# b-Coloring of the Product of Paths and Cycles

A.Sulthana Afrose<sup>1</sup>, S.Jamal Fathima<sup>2</sup>

<sup>1</sup>M.Phil Scholar, <sup>2</sup>Assistant Professor

Department of Mathematics(Unaided)

 $Sadakathullah\ Appa\ College (Autonomous)$ 

Tirunelveli 627011, Tamilnadu, India

**Abstract**: In this paper, we study the b-coloring of the product of paths and cycles. Let G be a graph with vertex set V(G) and edge E(G). The b-coloring is nothing but the b-chromatic number. The b-chromatic number is the largest integer k colors such that every color class has b-vertex. The b-vertex is the color dominating vertex that has an adjacent in all other color class. The b-chromatic number of a graph is denoted by  $\varphi(G)$ .

**Keywords:** *b-coloring, b-chromatic number, b-vertex.* 

#### I. INTRODUCTION

Let G be a graph containing no loops or multiple edges with vertex set V(G) and edge set E(G). A coloring of the vertices of G is a function  $c:V(G) \rightarrow \{1,2,...k\}$ . Then the integer c(v) is called the color of v. A coloring is proper if no two adjacent vertices have the same color. The chromatic number  $\chi(G)$  of a graph G is that the least integer k such that G has a proper coloring using k-colors. Several interesting concepts of the coloring and related parameter are studied in [6,7,8,9].

Motivated by these concepts, W.Iriving and F.Manlove[1] introduced a new concept called b-coloring. A b-coloring of G by k colors is a proper coloring of the vertices of G such that in each color class there is a vertex having neighbours in all the other k-1 color classes. We call any such vertex a b-vertex. The b-chromatic number of a graph G is the greatest integer k such that G has a b-coloring with k-colors. Kouider and Manlove[3] proved some lower and upper bounds for the b-chromatic number of the cartesian product of two graphs. S.K.Vaidya and Rakhimol V.Issac[5] discussed the b-chromatic number of regular graphs, path related graphs, shell and gear graph. More results on the b-chromatic number of a graph can be found in [2,4].

In this paper, we prove the b-chromatic number of the product paths and cycles. The definition of the product of graphs are as follows:

**Definition 1.1:** A graph G that has one vertex distinguish as the root node, then G is called the rooted graph. The rooted product of a graph  $G_1$  and a rooted graph  $G_2$  is defined as follows:

- (i) Draw |V(G)| copies of G<sub>2</sub>
- (ii) For each vertex  $v_i$  of  $G_1$ , join  $v_i$  with the basis node of the  $i^{th}$  copy of  $G_2$ . It is denoted by  $G_1$  o  $G_2$ .

**Definition 1.2:** Let  $G_1$  and  $G_2$  be two graphs. Then the cartesian product of  $G_1$  and  $G_2$  is defined as follows:

- (i) Vertex set :  $V(G_1) \times V(G_2) = \{(u,v): u \in G_1, v \in G_2\}$
- (ii) Edge set : Join (u,v) and (u',v') if u=u' and  $vv' \in E(G_2)$  or v=v' and  $uu' \in E(G_1)$ .

It is denoted by  $G_1 \square G_2$ .

## II. MAIN RESULTS

In this section, we prove the b-chromatic number for the product of paths and cycles. Before proving the theorem, let us state an important result on the bounds of b-chromatic number of G, which is frequently used in our main results (see [3]).

**Theorem 2.1 [3]**: For any graph G,  $\chi(G) \le \varphi(G) \le \Delta(G) + 1$ .

**Theorem 2.2:** For any 
$$m \ge 3$$
,  $(P_n \circ C_m) = \begin{cases} 3, & \text{if } n = 2,3 \\ 4, & \text{if } n = 4,5,6 \\ 5, & \text{if } n \ge 7. \end{cases}$ 

**Proof:** Let  $P_n \circ C_m$  be the rooted product of path  $P_n$  and cycle  $C_m$ . Then  $P_n \circ C_m$  is a connected graph which is obtained from the path  $P_n$  and cycle  $C_m$  such that attach cycle  $C_m$  in each vertex of  $P_n$ .

Denote  $v_i$ , i = 1, 2, ..., n the vertices of  $P_n$  and  $u_{ij}$ , i = 1, 2, ..., n, j = 1, 2, ..., m-1, the vertices in the  $i^{th}$  copy of  $C_m$ .

$$So, V(G) = \{v_i : i = 1, 2, ..., n\} \cup \{u_{ij} : 1 \leq i \leq n, \ 1 \leq j \leq m-1\} \ \text{and} \ E(G) = \{(v_i, u_{ij}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1}) : 1 \leq i \leq n, \ j = 1, \ m-1\} \cup \{(u_{ij}, u_{ij+1})$$

 $\leq i \leq n, \ 1 \leq j \leq m-1 \} \cup \{(v_i,v_{i+1}): 1 \leq i \leq n-1 \}. \ \text{From the definition of} \ \ P_n \circ \ C_m, \ \ v_1 \ \text{and} \ \ v_n \ \text{have degree 3, } v_i, \ i = n-1 \}.$ 

2,...,n-1 has degree 4,  $u_{ij}$ , i = 1,2,...n and j = 1,2,...m-1 has degree 2. The proof consists of so many cases.

#### **Case 1:** n = 2

Then 
$$V(P_2 \circ C_m) = \{v_1, v_2, u_{11}, u_{12}, ..., u_{1(m-1)}, u_{21}, u_{22}, ..., u_{2(m-1)}\}$$
 and  $|V(P_2 \circ C_m)| = 2m$ .

Clearly  $P_2 \circ C_m$  has (2m-2) vertices of degree 2 and two vertices of degree 3.

Since the maximum degree of  $P_2 \circ C_m$  is 3,  $\varphi(P_2 \circ C_m) \le 4$ .

#### **Subcase 1:**

Suppose  $\varphi(P_2 \circ C_m) = 4$ .

Then  $P_2 \circ C_m$  must have four vertices of degree 3.

This is impossible because  $P_2 \circ C_m$  has only two vertices of degree 3.

Hence  $\varphi(P_2 \circ C_m) \neq 4$  and so  $\varphi(P_2 \circ C_m) \leq 3$ .

# **Subcase 2:**

We have  $P_2 \circ C_m$  has (2m-2) vertices of degree 2. So we color the vertices as follows:  $c(v_1) = 1$ ,  $c(v_2) = 2$ ,  $c(u_{11}) = 3$ ,  $c(u_{1(m-1)}) = 2$ ,  $c(u_{21}) = 3$ ,  $c(u_{2(m-1)}) = 1$  and color the remaining vertices such that no adjacent vertices receive the same color. Then  $v_1$ ,  $v_2$ ,  $u_{11}$  are the b-vertices for the color classes  $c_1$ ,  $c_2$  and  $c_3$ , where  $c_i$  denotes the set of all vertices receive the  $i^{th}$  color. Therefore  $\phi(P_2 \circ C_m) = 3$ .

#### **Case 2:** n = 3

Then 
$$V(P_3 \circ C_m) = \{v_1, v_2, v_3, u_{11}, u_{12}, ..., u_{1(m-1)}, u_{21}, ..., u_{2(m-1)}, u_{31}, ..., u_{3(m-1)}\}$$
 and  $|V(P_3 \circ C_m)| = 3m$ .

Clearly  $P_3 \circ C_m$  has (3m-3) vertices of degree 2 and two vertices of degree 3 and one vertex of degree 4.

Since the maximum degree of  $P_3 \circ C_m$  is 4,  $\varphi(P_3 \circ C_m) \leq 5$ .

**Subcase 1:** Suppose  $\varphi(P_3 \circ C_m) = 5$ .

Then  $P_3 \circ C_m$  must have five vertices of degree 4. This is impossible since  $P_3 \circ C_m$  has only one vertex of degree 4.

Hence  $\varphi(P_3 \circ C_m) \neq 5$  and so  $\varphi(P_3 \circ C_m) \leq 4$ .

**Subcase 2:** Suppose  $\varphi(P_3 \circ C_m) = 4$ .

Then  $P_3 \circ C_m$  must have four vertices of degree 3. This subcase is also not possible since  $P_3 \circ C_m$  has only two vertex of degree 3. Hence  $\varphi(P_3 \circ C_m) \neq 4$  and so  $\varphi(P_3 \circ C_m) \leq 3$ .

#### **Subcase 3:**

Clearly  $P_3 \circ C_m$  has (3m-3) vertices of degree 2.

So we color the vertices as follows:  $c(v_1) = 1$ ,  $c(v_2) = 2$ ,  $c(v_3) = 3$ ,  $c(u_{11}) = 3$ ,  $c(u_{1(m-1)}) = 2$ ,  $c(u_{21}) = 3$ ,  $c(u_{2(m-1)}) = 1$ ,  $c(u_{31}) = 1$ ,  $c(u_{3(m-1)}) = 2$  and color the remaining vertices such that no adjacent vertices have the same color.

Then  $v_1$ ,  $v_2$ ,  $v_3$  are the b-vertices for the color classes  $c_1$ ,  $c_2$  and  $c_3$  where  $c_i$  denotes the set of all vertices have the color i. Therefore  $\phi(P_3 \circ C_m) = 3$ .

**Case 3:** n = 4.

Then  $V(P_4 \circ C_m) = \{v_1, v_2, v_3, v_4, u_{11}, u_{12}, ..., u_{1(m-1)}, u_{21}, ..., u_{2(m-1)}, u_{31}, ..., u_{3(m-1)}, u_{41}, ..., u_{4(m-1)}\}$  and  $|V(P_4 \circ C_m)| = 4m$ .

Clearly  $P_4 \circ C_m$  has (4m-4) vertices of degree 2 and two vertices of degree 3 and two vertices of degree 4. Since the maximum degree of  $P_4 \circ C_m$  is 4,  $\varphi$  ( $P_4 \circ C_m$ )  $\leq 5$ .

**Subcase 1:** Suppose  $\varphi(P_4 \circ C_m) = 5$ 

Then  $P_4 \circ C_m$  must have five vertices of degree 4. This is impossible since  $P_4 \circ C_m$  has only two vertices of degree 4. Hence  $\varphi(P_4 \circ C_m) \neq 5$  and so  $\varphi(P_4 \circ C_m) \leq 4$ .

## Subcase 2:

Clearly  $P_4 \circ C_m$  has two vertices of degree 3 and two vertices of degree 4.

So we color the vertices as follows:  $c(v_1) = 1$ ,  $c(v_2) = 2$ ,  $c(v_3) = 3$ ,  $c(v_4) = 4$ ,  $c(u_{11}) = 3$ ,  $c(u_{1(m-1)}) = 4$ ,  $c(u_{21}) = 4$ ,  $c(u_{2(m-1)}) = 1$ ,  $c(u_{3(m-1)}) = 4$ ,  $c(u_{4(m-1)}) = 4$ ,  $c(u_{4(m-1)}) = 2$  and we color the remaining vertices such that no adjacent vertices have the same color. Then  $v_1$ ,  $v_2$ ,  $v_3$ ,  $v_4$  are the b-vertices for the color classes  $c_1$ ,  $c_2$ ,  $c_3$  and  $c_4$ . Therefore  $\phi(P_4 \circ C_m) = 4$ .

**Case 4:** n=5.

Then  $V(P_5 \circ C_m) = \{v_1, v_2, v_3, v_4, v_5, u_{11}, u_{12}, ..., u_{1(m-1)}, u_{21}, ..., u_{2(m-1)}, u_{31}, ..., u_{3(m-1)}, u_{41}, ..., u_{4(m-1)}, u_{51}, ..., u_{5(m-1)}\}$  and  $|V(P_5 \circ C_m)| = 5m$ . Clearly  $P_5 \circ C_m$  has (5m-5) vertices of degree 2, two vertices of degree 3 and three vertices of degree 4. Since the maximum degree of  $P_5 \circ C_m$  is 4,  $\varphi(P_5 \circ C_m) \leq 5$ .

**Subcase 1:** Suppose  $\varphi(P_5 \circ C_m) = 5$ 

Then  $P_5 \circ C_m$  must have five vertices of degree 4. This is impossible since  $P_5 \circ C_m$  has only three vertices of degree 4. Hence  $\phi(P_5 \circ C_m) \neq 5$  and so  $\phi(P_5 \circ C_m) \leq 4$ .

#### **Subcase 2:**

Since  $P_4 \circ C_m$  is a subgraph  $P_5 \circ C_m$  and  $\varphi(P_5 \circ C_m) = 4$ ,  $\varphi(P_5 \circ C_m) = 4$ .

**Case 5:** n = 6.

Then  $V(P_6 \circ C_m) = \{v_1, v_2, v_3, v_4, v_5, v_6, u_{11}, ..., u_{1(m-1)}, u_{21}, ..., u_{2(m-1)}, u_{31}, ..., u_{3(m-1)}, u_{41}, ..., u_{4(m-1)}, u_{51}, ..., u_{5(m-1)}, u_{61}, ..., u_{6(m-1)}\}$  and  $|V(P_6 \circ C_m)| = 6$ m. Clearly  $P_6 \circ C_m$  has (6m-6) vertices of degree 2, two vertices of degree 3 and four vertices of degree 4. Since the maximum degree of  $P_6 \circ C_m$  is 4,  $\varphi(P_6 \circ C_m) \leq 5$ .

**Subcase 1:** Suppose  $\varphi(P_6 \circ C_m) = 5$ 

Then  $P_6 \circ C_m$  must have five vertices of degree 4. This is impossible since  $P_6 \circ C_m$  has only four vertices of degree 4. Hence  $\varphi(P_6 \circ C_m) \neq 5$  and so  $\varphi(P_6 \circ C_m) \leq 4$ .

#### Subcase 2:

Since  $P_4 \circ C_m$  is a subgraph  $P_6 \circ C_m$  and  $\varphi(P_4 \circ C_m) = 4$ ,  $\varphi(P_6 \circ C_m) = 4$ .

**Case 6:** n = 7.

Then  $V(P_7 \circ C_m) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, u_{11}, ..., u_{1(m-1)}, u_{21}, ..., u_{2(m-1)}, u_{31}, ..., u_{3(m-1)}, u_{41}, ..., u_{4(m-1)}, u_{51}, ..., u_{5(m-1)}, u_{61}, ..., u_{6(m-1)}, u_{71}, ..., u_{7(m-1)}\}$  and  $|V(P_7 \circ C_m)| = 7m$ .

Clearly  $P_7 \circ C_m$  has (7m - 7) vertices of degree 2, two vertices of degree 3 and five vertices of degree 4.

Since the maximum degree of  $P_7 \circ C_m$  is 4,  $\varphi(P_7 \circ C_m) \le 5$ .

Now, we color the vertices as follows:  $c(v_1) = 1$ ,  $c(v_2) = 2$ ,  $c(v_3) = 3$ ,  $c(v_4) = 4$ ,  $c(v_5) = 5$ ,  $c(v_6) = 1$ ,  $c(v_7) = 2$ ,  $c(u_{11}) = 3$ ,  $c(u_{1(m-1)}) = 4$ ,  $c(u_{21}) = 4$ ,  $c(u_{2(m-1)}) = 5$ ,  $c(u_{31}) = 5$ ,  $c(u_{3(m-1)}) = 1$ ,  $c(u_{41}) = 1$ ,  $c(u_{4(m-1)}) = 2$ ,  $c(v_{5(m-1)}) = 3$ ,  $c(v_{6(m-1)}) = 4$  and color the remaining vertices such that no adjacent vertices have the same color.

Then  $v_2$ ,  $v_3$ ,  $v_4$ ,  $v_5$ ,  $v_6$  are the b-vertices for the color classes  $c_2$ ,  $c_3$ ,  $c_4$ ,  $c_5$  and  $c_1$ . Therefore  $\varphi(P_7 \circ C_m) = 5$ .

## **Case 7:** n>7

Since the maximum degree of  $P_n \circ C_m$  is 4,  $\varphi(P_n \circ C_m) \leq 5$ . Also  $P_7 \circ C_m$  is a subgraph of  $P_n \circ C_m$ , for all n > 7. Therefore  $\varphi(P_n \circ C_m) = 5$  where  $n \geq 7$ .



Figure 1

$$\therefore \varphi(P_3 \circ C_5) = 3$$

Here  $c(v_1) = 1$ ,  $c(v_2) = 2$ ,  $c(v_3) = 3$ ,  $c(u_{11}) = 3$ ,  $c(u_{12}) = 2$ ,  $c(u_{13}) = 3$ ,  $c(u_{14}) = 2$ ,  $c(u_{21}) = 3$ ,  $c(u_{22}) = 1$ ,  $c(u_{23}) = 3$ ,  $c(u_{24}) = 1$ ,  $c(u_{31}) = 1$ ,  $c(u_{32}) = 2$ ,  $c(u_{33}) = 1$ ,  $c(u_{34}) = 2$ .

**Theorem 2.3:** For any  $m \ge 3$ ,  $\varphi(P_n \square C_m) = 5$ , if  $n \ge 5$ .

**Proof**: Let G be the cartesian product of path P<sub>n</sub> and cycle C<sub>m</sub>.

Denote  $u_1, u_2, ..., u_n$  the vertices of  $P_n$  and  $v_1, v_2, ..., v_m$  the vertices of  $C_m$ .

Then  $V(G) = \{w_{ij} = (u_i, v_j) : 1 \le i \le n, \ 1 \le j \le m\}$  and  $E(G) = \{(w_{pq}, w_{rs}) : \text{either } u_p = u_r \text{ and } v_p v_s \in E(C_m) \text{ or } v_p = v_s \text{ and } u_p u_r \in E(P_n).$ 

**Case 1:** n = 5, m = 3.

Then  $V(P_5 \square C_3) = \{w_{11}, w_{12}, w_{13}, w_{21}, w_{22}, w_{23}, w_{31}, w_{32}, w_{33}, w_{41}, w_{42}, w_{43}, w_{51}, w_{52}, w_{53}\}$  and  $|V(P_5 \square C_3)| = 15$ . Clearly  $P_5 \square C_3$  has six vertices of degree 3 and nine vertices of degree 4.

Since the maximum degree of  $P_5 \square C_3$  is 4,  $\varphi(P_5 \square C_3) \le 5$ .

Now, we color the vertices as follows:  $c(w_{11}) = 2$ ,  $c(w_{12}) = 4$ ,  $c(w_{13}) = 1$ ,  $c(w_{21}) = 5$ ,  $c(w_{22}) = 1$ ,  $c(w_{23}) = 3$ ,  $c(w_{31}) = 4$ ,  $c(w_{32}) = 2$ ,  $c(w_{33}) = 5$ ,  $c(w_{41}) = 1$ ,  $c(w_{42}) = 3$ ,  $c(w_{43}) = 4$ ,  $c(w_{51}) = 4$ ,  $c(w_{52}) = 5$ ,  $c(w_{53}) = 2$  and no adjacent vertices have the same color [see figure 2].

Then  $w_{21}$ ,  $w_{22}$ ,  $w_{32}$ ,  $w_{42}$ ,  $w_{43}$  are the b-vertices for the color classes  $c_5$ ,  $c_1$ ,  $c_2$ ,  $c_3$  and  $c_4$ . Therefore,  $\phi$  ( $P_5 \square C_3$ ) = 5.

**Case 2:** n > 5, m > 3.

Since the maximum degree of  $P_n \square C_m$  is 4,  $\varphi(P_n \square C_m) \le 5$ .

Also  $P_5 \square C_3$  is subgraph  $P_n \square C_m$ , for all n > 5, m > 3.

Therefore  $\varphi(P_n \square C_m) = 5$  where  $n \ge 5$ ,  $m \ge 3$ .



Figure 2

#### CONCLUSION

In this paper, we found the b-chromatic number for rooted and cartesian product of paths and cycles.

# REFERENCES

- [1] R.W. Irving, D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91(1999), 127-141.
- [2] S.K. Vaidya and Rakhimol V.Issac, The b-chromatic number of some degree Splitting graphs, Malaya Journal of Mathematics, Vol. 2(3) (2014), 249-253.
- [3] Kouider, M., Maheo, M., Some bounds for the b-chromatic number of a graph, Discrete Mathematics. 256,(2002),267-277.
- [4] Kouider, M., Zaker, M., Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306,(2002),617-623.
- [5] S.K. Vaidya and Rakhimol V.Issac, On the b-chromatic number of some graphs, Bulletin of the International Mathematical Virtual Institute, Vol. 5(2015), 191-195.
- [6] T. R. Jensen and B. Toft, Graph colouring problems, John Wiley & Sons, 1995.
- [7] M. Kubale, Graph colorings, American Mathematical Society, 2004.
- [8] E. Kubicka and A. J. Schwenk, An introduction to chromatic sums, Proc. ACM Computer Science Conference, Louisville (Kentucky), 3945(1989).
- [9] N. K. Sudev. S. Satheesh, K. P. Chithra and J. Kok, On certain colouring parameters of graphs, preprint.