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Abstract ----Let G=(V,E) be a simple graph. A set S ⊆ V is called a dominating set if every vertex v ∈V is 

either a member of S or adjacent to a member of S. A set S ⊆ V is a Strong dominating set of G if for every 

vertex v ∈ V-S there exists a u ∈ S such that  uv ∈ E  and deg(u) ≥ deg(v). Let Qm,n be a Queen crown graph 

which is obtained from two null graphs of order zero and taking one copy of null graph G1 with m vetices , m 

≥3 and another copy of null graph G2 with n=2 vertices (that should be fixed) then joining the vertex of G1 

with an edge  to every vertex of G2 . Let Sd(Q j
m,n) be the family of strong dominating set of Queen crown graph 

with number of elements in the set j and let Sd(Qm,n, j) =|Sd(Q
 j

m,n)|.In this paper we establish Qm,n and  obtain a 

iterative formula for Sd(Q
 j

m,n) .Using this iterative formula we consider the polynomial for SD (Qm,n, x)= 

 Also we have determine several properties of polynomials on Queen crown 

graphs. 

 

Keywords — Strong dominating set , Strong domination polynomial , Queen crown graph 

I. INTRODUCTION 

Let G = (V, E) be a bipartite graph of order |V| = m+n A set S ⊆V $is called a dominating set if every vertex 

v ∈  V is either a member of S or adjacent to a member of S. A set S ⊆ V is a Strong dominating set of G if for 

every v ∈ V – S , there u∈ S such that uv ∈ E and deg (u) ≥ deg (v). The minimum cardinality of Strong 

dominating set is called minimum Strong domination number and is denoted by γsd(G).  Alkhani and Peng[1][2] 

found the dominating sets and domination polynomial of cycles and certain graphs.Gehet, Khalf and Hasni 

found the dominating set and domination polynomial of stars and wheels[3][4]..Angelin and Robinson found the 

weak dominating sets and weak domination polynoimal of complete graphs [5].Let Hm be a graph with order m 

and let  Hj
m be the family of dominating sets of a graph Hm with the number of elements in the set j and let d (Hm, 

j) =|Hj|.We call the polynomial D(Hm,x)=  the domination polynomial of graph G[2].Let Qm,n 

be a Queen crown graph which is obtained from two null graphs of order zero and taking one copy of null graph 

G1 with m vetices , m ≥3 and another copy of null graph G2 with n=2 vertices (that should be fixed) then 

joining the vertex of G1with an edge  to every vertex of G2.Let Sd(Q
 j

m,n)  be the family of strong dominating 

set of Queen crown graph with number of elements in the set j and let Sd(Qm,n, j)=|Sd( Q j
m,n)|. We call the 

polynomial SD (Qm,n,x)=   the strong domination polynomial of Queen 

crown graph. In the next section we establish the families of strong dominating sets of Qm,n  with the number of 
elements in the set j by the families of strong dominating sets of Qm-1,n with number of elements j and j-1. We 

explore the strong domination polynomial of Queen crown graphs in section 3.As usual we use or nCi for 

the combination n to i and we denote the set {1, 2, …, n} simply by [n], and we denote deg (u) to degree of the 

vertex u and let 

∆(G) = max{deg(u) : ∀u ∈ V (G)} and 

  δ(G) = min{deg(u) : ∀u ∈ V (G)}  

II. STRONG DOMINATING SETS OF QUEEN CROWN GRAPH 

Let Qm,n , m ≥ 3$ and n=2 be the Queen Crown graph with (m+2) vertices, V[Qm,n]=[m+n] and 

E[Qm,n]={(u,v) : forall u ∈ G1 and v ∈G2}.Let (Q j
m,n) be the family of strong dominating sets of Qm,n with 

the number of elements 'j'. We shall explore the strong dominatings sets of Queen crown graph :. 
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Lemma 2.1. 

The following properties hold for all Queen crown graph Gq = Qm,n , where q = m + n. 

 
(i)   |Gq

q|=1 

 

(ii)    |Gq
q-1|=q-2 

 
(iii)    |Gq

r |=0 if r > q 

 
(iv)    |Gq

0|=0 

 

Proof 

                 Let G = (V, E) be a Queen crown graph of order m + n.Then, 

(i) Gq
q ={G} 

∴   |Gq
q|=1 

 

(ii)  Gq
q-1

 = {u : u ∈ G1} 

Since in Qm,n n is fixed and the set {a, b} in G2 has a degree m where m ≥ 3 , the set {a, b} is a minimal 

strong dominating set for Qm,n forall m ≥ 3  

       (iii)  We can’t find any subset K of G such that |V (K)| > |V (G)| 

                          ∴|Gq
r | = 0 if r > q 

(iv)  We can’t find any subset K of G such that |V (K)| = 0, φ is not a strong dominating set  of G.  

               ∴|Gq
0|=0 

 

 

Theorem-2.2 

                        Let   Qm,n   be    a Queen   crown   graph   with   order  (m+n)    then   Sd ( Qm,n , j+1 ) 

=  forall (m+n) ∈ Z+ and  j=1,2,…,(m+n-1) 

 

Proof 

              Let Qm,n be a Queen crown graph with order (m + n) 

          ⇒    there are two null graphs G1 of order m ≥ 3 and G2 of order n where n=2 is fixed. Let ’ a ’ and ’ b ’ 

be two vertices of G2. 

W.K.T., Both the vertices ’ a ’ and ’ b ’ are adjacent to exactly ’ m ’ vertices in  Qm,n. 

        ⇒ deg(a) = deg(b) = m, m ≥ 3 

        ⇒ every strong dominating set must contain both verices ’ a ’ and ’ b ’. Also, 

every vertices of G1 has exactly degree 2. 

Hence deg(u) < deg(a) = deg(b) ∀ u ∈ G1 

        ⇒ Every vertex subset of Qm,n that contains both ’ a ’ and ’ b ’ with number of elements of the set 

j+1 where j = 1, 2, . . . , (m + n − 1) is a strong dominating set of Qm,n 

 ∴ Sd (Qm,n , j+1 ) =  forall (m+n) ∈ Z+ and  j=1,2,…,(m+n-1) 

 

  Theorem-2.3 

                      Let   Qm,n be  a  Queen  crown graph with  order (m + n)  then  Sd( Qm,n , j + 1) =             
Sd(Qm-1,n, j + 1) + Sd(Qm−1,n, j). 
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Proof 

           W.K.T Sd (Qm,n , j+1 ) =   

Similarly   and     

Now, 

    =   

 

                                                           =    

 

                                                           =    

 

                                                           =   Sd(Qm,n , j+1 ) 

 

Theorem-2.4 

                      The following characteristics hold for co-efficient Sd( Qm,n, x) ∀ (m + n) ∈ Z+ 

 

(i) Sd(Qm,n, 2) = 1 

 
(ii) Sd(Qm,n, 3) = m 

 
(iii) γsd(Qm,n) = 2 

 
(iv) Sd(Qm,n, m + 1) = m                     

 
(v) Sd(Qm,n, m + n) = 1 

 

Proof   
          (i)     

                                    
  

                                                               =  (m + n- 1) - (m + n - 2) 

                                                               = m + n – 1 –m –n + 2 

                                                               = 1 

           (ii) 

                              

                                   
 

                                                              

                                                  = m + n- 2 

Since n=2 in Qm,n , Sd( Qm,n, 3) = m 

 

 

 
 

 (iii)    W.K.T the two vertices namely ‘a ‘ and  ‘b’ in G2 has degree m. Also,all the vertices in G1 has adjacent to 

only these vertices a and b in Qm,n  

         ⇒deg(u) = 2 forall u ∈G1 

And  

          deg(a) = deg(b) = m ,  m ≥ 3 

Hence the set {a,b} is a minimal strong dominating set of Qm,n. 
γsd (Qm,n) = 2 
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(iv) 

                          
 

                                                      =  

 

                                                      =           [Put n=2] 

                                                         = m 

 

(v) The only set in Qm,n of order m+n is itself 

        Hence Sd(Qm,n, m + n) = 1 
 

 Using theorem 2.3 and 2.4, We obtain the coefficient of SD(Qm,n.x) for 5≤m+n ≤ 20 in  

Table1 .Let SD( Qm,n, x) = |Q j
m,n | 

 

 

III. STRONG DOMINATION POLYNOMIALS OF QUEEN CROWN GRAPH 

 

In  this section we  introduce  and establish  the Strong domination  polynomial  of  Queen crown 

graph. 

Let Q j
m,n  be the family of strong dominating sets of a Queen crown Qm,n with cardinality j and let 

Sd(Qm,n,j) = |Q j
m,n| and since γsd(Qm,n)  = 2. Then the strong domination polynomial SD(Qm,n,x) of  Qm,n is 

defined as  SD(Qm,n,x) = m+n-1 ∑ 
j=1  Sd(Qm,n,j+1) xj+1 

 

Theorem 3.1  

                    The following characteristics hold for all SD(Qm,n,x) forall m ≥ 3 

(i) SD(Qm,n,x)=SD(Qm-1,n,x)+xSD(Qm-1,n,x) 

(ii) SD(Qm,n,x)=  

Proof 

           (i) W.K.T SD(Qm,n,x) = m+n-1 ∑ 
j=1  Sd(Qm,n,j+1) xj+1  

Now, 

              

                                     
  

                               
                                         =SD (Qm-1,n x)+ x SD( Qm-1,n, x) 

 

(ii)  

       SD(Qm,n,x) =  m+n-1 ∑ 
j=1  Sd(Qm,n,j+1) xj+1 

 

                          =  

 

Example-3.2  

                           Let Q4,2 be a Queen crown graph with order 6 then γsd(Q4,2)=2 and SD(Q4,2,x)= 
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x2+4x3+6x4+ 4x5+ x6 (See Fig.1) 
                                       

 

                                   1 2 3               4 

          

 
 

                                                                                  

                                                                                    5                    6 

 

 Fig. 1 : H = Q4,2 has     Strong dominating set with cardinality j. 

 
                                

 

 

Table-1(5≤m+n ≤ 20) 

 
J 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

5 1 3 3 1                

6 1 4 6 4 1               

7 1 5 10 10 5 1              

8 1 6 15 20 15 6 1             

9 1 7 21 35 35 21 7 1            

10 1 8 28 56 70 56 28 8 1           

11 1 9 36 84 126 126 84 36 9 1          

12 1 10 45 120 210 252 210 120 45 10 1         

13 1 11 55 165 330 462 462 330 165 55 11 1        

14 1 12 66 220 495 792 924 792 495 220 66 12 1       

15 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1      

16 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1     

17 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1    

18 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1   

19 1 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1  

20 1 18 153 816 3060 8568 18564 31824 43758 48620 43758 31824 18564 8568 3060 816 153 18 1 
 

 

Conclusions 
                        In this paper we concluded that for all m ≥ 3 and n=2 we can find the Strong domination 

polynomials of  Queen crown graph using the recursive formula  

                                                    SD (Qm,n,x)=  
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