Strong Domination Polynomials of Queen Crown Graph

S.Angelin Kavitha Raj ${ }^{\# 1}$, S.Jeya Mangala Abirami ${ }^{* 2}$
\# Department of Mathematics, Sadakathullah Appa College, Rahmath Nagar,Tirunelveli,Tamilnadu-627003 Affiliated to Manonmaniam Sundaranar University,Abishekapatti,Tirunelveli,Tamilnadu-627012

India

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. A set $\mathrm{S} \subseteq \mathrm{V}$ is called a dominating set if every vertex $\mathrm{v} \in \mathrm{V}$ is either a member of S or adjacent to a member of S . A set $\mathrm{S} \subseteq \mathrm{V}$ is a Strong dominating set of G if for every vertex $v \in$ V-S there exists a $u \in S$ such that $u v \in E$ and $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. Let $\mathbf{Q}_{\mathbf{m}, \mathrm{n}}$ be a Queen crown graph which is obtained from two null graphs of order zero and taking one copy of null graph G_{1} with m vetices, m ≥ 3 and another copy of null graph G_{2} with $\mathrm{n}=2$ vertices (that should be fixed) then joining the vertex of G_{1} with an edge to every vertex of G_{2}. Let $\operatorname{Sd}\left(\mathbf{Q}^{\mathbf{j}}{ }_{\mathbf{m}, \mathbf{n}}\right)$ be the family of strong dominating set of Queen crown graph with number of elements in the set j and let $\operatorname{Sd}\left(\mathbf{Q}_{\mathbf{m}, \mathrm{n}, \mathrm{j}}\right)=\left|\mathbf{S d}\left(\mathbf{Q}^{\mathrm{j}}{ }_{\mathrm{m}, \mathbf{n}}\right)\right|$ In this paper we establish $\mathbf{Q}_{\mathbf{m}, \mathrm{n}}$ and obtain a iterative formula for $\operatorname{Sd}\left(\mathbf{Q}^{\mathbf{j}}{ }_{\mathrm{m}, \mathrm{n}}\right)$. Using this iterative formula we consider the polynomial for $\operatorname{SD}\left(\mathbf{Q}_{\mathbf{m}, \mathrm{n}, \mathbf{x}}\right)=$ $\sum_{j=1}^{m+n-1}\left[\binom{m+n-1}{j}-\left(\begin{array}{c}m+n-2\end{array}\right)\right] x^{j+1}$ Also we have determine several properties of polynomials on Queen crown graphs.

Keywords - Strong dominating set, Strong domination polynomial, Queen crown graph

I. INTRODUCTION

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a bipartite graph of order $|\mathrm{V}|=\mathrm{m}+\mathrm{n} \mathrm{A}$ set $\mathrm{S} \subseteq \mathrm{V} \$$ is called a dominating set if every vertex $\mathrm{v} \in \mathrm{V}$ is either a member of S or adjacent to a member of S . A set $\mathrm{S} \subseteq \mathrm{V}$ is a Strong dominating set of G if for every $\mathrm{v} \in \mathrm{V}-\mathrm{S}$, there $\mathrm{u} \in \mathrm{S}$ such that $\mathrm{uv} \in \mathrm{E}$ and $\operatorname{deg}(\mathrm{u}) \geq \operatorname{deg}(\mathrm{v})$. The minimum cardinality of Strong dominating set is called minimum Strong domination number and is denoted by $\gamma_{\mathrm{sd}}(\mathrm{G})$. Alkhani and Peng[1][2] found the dominating sets and domination polynomial of cycles and certain graphs.Gehet, Khalf and Hasni found the dominating set and domination polynomial of stars and wheels[3][4]..Angelin and Robinson found the weak dominating sets and weak domination polynoimal of complete graphs [5]. Let H_{m} be a graph with order m and let $\mathrm{H}_{\mathrm{m}}^{\prime}$ be the family of dominating sets of a graph H_{m} with the number of elements in the set j and let $\mathrm{d}\left(H_{m}\right.$, $\mathrm{j})=\left|\mathrm{H}_{\mathrm{j}}\right|$. We call the polynomial $\mathrm{D}\left(\mathrm{H}_{\mathrm{m}}, \mathrm{x}\right)=\sum_{\mathrm{j}=\mathrm{v}(\mathrm{G})}^{\mathrm{n}} \mathbf{d}\left(\mathrm{H}_{\mathrm{m}}, \mathbf{j}\right) \mathbf{x}^{1}$ the domination polynomial of graph $\mathrm{G}[2]$. Let $\mathbf{Q}_{\mathrm{m}, \mathrm{n}}$ be a Queen crown graph which is obtained from two null graphs of order zero and taking one copy of null graph G_{1} with m vetices, $m \geq 3$ and another copy of null graph G_{2} with $\mathrm{n}=2$ vertices (that should be fixed) then joining the vertex of G_{1} with an edge to every vertex of G_{2}.Let $\operatorname{Sd}\left(\mathrm{Q}^{\mathrm{j}}{ }_{\mathrm{m}, \mathrm{n}}\right)$ be the family of strong dominating set of Queen crown graph with number of elements in the set j and let $\operatorname{Sd}\left(\mathbf{Q}_{\mathbf{m}, \mathrm{n}, \mathrm{j}}\right)=\left|\operatorname{Sd}\left(\mathrm{Q}^{\mathrm{j}}{ }_{\mathrm{m}, \mathrm{n}}\right)\right|$. We call the polynomial $S D\left(\mathbf{Q}_{\mathbf{m}, \mathrm{n}, \boldsymbol{x}}\right)=\sum_{j=1}^{m+n-1}\left[\binom{m+n-1}{j}-\binom{m+n-2}{j} \boldsymbol{x}^{j+1}\right.$ the strong domination polynomial of Queen crown graph. In the next section we establish the families of strong dominating sets of $\mathbf{Q}_{\mathbf{m}, \mathrm{n}}$ with the number of elements in the set j by the families of strong dominating sets of $\mathrm{Q}_{\mathrm{m}-1, \mathrm{n}}$ with number of elements j and $\mathrm{j}-1$. We explore the strong domination polynomial of Queen crown graphs in section 3.As usual we use $\binom{n}{i}$ or $n C_{i}$ for the combination n to i and we denote the set $\{1,2, \ldots, \mathrm{n}\}$ simply by $[\mathrm{n}$], and we denote $\operatorname{deg}(\mathrm{u})$ to degree of the vertex u and let

$$
\begin{aligned}
& \Delta(\mathrm{G})=\max \{\operatorname{deg}(\mathrm{u}): \forall \mathrm{u} \in \mathrm{~V}(\mathrm{G})\} \text { and } \\
& \delta(\mathrm{G})=\min \{\operatorname{deg}(\mathrm{u}): \forall \mathrm{u} \in \mathrm{~V}(\mathrm{G})\}
\end{aligned}
$$

II. STRONG DOMINATING SETS OF QUEEN CROWN GRAPH

Let $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{m} \geq 3 \$$ and $\mathrm{n}=2$ be the Queen Crown graph with ($\mathrm{m}+2$) vertices, $\mathrm{V}\left[\mathrm{Q}_{\mathrm{m}, \mathrm{n}]}\right]=[\mathrm{m}+\mathrm{n}]$ and $\mathrm{E}\left[\mathrm{Q}_{\mathrm{m}, \mathrm{n}}\right]=\left\{(\mathrm{u}, \mathrm{v})\right.$: forall $\mathrm{u} \in \mathrm{G}_{1}$ and $\left.\mathrm{v} \in \mathrm{G}_{2}\right\}$. Let $\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}^{\mathrm{j}}\right)$ be the family of strong dominating sets of $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$ with the number of elements ' j '. We shall explore the strong dominatings sets of Queen crown graph :.

Lemma 2.1.

The following properties hold for all Queen crown graph $G_{q}=Q_{m, n}$, where $q=m+n$.
(i) $\quad\left|\mathrm{G}_{\mathrm{q}}{ }^{\mathrm{q}}\right|=1$
(ii) $\quad\left|\mathrm{G}_{\mathrm{q}}{ }^{\mathrm{q}-1}\right|=\mathrm{q}-2$
(iii) $\left|G_{q}{ }^{r}\right|=0$ if $r>q$
(iv) $\left|\mathrm{G}_{\mathrm{q}}{ }^{0}\right|=0$

Proof

Let $G=(V, E)$ be a Queen crown graph of order $m+n$.Then,
(i) $\mathrm{G}_{\mathrm{q}}{ }^{\mathrm{q}}=\{\mathrm{G}\}$

$$
\therefore\left|G_{q}{ }^{\mathrm{q}}\right|=1
$$

(ii) $\mathrm{G}_{\mathrm{q}}{ }^{\mathrm{q}-1}=\left\{\mathrm{u}: \mathrm{u} \in \mathrm{G}_{1}\right\}$

Since in $\mathrm{Q}_{\mathrm{m}, \mathrm{n}} \mathrm{n}$ is fixed and the set $\{a, b\}$ in G_{2} has a degree m where $m \geq 3$, the set $\{\mathrm{a}, \mathrm{b}\}$ is a minimal strong dominating set for $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$ forall $\mathrm{m} \geq 3$
(iii) We can't find any subset K of G such that $|V(K)|>|V(G)|$

$$
\therefore\left|\mathrm{G}_{\mathrm{q}}{ }^{\mathrm{r}}\right|=0 \text { if } \mathrm{r}>\mathrm{q}
$$

(iv) We can't find any subset K of G such that $|V(K)|=0, \varphi$ is not a strong dominating set of G .

$$
\therefore\left|\mathrm{G}_{\mathrm{q}}{ }^{0}\right|=0
$$

Theorem-2.2

Proof
Let $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$ be a Queen crown graph with order $(m+n)$
$\Rightarrow \quad$ there are two null graphs G_{1} of order $m \geq 3$ and G_{2} of order n where $\mathrm{n}=2$ is fixed. Let ' a ' and ' b ' be two vertices of G_{2}.
W.K.T., Both the vertices ' a ' and ' b ' are adjacent to exactly ' m ' vertices in $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$.
$\Rightarrow \operatorname{deg}(a)=\operatorname{deg}(b)=m, m \geq 3$
\Rightarrow every strong dominating set must contain both verices ' a ' and ' b '. Also, every vertices of G_{1} has exactly degree 2 .

Hence $\operatorname{deg}(\mathrm{u})<\operatorname{deg}(\mathrm{a})=\operatorname{deg}(\mathrm{b}) \forall \mathrm{u} \in \mathrm{G}_{1}$
\Rightarrow Every vertex subset of $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$ that contains both ' a ' and ' b ' with number of elements of the set $j+1$ where $j=1,2, \ldots,(m+n-1)$ is a strong dominating set of $Q_{m, n}$
$\therefore \operatorname{Sd}\left(Q_{m, n}, j+1\right)=\left[\binom{m+n-1}{j}-\binom{m+n-2}{j}\right]$ forall $(m+n) \in Z^{+}$and $j=1,2, \ldots,(m+n-1)$

Theorem-2.3

Let $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$ be a Queen crown graph with order $(\mathrm{m}+\mathrm{n})$ then $\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{j}+1\right)=$ $\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}-1, \mathrm{n}}, \mathrm{j}+1\right)+\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}-1, \mathrm{n}}, \mathrm{j}\right)$.

Proof

W.K.T Sd $\left(Q_{m, n}, j+1\right)=\left[\binom{m+n-1}{j}-\binom{m+n-2}{j}\right]$

Similarly $\operatorname{Sd}\left(Q_{m-1 n}, j+1\right)=\left[\binom{m+n-2}{j}-\binom{m+n-3}{\mathfrak{j}}\right]$ and $\quad S d\left(Q_{m-1 n}, j\right)=\left[\binom{m+n-2}{\mathfrak{j}-1}-\binom{m+n-3}{\mathfrak{j}-1}\right]$
Now,

$$
\begin{aligned}
\mathrm{Sd}\left(\mathrm{Q}_{\mathrm{m}-1 \mathrm{n}} \mathrm{j}+1\right)+\mathrm{Sd}\left(\mathrm{Q}_{\mathrm{m}-1 \mathrm{n} n} \mathrm{j}\right) & =\left[\binom{\mathrm{m}+\mathrm{n}-2}{\mathrm{j}}-\binom{\mathrm{m}+\mathrm{n}-\mathrm{a}}{\mathrm{j}}\right]+\left[\binom{\mathrm{m}+\mathrm{n}-2}{\mathrm{j}-1}-\binom{\mathrm{m}+\mathrm{n}-\mathrm{a}}{\mathrm{j}-1}\right] \\
& =\left[\binom{m+n-2}{j}+\binom{m+n-2}{j-1}\right]-\left[\binom{m+n-2}{j}+\binom{m+n-2}{j-1}\right] \\
& =\left[\binom{m+n-1}{j}-\binom{m+n-2}{j}\right]\left[\text { Since }\binom{m}{j}=\binom{m-1}{j}+\binom{m-1}{j-1}\right] \\
& =\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{j}+1\right)
\end{aligned}
$$

Theorem-2.4

The following characteristics hold for co-efficient $\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, x\right) \forall(m+n) \in Z^{+}$
(i) $\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, 2\right)=1$
(ii) $\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, 3\right)=\mathrm{m}$
(iii) $\gamma_{\mathrm{sd}}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}\right)=2$
(iv) $\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}+1\right)=\mathrm{m}$
(v) $\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}+\mathrm{n}\right)=1$

Proof

(i)

$$
\begin{aligned}
\mathrm{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, 2\right) & =\left[\binom{\mathrm{m}+\mathrm{n}-1}{1}-\binom{\mathrm{m}+\mathrm{n}-2}{1}\right] \\
& =(\mathrm{m}+\mathrm{n}-1)-(\mathrm{m}+\mathrm{n}-2) \\
& =\mathrm{m}+\mathrm{n}-1-\mathrm{m}-\mathrm{n}+2 \\
& =1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\operatorname{Sd}\left(Q_{m, n}, 3\right) & =\left[\binom{m+n-1}{2}-\binom{m+n-2}{2}\right] \\
& =\frac{(m+n-1)(m+n-2)}{2}-\frac{(m+n-2)(m+n-2)}{2} \\
& =m+n-2
\end{aligned}
$$

Since $n=2$ in $Q_{m, n}, \operatorname{Sd}\left(Q_{m, n}, 3\right)=m$
(iii) W.K.T the two vertices namely ' a ' and ' b ' in G_{2} has degree m. Also,all the vertices in G_{1} has adjacent to only these vertices a and b in $Q_{m, n}$

$$
\Rightarrow \operatorname{deg}(u)=2 \text { forall } u \in G_{1}
$$

And

$$
\operatorname{deg}(a)=\operatorname{deg}(b)=m, m \geq 3
$$

Hence the set $\{a, b\}$ is a minimal strong dominating set of $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$.

$$
\gamma_{\mathrm{sd}}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}\right)=2
$$

(iv)

$$
\begin{aligned}
\mathrm{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{~m}+1\right) & =\left[\binom{\mathrm{m}+\mathrm{n}-1}{\mathrm{~m}}-\binom{\mathrm{m}+\mathrm{n}-2}{\mathrm{~m}}\right] \\
& =\frac{(\mathrm{m}+\mathrm{n}-1)!}{\mathrm{m}!(\mathrm{m}+\mathrm{n}-1-\mathrm{m})!}-\frac{(\mathrm{m}+\mathrm{n}-2)!}{\mathrm{m}!(\mathrm{m}+\mathrm{n}-2-\mathrm{m})!} \\
& =\frac{(\mathrm{m}+1)!}{\mathrm{m}!}-\frac{(\mathrm{m})!}{\mathrm{m}!} \quad[\text { Put } \mathrm{n}=2] \\
& =\mathrm{m}
\end{aligned}
$$

(v) The only set in $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$ of order m+n is itself

$$
\text { Hence } \operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{~m}+\mathrm{n}\right)=1
$$

Using theorem 2.3 and 2.4, We obtain the coefficient of $\mathrm{SD}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}} \cdot \mathrm{x}\right)$ for $5 \leq \mathrm{m}+\mathrm{n} \leq 20$ in Table1 .Let $\operatorname{SD}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right)=\left|\mathrm{Q}^{\mathrm{j}}{ }_{\mathrm{m}, \mathrm{n}}\right|$

III. STRONG DOMINATION POLYNOMIALS OF QUEEN CROWN GRAPH

In this section we introduce and establish the Strong domination polynomial of Queen crown graph.

Let $Q^{j}{ }_{m, n}$ be the family of strong dominating sets of a Queen crown $Q_{m, n}$ with cardinality j and let $\operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{j}\right)=\left|\mathrm{Q}^{\mathrm{j}} \mathrm{m}_{\mathrm{n}}\right|$ and since $\gamma_{\mathrm{sd}}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}\right)=2$. Then the strong domination polynomial $\mathrm{SD}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right)$ of $\mathrm{Q}_{\mathrm{m}, \mathrm{n}}$ is defined as $\operatorname{SD}\left(Q_{m, n}, x\right)={ }^{m+n-1} \sum_{j=1} \operatorname{Sd}\left(Q_{m, n}, j+1\right) x^{j+1}$

Theorem 3.1

The following characteristics hold for all $\operatorname{SD}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right)$ forall $\mathrm{m} \geq 3$
(i) $\operatorname{SD}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right)=\mathrm{SD}\left(\mathrm{Q}_{\mathrm{m}-1, \mathrm{n}}, \mathrm{x}\right)+\mathrm{xSD}\left(\mathrm{Q}_{\mathrm{m}-1, \mathrm{n}}, \mathrm{x}\right)$
(ii) $\operatorname{SD}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right)=\sum_{j=1}^{m+n-1}\left[\binom{m+n-1}{j}-\binom{m+n-2}{j}\right] x^{j+1}$

Proof

(i) W.K.T $\operatorname{SD}\left(Q_{m, n}, x\right)={ }^{m+n-1} \sum_{j=1} \operatorname{Sd}\left(Q_{m, n}, j+1\right) x^{j+1}$

Now,

$$
\begin{aligned}
S D\left(Q_{m, n}, x\right)= & \sum_{j=1}^{m+n-1}\left[S d\left(Q_{m-1, n}, j+1\right)+S d\left(Q_{m-1 n}, j\right)\right] x^{j+1} \\
= & \sum_{j=1}^{m+n-1}\left[S d\left(Q_{m-1, n}, j+1\right)\right] x^{j+1}+\sum_{j=1}^{m+n-1}\left[S d\left(Q_{m-1 n}, j\right)\right] x^{j+1} \\
= & \sum_{j=1}^{m+n-1}\left[S d\left(Q_{m-1 n}, j+1\right)\right] x^{j+1}+x \sum_{j=2}^{m+n-1}\left[S d\left(Q_{m-1 n}, j\right)\right] x^{j} \\
& =S D\left(Q_{m-1, n} x\right)+x \operatorname{SD}\left(Q_{m-1, n}, x\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mathrm{SD}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right) & ={ }^{\mathrm{m}+\mathrm{n}-1} \sum_{\mathrm{j}=1} \operatorname{Sd}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}} \mathrm{j}+1\right) \mathrm{x}^{\mathrm{j}+1} \\
& =\sum_{j=1}^{m+n-1}\left[\binom{m+n-1}{j}-\binom{m+n-2}{j}\right] x^{j+1}
\end{aligned}
$$

Example-3.2

Let $\mathrm{Q}_{4,2}$ be a Queen crown graph with order 6 then $\gamma_{\mathrm{sd}}\left(\mathrm{Q}_{4,2}\right)=2$ and $\operatorname{SD}\left(\mathrm{Q}_{4,2}, \mathrm{x}\right)=$

$$
x^{2}+4 x^{3}+6 x^{4}+4 x^{5}+x^{6} \text { (See Fig. } 1 \text {) }
$$

Fig. 1:H = $\mathbf{Q}_{4,2}$ has $\binom{5}{j}-\binom{4}{j}$ Strong dominating set with cardinality j.

Table-1 $(5 \leq m+n \leq 20)$

J	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	1	3	3	1															
6	1	4	6	4	1														
7	1	5	10	10	5	1													
8	1	6	15	20	15	6	1												
9	1	7	21	35	35	21	7	1											
10	1	8	28	56	70	56	28	8	1										
11	1	9	36	84	126	126	84	36	9	1									
12	1	10	45	120	210	252	210	120	45	10	1								
13	1	11	55	165	330	462	462	330	165	55	11	1							
14	1	12	66	220	495	792	924	792	495	220	66	12	1						
15	1	13	78	286	715	1287	1716	1716	1287	715	286	78	13	1					
16	1	14	91	364	1001	2002	3003	3432	3003	2002	1001	364	91	14	1				
17	1	15	105	455	1365	3003	5005	6435	6435	5005	3003	1365	455	105	15	1			
18	1	16	120	560	1820	4368	8008	11440	12870	11440	8008	4368	1820	560	120	16	1		
19	1	17	136	680	2380	6188	12376	19448	24310	24310	19448	12376	6188	2380	680	136	17	1	
20	1	18	153	816	3060	8568	18564	31824	43758	48620	43758	31824	18564	8568	3060	816	153	18	1

Conclusions

In this paper we concluded that for all $\mathrm{m} \geq 3$ and $\mathrm{n}=2$ we can find the Strong domination polynomials of Queen crown graph using the recursive formula

$$
\mathbf{S D}\left(\mathrm{Q}_{\mathrm{m}, \mathrm{n}, \mathrm{X}}\right)=\sum_{j=1}^{m+n-1}\left[\binom{m+n-1}{j}-\binom{m+n-2}{j}\right] \boldsymbol{x}^{j+1}
$$

ACKNOWLEDGMENT

This research was supported by Dr.Robinson Chelladurai and partially supported by Dr.S.Syed Ali Fathima. We thank our principal, Management and Staff members of Department of Mathematics, Sadakathullah Appa College , who provided insight and expertise that greatly assisted the research

REFERENCES

[1] S.Alikhani, Y.H.Peng, Dominating sets and Domination Polynomials of Cycles, Global Journal of Pure and Applied Mathematics, 4 No.2,151-162(2008)
[2] S.Alikhani,Y.H.Peng, Dominating sets and Domination Polynomials of Certain graphs II Opuscula Mathematics 30No.1,37-51(2010)
[3] Sahib Shayyal Kahat,Abdul Joli M. Khalaf, Dominating sets and Domination Polynomial of stars , Australian Journal of Basic and Applied Science , 8 no.6, 383-386(2014)
[4] Sahib Shayyal Kahat,Abdul Joli M. Khalaf, Dominating sets and Domination Polynomial of wheels, Australian Journal of Basic and Applied Science
[5] S.Angelin Kavitha Raj and Robinson Chelladurai, Weak dominating sets and Weak domination Polynomial of complete graph ,Journal of Computer and Mathematical SciencesVol9(12),2138-2146 December 2018

