
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 2 - Feb 2020 

 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                              Page 105 

b-Coloring of the Product of Paths and Cycles 

A.Sulthana Afrose
1
, S.Jamal Fathima

2
 

1M.Phil Scholar, 2Assistant Professor 

  Department of Mathematics(Unaided)  

Sadakathullah Appa College(Autonomous) 
Tirunelveli 627011, Tamilnadu, India 

 

 

Abstract: In this paper, we study the b-coloring of the product of  paths and cycles. Let G be a graph with vertex 

set V(G) and edge E(G). The b-coloring is nothing but the b-chromatic number. The b-chromatic number is the 

largest integer k colors such that every color class has b-vertex. The b-vertex is the color dominating vertex that 

has an adjacent in all other color class. The b-chromatic number of a graph is denoted by φ(G). 
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I. INTRODUCTION 

Let G be a graph containing no loops or multiple edges with vertex set V(G) and edge set E(G). A coloring of 

the vertices of G is a function c:V(G)→{1,2,...k}. Then the integer c(v) is called the color of v. A coloring is 

proper if no two adjacent vertices have the same color. The chromatic number χ(G)of a graph G is that the least 

integer k such that G has a proper coloring using k-colors. Several interesting concepts of the coloring and 

related parameter are studied in [6,7,8,9]. 

 Motivated by these concepts, W.Iriving and F.Manlove[1] introduced a new concept called b-coloring. 

A b-coloring of  G by k colors is a proper coloring of the vertices of G such that in each color class there is a 

vertex having neighbours in all the other k-1 color classes. We call any such vertex a b-vertex. The b-chromatic 

number of a graph G is the greatest integer k such that G has a b-coloring with k-colors. Kouider and Manlove[3] 

proved some lower and upper bounds for the b-chromatic number of the cartesian product of two graphs. 

S.K.Vaidya and Rakhimol V.Issac[5] discussed the b-chromatic number of regular graphs, path related graphs, 

shell and gear graph. More results on the b-chromatic number of a graph can be found in [2,4]. 

 In this paper, we prove the b-chromatic number of the product paths and cycles. The definition of the 

product of graphs are as follows: 

Definition 1.1: A graph G that has one vertex distinguish as the root node, then G is called the rooted graph. 

The rooted product of a graph G1 and a rooted graph G2 is defined as follows : 

 (i) Draw |V(G)| copies of G2 

 (ii) For each vertex vi of G1, join vi with the basis node of the ith copy of G2. 

It is denoted by G1 o G2. 

Definition 1.2: Let G1 and G2 be two graphs. Then the cartesian product of G1 and G2 is defined as follows: 

 (i) Vertex set : V(G1)×V(G2) = {(u,v): uϵG1, vϵG2} 

 (ii) Edge set : Join (u,v) and (u',v') if u=u' and vv'ϵE(G2) or v=v' and uu'ϵE(G1). 

It is denoted by G1□ G2. 
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II. MAIN RESULTS 

 

In this section, we prove the b-chromatic number for the product of paths and cycles. Before proving the 

theorem, let us state an important result on the bounds of b-chromatic number of G, which is frequently used in 

our main results (see [3]). 

Theorem 2.1 [3]  : For any graph G, χ(G) ≤ φ(G) ≤ ∆(G) + 1. 

Theorem 2.2: For any m ≥ 3, (𝑃𝑛 ∘  𝐶𝑚 ) =  
3, 𝑖𝑓 𝑛 = 2,3
4, 𝑖𝑓 𝑛 = 4,5,6
5,    𝑖𝑓   𝑛 ≥ 7.

  

Proof: Let 𝑃𝑛 ∘  𝐶𝑚  be the rooted product of path Pn and cycle Cm.. Then  𝑃𝑛 ∘  𝐶𝑚  is a connected graph which is 

obtained from the path Pn and cycle Cm such that attach cycle Cm in each vertex of Pn. 

Denote vi, i =1,2,...,n the vertices of Pn and uij , i = 1,2,...,n,  j = 1,2,...,m-1, the vertices in the ith copy of  Cm..   

So,V(G) = {vi : i =1,2,...,n}∪{uij :1 ≤ i ≤ n, 1 ≤ j ≤ m-1} and E(G)={(vi,uij) : 1 ≤ i ≤ n, j =1, m-1}∪{(uij,uij+1) : 1 

≤ i  ≤ n, 1 ≤ j ≤ m-1}∪{(vi,vi+1) : 1 ≤ i ≤ n-1}. From the definition of  𝑃𝑛 ∘  𝐶𝑚 ,  v1 and vn have degree 3, vi, i = 

2,...,n-1 has degree 4, uij, i = 1,2,...n and j = 1,2,...m-1 has degree 2. The proof  consists of so many cases. 

Case 1: n = 2 

Then V(𝑃2 ∘  𝐶𝑚 ) = {v1, v2, u11, u12, ..., u1(m-1), u21, u22, ..., u2(m-1)} and |V(P2 o Cm)| = 2m. 

Clearly 𝑃2 ∘  𝐶𝑚  has (2m-2) vertices of degree 2 and two vertices of degree 3. 

Since the maximum degree of 𝑃2 ∘  𝐶𝑚  is 3, φ (𝑃2 ∘  𝐶𝑚 ) ≤ 4. 

Subcase 1:  

Suppose φ (𝑃2 ∘  𝐶𝑚 ) = 4. 

Then𝑃2 ∘  𝐶𝑚  must have four vertices of degree 3. 

This is impossible because 𝑃2 ∘  𝐶𝑚  has only two vertices of degree 3. 

Hence  φ(𝑃2 ∘  𝐶𝑚 ) ≠ 4 and so φ (𝑃2 ∘  𝐶𝑚) ≤ 3. 

Subcase 2: 

We have 𝑃2 ∘  𝐶𝑚  has (2m-2) vertices of degree 2. So we color the vertices as follows : c(v1) = 1, c(v2) = 2, c(u11) 

= 3, c(u1(m-1)) = 2, c(u21) = 3, c(u2(m-1)) = 1 and color the remaining vertices such that no adjacent vertices receive 

the same color. Then v1, v2, u11 are the b-vertices for the color classes c1, c2 and c3, where ci denotes the set of all 

vertices receive the ith color. Therofore φ(𝑃2 ∘  𝐶𝑚)=3. 

Case 2: n = 3 

Then V(𝑃3 ∘  𝐶𝑚 ) = {v1, v2, v3, u11, u12, ..., u1(m-1), u21, ..., u2(m-1), u31, ..., u3(m-1)} and |V(𝑃3 ∘  𝐶𝑚 )| =3m. 

Clearly 𝑃3 ∘  𝐶𝑚  has (3m-3) vertices of degree 2 and two vertices of degree 3 and one vertex of degree 4. 

Since the maximum degree of 𝑃3 ∘  𝐶𝑚  is 4, φ (𝑃3 ∘  𝐶𝑚 ) ≤ 5. 

Subcase 1: Suppose φ (𝑃3 ∘  𝐶𝑚 ) = 5. 

Then 𝑃3 ∘  𝐶𝑚  must have five vertices of degree 4. This is impossible since 𝑃3 ∘  𝐶𝑚  has only one vertex of 

degree 4. 

Hence φ (𝑃3 ∘  𝐶𝑚 ) ≠ 5 and so φ (𝑃3 ∘  𝐶𝑚) ≤ 4. 

Subcase 2: Suppose φ(𝑃3 ∘  𝐶𝑚 ) = 4. 

Then 𝑃3 ∘  𝐶𝑚must have four vertices of degree 3. This subcase is also not possible since 𝑃3 ∘  𝐶𝑚  has only two 

vertex of degree 3. Hence φ (𝑃3 ∘  𝐶𝑚 ) ≠ 4 and so φ (𝑃3 ∘  𝐶𝑚 ) ≤ 3. 
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Subcase 3: 

Clearly 𝑃3 ∘  𝐶𝑚  has (3m-3) vertices of degree 2. 

So we color the vertices as follows : c(v1) = 1, c(v2) = 2, c(v3) = 3, c(u11) = 3, c(u1(m-1)) = 2, c(u21) = 3, c(u2(m-1)) = 

1, c(u31) = 1, c(u3(m-1)) = 2 and color the remaining vertices such that no adjacent vertices have the same color. 

Then v1, v2, v3 are the b-vertices for the color classes c1, c2 and c3 where ci denotes the set of all vertices have the 

color i. Therefore φ (𝑃3 ∘  𝐶𝑚) = 3. 

Case 3: n = 4. 

Then V(𝑃4 ∘  𝐶𝑚 ) = {v1, v2, v3, v4, u11, u12, ..., u1(m-1), u21, ..., u2(m-1), u31,..., u3(m-1), u41, ..., u4(m-1)} and  

|V(𝑃4 ∘  𝐶𝑚) | = 4m. 

Clearly 𝑃4 ∘  𝐶𝑚  has (4m-4) vertices of degree 2 and two vertices of degree 3 and two vertices of degree 4. 

Since the maximum degree of 𝑃4 ∘  𝐶𝑚  is 4, φ (𝑃4 ∘  𝐶𝑚) ≤ 5. 

Subcase 1: Suppose φ (𝑃4 ∘  𝐶𝑚 ) = 5 

Then 𝑃4 ∘  𝐶𝑚  must have five vertices of degree 4. This is impossible since 𝑃4 ∘  𝐶𝑚  has only two vertices of 

degree 4. Hence φ (𝑃4 ∘  𝐶𝑚) ≠ 5 and so φ (𝑃4 ∘  𝐶𝑚 ) ≤ 4. 

Subcase 2: 

Clearly 𝑃4 ∘  𝐶𝑚  has two vertices of degree 3 and two vertices of degree 4. 

So we color the vertices as follows : c(v1) = 1, c(v2) = 2, c(v3) = 3, c(v4) = 4, c(u11) = 3, c(u1(m-1)) = 4, c(u21) = 4, 

c(u2(m-1)) = 1, c(u31) = 4, c(u3(m-1)) = 4, c(u41) = 1, c(u4(m-1)) = 2 and we color the remaining vertices such that no 

adjacent vertices have the same color. Then v1, v2, v3, v4 are the b-vertices for the color classes c1, c2, c3 and c4. 

Therefore φ (𝑃4 ∘  𝐶𝑚 ) = 4.  

Case 4: n=5. 

Then V(𝑃5 ∘  𝐶𝑚 ) = {v1, v2, v3, v4, v5, u11, u12, ..., u1(m-1), u21, ..., u2(m-1), u31, ..., u3(m-1), u41, ..., u4(m-1), u51, ..., u5(m-1)} 

and |V(𝑃5 ∘  𝐶𝑚 )| = 5m. Clearly 𝑃5 ∘  𝐶𝑚  has (5m-5) vertices of degree 2, two vertices of degree 3 and three 

vertices of degree 4. Since the maximum degree of 𝑃5 ∘  𝐶𝑚  is 4, φ (𝑃5 ∘  𝐶𝑚 ) ≤ 5. 

Subcase 1: Suppose φ (𝑃5 ∘  𝐶𝑚 ) =5 

Then 𝑃5 ∘  𝐶𝑚  must have five vertices of degree 4. This is impossible since 𝑃5 ∘  𝐶𝑚  has only three vertices of 

degree 4. Hence φ (𝑃5 ∘  𝐶𝑚 ) ≠ 5 and so φ (𝑃5 ∘  𝐶𝑚 ) ≤ 4. 

Subcase 2: 

Since 𝑃4 ∘  𝐶𝑚  is a subgraph 𝑃5 ∘  𝐶𝑚  and φ (𝑃5 ∘  𝐶𝑚) = 4, φ (𝑃5 ∘  𝐶𝑚 ) = 4. 

Case 5:  n = 6. 

Then V(𝑃6 ∘  𝐶𝑚 ) = {v1, v2, v3, v4, v5, v6, u11, ..., u1(m-1), u21, ..., u2(m-1), u31, ..., u3(m-1), u41, ..., u4(m-1), u51, ..., u5(m-1), 

u61, ..., u6(m-1)} and |V(𝑃6 ∘  𝐶𝑚 )| = 6m. Clearly 𝑃6 ∘  𝐶𝑚  has (6m-6) vertices of degree 2, two vertices of degree 3 

and four vertices of degree 4. Since the maximum degree of 𝑃6 ∘  𝐶𝑚  is 4, φ (𝑃6 ∘  𝐶𝑚 ) ≤ 5. 

Subcase 1: Suppose φ (𝑃6 ∘  𝐶𝑚 ) = 5 

Then 𝑃6 ∘  𝐶𝑚  must have five vertices of degree 4. This is impossible since 𝑃6 ∘  𝐶𝑚  has only four vertices of 

degree 4. Hence φ (𝑃6 ∘  𝐶𝑚 ) ≠5 and so φ (𝑃6 ∘  𝐶𝑚 ) ≤ 4. 

Subcase 2: 

Since 𝑃4 ∘  𝐶𝑚  is a subgraph 𝑃6 ∘  𝐶𝑚  and φ (𝑃4 ∘  𝐶𝑚) = 4, φ (𝑃6 ∘  𝐶𝑚 ) = 4.  

Case 6: n = 7. 
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Then V(𝑃7 ∘  𝐶𝑚 ) = {v1, v2, v3, v4, v5, v6, v7, u11, ..., u1(m-1), u21, ..., u2(m-1), u31, ..., u3(m-1), u41, ..., u4(m-1), u51, ..., 

u5(m-1), u61, ... , u6(m-1), u71, ..., u7(m-1)} and |V(𝑃7 ∘  𝐶𝑚 )| =7m. 

Clearly 𝑃7 ∘  𝐶𝑚  has (7m - 7) vertices of degree 2, two vertices of degree 3 and five vertices of degree 4. 

Since the maximum degree of 𝑃7 ∘  𝐶𝑚  is 4, φ (𝑃7 ∘  𝐶𝑚 ) ≤ 5. 

Now, we color the vertices as follows : c(v1) = 1,c(v2) = 2, c(v3) = 3, c(v4) = 4, c(v5) = 5, c(v6) = 1, c(v7) = 2, 

c(u11) = 3, c(u1(m-1)) = 4, c(u21) = 4, c(u2(m-1)) = 5, c(u31) = 5, c(u3(m-1)) = 1, c(u41) = 1, c(u4(m-1)) = 2, c(u51) = 2, 

c(v5(m-1)) = 3, c(v61) = 3, c(v6(m-1)) = 4 and color the remaining vertices such that no adjacent vertices have the 

same color. 

Then v2, v3, v4, v5, v6 are the b-vertices for the color classes c2, c3, c4, c5 and c1. Therefore φ (𝑃7 ∘  𝐶𝑚 ) = 5. 

Case 7: n>7 

Since the maximum degree of 𝑃𝑛 ∘  𝐶𝑚  is 4, φ (𝑃𝑛 ∘  𝐶𝑚 ) ≤ 5.  Also 𝑃7 ∘  𝐶𝑚  is a subgraph of 𝑃𝑛 ∘  𝐶𝑚 , for all 

n >7. Therefore φ(PnoCm) = 5 where n≥7. 

 

Example: n =3, m =5 

 

 

 

   

Figure 1 

 

∴ 𝜑 𝑃3 ∘  𝐶5 =  3 

Here 𝑐(𝑣1) =  1, 𝑐(𝑣2) =  2, 𝑐(𝑣3) =  3, 𝑐(𝑢11 ) =  3, 𝑐(𝑢12 ) =  2, 𝑐(𝑢13 ) =  3, 𝑐(𝑢14 ) =  2, 𝑐(𝑢21 ) =  3,

𝑐(𝑢22 ) =  1, 𝑐(𝑢23 ) =  3, 𝑐(𝑢24 ) =  1, 𝑐(𝑢31 ) =  1, 𝑐(𝑢32 ) =  2, 𝑐(𝑢33 ) =  1,  𝑐(𝑢34 ) =  2. 

 

Theorem 2.3: For any m ≥ 3, φ (𝑃𝑛□ 𝐶𝑚) = 5, if n ≥ 5.  

Proof : Let G be the cartesian product of path Pn and cycle Cm.  

Denote u1, u2, ..., un the vertices of Pn and v1,v2,...,vm the vertices of Cm. 

Then V(G) = {wij = (ui,vj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(G) = {(wpq,wrs) : either up = ur and vpvs ϵ E(Cm) or vp = vs 

and upur ϵ E(Pn). 

Case 1: n = 5, m =3. 

Then V(𝑃5□ 𝐶3) ={w11, w12, w13, w21, w22, w23, w31, w32, w33, w41, w42, w43, w51, w52, w53} and |V(𝑃5□ 𝐶3)| = 15. 

Clearly 𝑃5□ 𝐶3 has six vertices of degree 3 and nine vertices of degree 4. 

Since the maximum degree of  𝑃5□ 𝐶3 is 4, φ (𝑃5□ 𝐶3) ≤ 5. 

Now, we color the vertices as follows: c(w11) = 2, c(w12) = 4, c(w13) = 1, c(w21) = 5, c(w22) = 1, c(w23) = 3, c(w31) 

= 4, c(w32) = 2, c(w33) = 5, c(w41) = 1, c(w42) = 3, c(w43) = 4, c(w51) = 4, c(w52) = 5, c(w53) = 2 and no adjacent 

vertices have the same color [see figure 2]. 

Then w21, w22, w32, w42, w43 are the b-vertices for the color classes c5, c1, c2, c3 and c4. Therefore, φ (𝑃5□ 𝐶3) = 5. 

Case 2: n > 5, m > 3. 

Since the maximum degree of  𝑃𝑛□ 𝐶𝑚  is 4, φ (𝑃𝑛□ 𝐶𝑚 ) ≤ 5. 

Also 𝑃5□ 𝐶3 is subgraph 𝑃𝑛□ 𝐶𝑚 , for all n > 5, m > 3. 

v1 v2 v3 

u21 
u11 u14 

u24 
u31 u34 

u13 u33 
u32 u23 u22 

u12 
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Therefore φ (𝑃𝑛□ 𝐶𝑚) = 5 where n ≥ 5, m ≥ 3. 

 

 

 

 

 

 

Figure 2 

 

CONCLUSION 

In this paper, we found the b-chromatic number for rooted and  cartesian product of 

paths and cycles.  
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