cap B$ is a $(1,2)^*-\beta c$ -open set.

Corollary 2.10: Let X be an extremely disconnected bi-topological space and let B be a $(1,2)^*$ –regular open subset of X, then B is a $(1,2)^*$ - βc -open set.

Proof: Using proposition 2.9, if we let A = X and B is a $(1,2)^*$ -regular open set, then $A \cap B = B$ is a $(1,2)^*$ - βc -open set.

Proposition 2.11: Let X be an extremely disconnected topological space and let A be a $(1,2)^* - \delta$ -open subset of X, then A is a $(1,2)^* - \beta$ c-open set.

Proof: Let X be an extremely disconnected bi-topological space and let A be a nonempty $(1,2)^*$ - δ -open subset of X, then for any $x \in A$ there exists an $\tau_{1,2}$ -open set G_x such that $x \in G_x \subseteq \tau_{1,2} - int(\tau_{1,2} - cl(G_x) \subseteq A$ which implies $\bigcup_{\alpha \in \Delta} G_x = A$ is an $\tau_{1,2}$ -open set and so a $(1,2)^*$ - β -open, but X is extremely disconnected so that, $\tau_{1,2} - int(\tau_{1,2} - cl(G_x)) = \tau_{1,2} - cl(G_x)$ and $x \in \tau_{1,2} - cl(G_x) \subseteq A$. Therefore, A is a $(1,2)^*$ - β c-open set.

Proposition 2.12: Let X be a bi-topological space with a subset A. If A is a $\theta - (1,2)^*$ -semi open set then, A is a $(1,2)^*$ - β c-open set.

Proof: Let A be a $\theta - (1,2)^*$ -semi open set then, for each $x \in A$ there exists a $(1,2)^*$ -semi open set G_x such that $x \in G_x \subseteq \tau_{1,2} - cl(G_x) \subseteq A$ which implies, $A = \bigcup_{\alpha \in \Delta} G_x$ which means A is a union of $(1,2)^*$ -semi open sets and therefore, A is $(1,2)^*$ -semi open and so $(1,2)^*$ - β -open set.

Also, $A = \bigcup_{\alpha \in \Delta} \tau_{1,2} - cl(G_x)$ which is a union of $\tau_{1,2}$ -closed sets. Therefore, A is a $(1,2)^*$ - βc -open set. **Corollary 2.13** : Let X be a bi-topological space with a subset A. If A is a $\theta - (1,2)^*$ open set, then A is a $(1,2)^*$ - βc -open set.

Proof : Since every $\theta - (1,2)^*$ -open set is $\theta - (1,2)^*$ -semi open set, then by proposition 2.12 we get the result.

Remark : If $(1,2)^*$ -semi-open sets $\Rightarrow (1,2)^*$ -b-open sets $\Rightarrow (1,2)^*$ - β -open sets, then $(1,2)^*$ -sc-open sets $\Rightarrow (1,2)^*$ -bc-open sets $\Rightarrow (1,2)^*$ - β c-open sets.

Remark : If $(1,2)^*$ -pre-open sets $\Rightarrow (1,2)^*$ -b-open sets $\Rightarrow (1,2)^*$ - β -open sets, then $(1,2)^*$ -pc-open sets $\Rightarrow (1,2)^*$ -bc-open sets.

Proposition 2.14: Let (X, τ_1, τ_2) be a topological space, then $(1,2)^*$ -SCO $(X) \cup (1,2)^*$ -PCO $(X) \subseteq (1,2)^*$ -BCO $(X) \subseteq (1,2)^*$ -BCO(X)

Proposition 2.15: Let (X, τ_1, τ_2) be alexandroff space, then $(1,2)^*$ -SCO $(X) = (1,2)^*$ -BCO $(X) = (1,2)^*$ - β CO(X).

Proof : By proposition 2.14, $(1,2)^*$ -SCO(X) $\subseteq (1,2)^*$ -BCO(X) $\subseteq (1,2)^*$ - β CO(X). If A $\in (1,2)^*$ - β CO(X), then A is a union of $\tau_{1,2}$ -closed sets in alexandroff space which implies, A is $\tau_{1,2}$ -closed. But A $\subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A))) = $\tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)) and so that, A is $(1,2)^*$ -semi-open and hence, A $\in (1,2)^*$ -SCO(X). Therefore, $(1,2)^*$ -SCO(X) $\subseteq (1,2)^*$ -BCO(X) $\subseteq (1,2)^*$ - β CO(X) $\subseteq (1,2)^*$ -SCO(X) and so, $(1,2)^*$ -SCO(X) = $(1,2)^*$ -BCO(X)= $(1,2)^*$ - β CO(X).

3. Generated by (1, 2)*- BC-Open Sets

Although none of $(1,2)^*$ -SO(X), $(1,2)^*$ -PO(X), $(1,2)^*$ -BO(X) and $(1,2)^*$ - β O(X) is a bi-topology on X, each of these classes generates a bi-topology in a natural way. Njastad showed that $\tau_{12-\alpha}$ was the bi-topology generated by $(1,2)^*$ -SO(X) and Andrijevic showed that $\tau_{12-\gamma}$ and $\tau_{12-\beta}$ were the bi-topologies generated by $(1,2)^*$ -PO(X) and $(1,2)^*$ -BO(X) respectively and moreover he proved that $\tau_{12-\gamma} = \tau_{1,2-spo}$ which generated by $(1,2)^*$ -SPO(X) or $(1,2)^*$ - β O(X). In this section we shall study the bi-topology generated by the class $(1,2)^*$ - β CO(X) and we denoted it by $\tau_{1,2-\beta c}$.

Definition 3.1: A subset A of a bi-topological space (X, τ_1, τ_2) is called a $(1,2)^* - \beta c$ -set if A $\cap B \in (1,2)^* - \beta CO(X)$ for all $B \in (1,2)^* - \beta CO(X)$.

The class of all $(1,2)^*$ - βc sets in (X, τ_1, τ_2) will be denoted by $\tau_{1,2-\beta c}$.

Theorem 3.2 : $\tau_{1,2-\beta c}$ is a bi-topology on X.

Proof :

(1) Clearly \emptyset and $X \in \tau_{1,2-\beta c}$

(2) Let $\{\bigcup_{\alpha \in \Delta} A_{\alpha} \in \Delta\} \subseteq \tau_{\beta c}$. Then $A_{\alpha} \cap B \in (1,2)^* - \beta CO(X)$ for all $B \in (1,2)^* - \beta CO(X)$. Therefore, $(\bigcup_{\alpha \in \Delta} A_{\alpha} \in) \cap B = {}_{\alpha} \Delta \{A_{\alpha} \cap B\}$ where $A_{\alpha} \cap B$ is $(1,2)^* - \beta c$ -open set and since arbitrary union of $(1,2)^* - \beta c$ -open sets is $(1,2)^* - \beta c$ -open, it follows that, $\bigcup_{\alpha \in \Delta} A_{\alpha} \Delta \{A_{\alpha} \cap B\}$ is a $(1,2)^* - \beta c$ -open set for each $B \in (1,2)^* - \beta CO(X)$ and hence, $(\bigcup_{\alpha \in \Delta} A_{\alpha}) \cap B$ is $(1,2)^* - \beta c$ -open set. Therefore, $\bigcup_{\alpha \in \Delta} A_{\alpha} \in \tau_{1,2-\beta c}$.

(3) Let C and $D \in \tau_{1,2-\beta c'}$. Then $(C \cap D) \cap B = C \cap (D \cap B) \in (1,2)^* - \beta CO(X)$ for all $B \in (1,2)^* - \beta CO(X)$

and hence $C \cap D \in \tau_{1,2-\beta c}$. By (1), (2) and (3) we have $\tau_{1,2-\beta c'}$ is a bi-topology on X.

Theorem 3.3 : $\tau_{1,2-\beta c} \subseteq (1,2)^* - \beta CO(X, \tau_1, \tau_2)$ for any $\tau_{1,2}$.

Proof: Let $A \in \tau_{1,2-\beta c}$ then for any $(1,2)^* - \beta c$ -open set B in X we have, $A \cap B$ is a $(1,2)^* - \beta c$ -open set.

In particular, if we let B = X, then $A \cap X = A$ is $(1,2)^* \cdot \beta c$ -open set and $A \in (1,2)^* \cdot \beta CO(X, \tau_1, \tau_2)$. Hence, $\tau_{1,2-\beta c^*} \subseteq (1,2)^* \cdot \beta CO(X, \tau_1, \tau_2)$

Remark : Note that $(1,2)^* - \beta CO(X, \tau_1, \tau_2) \subseteq \tau_{1,2-\beta c}$ is not true in general.

Consider the following example.

Example 3.4: Let X = {a, b, c} with the bi-topology $\tau_{12} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, then $(1,2)^*$ - β CO $(X, \tau_1, \tau_2) = \{\emptyset, X, \{c,d\}, \{b, d\}, \{b,c,d\}, \{a,b\}\}$ here A={a,b} and B={b,d} $\tau_{12-\beta c} = \{\emptyset, X, \{b\}, [d], \{b,d\}\}$ here {c, d} $\in (1,2)^* - \beta co(x) but \{c,d\} \notin \tau_{12-\beta c}$ because {c, d} $\cap \{b, d\}\} = \{d\} \notin (1,2)^* - \beta co(X, \tau_1, \tau_2)$

Theorem 3.5 : A subset A of a bi-topological space (X, τ_1, τ_2) is closed in $(X, \tau_{1,2-\beta c})$ if and only if A \cup B is $(1,2)^*$ - βc -closed for any $(1,2)^*$ - βc -closed set B in X.

Proof: A subset A is closed in $(X, \tau_{1,2-\beta c})$ if and only if A^c is $\tau_{1,2}$ —open in $(X, \tau_{1,2-\beta c})$ if and only if $A^c \cap C$ is $(1,2)^*$ - βc -open for any $(1,2)^*$ - βc -open set C if and only if $(A^c \cap C)^c = A \cup C^c$ is $(1,2)^*$ - βc -closed for any $(1,2)^*$ - βc -closed set C^c that is, $A \cup B$ is $(1,2)^*$ - βc -closed for any $(1,2)^*$ - βc -closed set B in X.

Theorem 3.6: Let (X, τ_1, τ_2) be a locally indiscrete space, then $\tau_{1,2} \subseteq \tau_{1,2-\beta c}$

Proof: Let (X, τ_1, τ_2) be a locally indiscrete bi-topological space and consider $A \in \tau_{1,2}$, then by Theorem 1.12, for any $(1,2)^*$ - βc -open set B in X we have, $A \cap B$ is $(1,2)^*$ - β -open set. But B is $(1,2)^*$ - βc -open so that, $B = \bigcup_{\alpha \in \Delta} A_{\alpha} F_{\alpha}$ where F_{α} is a $\tau_{1,2}$ -closed set for each $\alpha \in \Delta$ which implies, $A \cap B = \bigcup_{\alpha \in \Delta} A_{\alpha}(A \cap F_{\alpha})$ which union of $\tau_{1,2}$ -closed sets because A is $\tau_{1,2}$ -closed in a locally indiscrete space and hence, $A \cap B$ is $(1,2)^*$ - βc -open set for any $(1,2)^*$ - βc -open set B in X. So that, $A \in \tau_{1,2-\beta c}$ and $\tau_{1,2} \subseteq \tau_{1,2-\beta c}$

Theorem 3.7: Let (X, τ_1, τ_2) be T_1 space, then $\tau_{1,2} \subseteq \tau_{1,2-\beta c}$

Proof : Let X be a T₁ topological space and consider A $\in \tau_{1,2}$, then for any $(1,2)^*$ - β c-open set B in X we have, A \cap B is β -open set. But A \cap B = $\bigcup_{\alpha \in \Delta} A_{\alpha \ X \in A \cap B} \{x\}$ where $\{x\}$ is a $\tau_{1,2}$ -closed set in T₁ space. So that, A \cap B is $(1,2)^*$ - β c -open set for any $(1,2)^*$ - β c -open set B in X and so, A $\in \tau_{1,2-\beta c}$. Hence, $\tau_{1,2} \subseteq \tau_{1,2-\beta c}$ for any T₁ space.

Theorem 3.8 Let (X, τ_1, τ_2) be a regular bitopological space. Then, $\tau_{1,2} \subseteq \tau_{1,2-\beta c}$.

Proof : Let X be a regular space and let $A \in \tau_{1,2}$, then for any $(1,2)^* \cdot \beta c$ -open set B in X we have, A \cap B is $(1,2)^* \cdot \beta$ open set. Since X is regular, there is an $\tau_{1,2}$ -open set G_x such that $x \in G_x \subseteq \tau_{1,2} \cdot cl(G_x) \subseteq A$. Since B is $(1,2)^* \cdot \beta c$ -open set, there is a $\tau_{1,2}$ -closed set F_x such that $x \in F_x \subseteq A$. So that, for any $x \in A \cap B$ we have, $x \in \tau_{1,2} - cl(G_x \cap F_x \subseteq A \cap B$ where $\tau_{1,2} - cl(G_x) \cap F_x$ is a $\tau_{1,2}$ -closed set. Hence, $A \cap B$ is $(1,2)^* \cdot \beta c$ -open set for any $(1,2)^* \cdot \beta c$ -open set B in X. So, $A \in \tau_{1,2} - \beta c$ and therefore, $\tau_{1,2} \subseteq \tau_{1,2-\beta c}$ Theorem 3.9 : For a space (X, τ_1, τ_2) and $x \in X$ the following are equivalent:

- (1) $\{x\} \in (1,2)^* \beta CO(X).$
- (2) $\{x\} \in \tau_{1,2-\beta c}$.

Proof: $(1 \Rightarrow 2)$ Let $\{x\} \in (1,2)^* - \beta CO(X)$, then for any $(1,2)^* - \beta c$ -open set B in X we have, either

 $\{x\} \cap B = \emptyset$ which is $(1,2)^* \cdot \beta c$ -open set or $\{x\} \cap B = \{x\}$ which is a $(1,2)^* \cdot \beta c$ -open set. Hence, in both cases,

 $\{x\} \cap B \in (1,2)^*-\beta CO(X) \text{ and therefore, } \{x\} \in \tau_{1,2-\beta c}.$

 $(2 \Rightarrow 1)$ Let $\{x\} \in \tau_{1,2-\beta c}$ then by theorem 3.3, $\tau_{1,2-\beta c} \subseteq (1,2)^* - \beta CO(X)$ and hence, $\{x\} \in (1,2)^* - \beta CO(X)$.

Theorem 3.10 : Let (X, τ_1, τ_2) be an alexandroff space. Then, the following are equivalent:

- (1) A is a $\tau_{1,2}$ -clopen set in (X, τ_1, τ_2)
- (2) A∈τ_{1,2-βc}.

Proof : $(1 \Rightarrow 2)$ Let A be a $\tau_{1,2}$ -clopen set in (X, τ_1, τ_2) . Then, for any $(1,2)^*$ - βc -open set B in X we have, A \cap B is $(1,2)^*$ - β -open and for any x \in A \cap B there is a $\tau_{1,2}$ -closed set F \subseteq B such that x \in A \cap F \subseteq A \cap B where A \cap F is a $\tau_{1,2}$ -closed set. Hence, A \cap B is $(1,2)^*$ - βc -open and so, A $\in \tau_{1,2-\beta c}$.

 $(2 \Rightarrow 1)$ Let $A \in \tau_{1,2-\beta c}$, then by theorem 3.3, $A \in (1,2)^*$ - $\beta CO(X)$ and so, $A = \bigcup_{\alpha \in \Delta} A_{\alpha} F_{\alpha}$ where F_{α} is $\tau_{1,2}$ closed for each $\alpha \in \Delta$. Since X is alexandroff space, A is $\tau_{1,2}$ -closed but A is $(1,2)^*$ - β -open and if A is not $\tau_{1,2}$ -open then, $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A))) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq \tau_{1,2}$ -cl(A) = A which implies, A f = A which a contradiction. So, A must be an open set and therefore, A is a $\tau_{1,2}$ -clopen set.

Corollary 3.11 : In an alexandroff space $(X, \tau_1, \tau_2) \tau_{1,2-\beta c} \subseteq \tau_{1,2}$

Proof: Let $A \in \tau_{1,2-\beta c}$ then by theorem 3.10, A is a $\tau_{1,2}$ -clopen set in X and hence, $A \in \tau_{1,2}$. Hence, $\tau_{1,2-\beta c} \subseteq \tau_{1,2}$.

Theorem 3.12: Let (X, τ_1, τ_2) be a bi-topological space, then $(1,2)^* RC(X) \subseteq \tau_{1,2-\beta c}$

Proof: Let A be a regular $\tau_{1,2}$ -closed set in (X, τ_1, τ_2) , then for any $(1,2)^*$ - β c-open set B we have, A \cap B \subseteq A \cap $\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(B))) \subseteq $\tau_{1,2}$ -cl(A \cap $\tau_{1,2}$ -int($\tau_{1,2}$ -cl(B))) \subseteq $\tau_{1,2}$ -cl($\tau_{1,2}$ - cl($\tau_{1,2}$ $\tau_{1,2}$ -closed set $F \subseteq B$ such that $x \in A \cap F \subseteq A \cap B$ where $A \cap F$ is $\tau_{1,2}$ - closed because A is $\tau_{1,2}$ -closed. Hence, $A \cap B$ is $(1,2)^*$ - βc -open set for any $(1,2)^*$ - βc -open set B in X and therefore, $A \in \tau_{1,2-\beta c}$. **Theorem 3.13** : Let (X, τ_1, τ_2) be an extremely disconnected bi-topological space. Then, $\tau_{1,2-\delta} \subseteq \tau_{1,2-\beta c}$.

Proof : Let X be an extremely disconnected space and $A \in \tau_{1,2-\delta}$, then A is $\tau_{1,2}$ -open and for any $(1,2)^*-\beta c$ -open set B in X we have, $A \cap B$ is $(1,2)^*-\beta$ -open. If $x \in A \cap B$ then, since X is extremely disconnected, there is an $\tau_{1,2}$ -open set G such that $x \in G \subseteq \tau_{1,2}$ int $(\tau_{1,2}$ -cl(G)) $\subseteq A$ and since B is $(1,2)^*-\beta c$ -open, there is a $\tau_{1,2}$ -closed set F such that $x \in F \subseteq B$ which implies, $x \in \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(G)) $\cap F \subseteq A \cap B$ where $\tau_{1,2}$ -cl(G) is $\tau_{1,2}$ -open in extremely disconnected space and so $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(G)) $\cap F = \tau_{1,2}$ -cl(G) $\cap F$ which is a $\tau_{1,2}$ -closed set. So that, $A \cap B$ is $(1,2)^*-\beta c$ -open set for any $(1,2)^*-\beta c$ -open set B in X and

so, $A \in \tau_{1,2-\beta c}$. Therefore, $\tau_{1,2-\delta} \subseteq \tau_{1,2-\beta c}$.

Theorem 3.14: Let (X, τ_1, τ_2) be an extremely disconnected alexandroff space,

then $\tau_{1,2-\delta} = \tau_{1,2-\beta c}$

Proof: Let X be an alexandroff space such that $A \in \tau_{1,2-\beta c}$, then A is a $\tau_{1,2}$ -clopen set and so for any

 $x \in A$ we have, $x \in A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)) \subseteq A$ which implies that A is $(1,2)^*$ - δ -open and hence, A

 $\in \tau_{1,2-\delta}$. So that, $\tau_{1,2-\beta c} \subseteq \tau_{1,2-\delta}$. But $\tau_{1,2-\delta} \subseteq \tau_{1,2-\beta c}$

Therefore, $\tau_{1,2-\delta} = \tau_{1,2-\beta c}$.

Conclusion : Its importance to significant in various area of Mathematics and related Sciences. In this paper we studied the concept of (1,2)*Bc- Open Sets in bitopological spaces and some of the properties of (1,2)*Bc-Open sets are discussed. This shall be extended in the future research with some applications.

References

- Ravi.O and Lellis Thivagar .M "On stronger forms of (1,2)*- quotient mappings in bitopological spaces", International J.math game theory and algebra, 14 (6) (2004), 481-492.
- [2] Ravi .O and Lellis Thivagar.M "A bitopological (1,2)* semi-generalized continuous maps", Bull. Malays. math. sci. soc (2), 29 (1),(2006), 79-88.
- [3] Lellis Thivagar.M Ravi.O and Abd Ei-money, M.E Remarks "On bitopological (1,2)*-quatient mapping ",J.Egypth math soc. (16)(1) (2008),17-25
- [4] Dr.Thakur, C.K.Raman Department of Mathematics Jameshedpm worker college Jameshedpur "On generalished b-closed sets in bitopological spaces" International journal of scientific Engineering and Technology, volume 5, pp 124-127.
- [5] Ravi.O Thivagar.M.L Remarks "On λ-irregsolute functions via (1,2)^{*} sets", Advance in App math.Analysis 5(1) (2010), 1-15
- [6] .Chandra Sekhara Rao K and V.Subha, "A note on the Associated Bitopological space (x, τ_1^*, τ_2^*) ",International journal of math analysis vol-7(323-300),2003
- [7] Chandera Shekaren Rao and Vaithialingam "On b-open sets", Acta ciencia India vol xxxiv (4) 2008
- [8] "Properties of ij-delta open sets in bitopological space" Fhkhedr Fasiculi Mathematics, 2014
- [9] M.Ramesh kumar "On θ -generalized closed sets in Bitopological space", Journal of Advance studies in Topology.
- [10] Kalaf.A and Ammen.Z "Sc-open sets and Sc-continivity in topological spaces", Journal of advanced Research in pure Mathematics, 2(3) (2010), 87-101.
- [11] Ameen,Z "pc-open sets and pc-continivity in topological spaces", Journal of advanced Research in pure Mathematics, 3(1) (2011),123-134.
- [12] Alexandreroff P.Diskrete raume, Math sbornik, 2 (1937), 501-518.