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1- Introduction 

     In 1965 [6] Zadeh L. A. introduce a fuzzy sets , in 1999[3] Molodtsov D. define soft sets , fuzzy soft set and 

fuzzy soft topology was defined in 2013[1] ,2014[2] , later in recent years multi fuzzy soft sets was introduced 

[5] (for a given soft set each soft element associated to a membership belongs to [0,1] )which is different in our 

definition . In this search will define a dual fuzzy soft set ( for a given soft set each soft element and each soft 

member associates to a membership belongs to [0,1] ) , define a dual fuzzy soft element and construct two 

spaces (dual fuzzy soft algebra and dual fuzzy soft topology) make a comparison between them with examples 

and counter examples .  

  

2- Construction Dual Fuzzy Soft Sets 

   In this part we will define a dual fuzzy soft set  and operations on it , the set of all dual fuzzy soft set over a 

universal set X will be denoted by DFS(X), the set of all soft sets S(X) . 

The dual fuzzy soft elements will be denoted by  ɗ , ɗ1 , ɗ2
 
, …..  ,  

and the dual fuzzy soft sets will be denoted by (ɗf ,E) , (ɗg ,E)
 
, (ɗk ,E) …..   .   

Definition 2.1.  

Let X be a non- empty set and E be a non-empty set of parameters , (F,E) be soft set in S(X) .Then for each eE 

then each (e,F(e)) called soft member of the soft set (F,E) . 

Example 2.2.  

Let X = { k1 , k2 } be a set of two books , G={p1,p2} the set of two persons   

let (F,G) = {(p1,{ k1, k2}),{(p2, k1)} represents each person choice for the types of books that they prefer, the soft 

elements of (F,E) are: (p1,{k1}), (p1,{k2}), (p2,k1) , the soft members of the soft set (F,E) are (p1,{k1,k2}) and 

(p2,k1) . 

Definition 2.3. 

Let X be a universal  set , E be a set of parameters , (F,E) be a soft set . If each soft element in (F,E) associated 

to arbitrary number  [0,1] and each soft member in (F,E) associated to arbitrary number  [0,1] then 

resulting set is called a dual fuzzy soft set (simply ɗ - set) .   

Definition 2.4.  

The dual fuzzy soft element ɗ  (simply  ɗ- element ) is a soft element �̃�= (e,{h}) 

associated to arbitrary two numbers  ,  [0,1] represented as follow: ɗ = (e,{h

})


 . 

Definition 2.5.    

The fact that
  
ɗ  be an ɗ - element of (ɗf ,E) will be denoted by ɗ ⃑⃑  (ɗf ,E)  .   

Remark 2.6.    

Two ɗ - element ɗ1 = (e, {h
}) ,  ɗ2 = (e, {h

})   are ɗ - equal if 

e = e , h = h ,  =  ,  =   otherwise they said to be ɗ - not equal . 

Example 2.7.    

Let X = {R = read , G = green , B = blue} represent the set of three colors ,  
E = {h1, h2} represent the set of two houses ,  let (F,E) = {(h1, {R}), (h2, {R, G})} be a soft set representing 

houses and  colours that are used to paint these houses  

(ɗf ,E)  = {(h1, {R
0.5, G0.0})0.6, (h2, {R

0.5, G0.3})0.7} be  ɗ - set representing two houses h1, h2 and their colours 

which are read and green with the percentage of use of each colour for each house and the totally percentage of 
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cost of paint for each house , for (h1, {R
0.5, G0.0})0.6  means the first house use the red color with percentage 

50%  and green color with percentage 0% , the percentage of totally cost of paint for the first house h1 60%  

( notice that each high percentage associated with high expensive ) 

ɗ1 = (h1, {R
0.5})0.6 ⃑⃑   (ɗf ,E)  ,  ɗ2 = (h1, {G

0.0})0.6 ⃑⃑  (ɗf ,E)  , 

ɗ1 ≠ ɗ2 notice that for (h1, {R}) ̃ (F, E) , 
but the associated ɗ - element  ɗ3  = (h1, {R

0.7})0.5⃑⃑  (ɗf ,E) . 

Definition 2.8.  

The ɗ - complement of the ɗ - set  (ɗf ,E)  denoted by  

(ɗf ,E) 
c
 = {ɗ 

c
 = (ei,{hj

 1-ij
 })

1-i
 =  i,j   , ij ,i  [0,1] }. 

Definition 2.9.  

The ɗ -set (ɗf ,E)  generated by a soft set is called the null  ɗ - set if each soft element  and each soft member in 

the soft set associated to 0 (denoted by  Ф⃑⃑⃑  ) . 
Definition 2.10.  

The ɗ -set (ɗf ,E) generated by a soft set is called the universal ɗ - set if each soft element and each soft member 

in the soft set associated to 1 (denoted by  X⃑⃑  ) . 
Definition 2.11.  

Let ɗ - sets (ɗf ,E)  = {ɗ1: ɗ1 =(ei, {hj
ij}) μi },(ɗg,E)  ={ɗ2: ɗ2 = (ei, {hj

ij}) i }   

generated by the same soft set  then (ɗf ,E)  is said to be a ɗ - subset of (ɗg,E) if  for each ɗ1 = (ei, {hj
ij}) μi ⃑⃑  

(ɗf ,E)  and ɗ2 = (ei, {hj
ij}) i ⃑⃑  (ɗg,E)  , ij  ij  and μi  i  ,  i , j   ( denoted by (ɗf ,E) ⃑⃑  (ɗg,E)  ) . 

Definition 2.12.  

Let ɗ - sets (ɗf ,E)  = {ɗ1: ɗ1 =(ei, {hj
ij}) μi },(ɗg,E)  ={ɗ2: ɗ2 = (ei, {hj

ij}) i }   

generated by the same soft set then (ɗf ,E)  is said to be a ɗ - equal sets of (ɗg,E) if for each ɗ1 

= (ei, {hj
ij}) μi ⃑⃑  (ɗf ,E)  and ɗ2 = (ei, {hj

ij}) i ⃑⃑  (ɗg,E)  , ij = ij  and μi = i  ,  i , j  , ( denoted by (ɗf 

,E)  =⃑⃑  (ɗg,E) ) . 

Remark 2.13.  

From the previous definition the ɗ - set (ɗf ,E)  is said to be not ɗ - equal to the ɗ - set (ɗg,E)  if  ij ij  or 

μii  or both for some ij, ij , μi, i   i , j    

(denoted by (ɗf ,E)  ⃑  (ɗg,E)  ) . 

Definition 2.14.  

The ɗ - union of two ɗ - sets (ɗf ,E)  , (ɗg,E)  generated by the same soft set such that  

(ɗf ,E)  = {ɗ1: ɗ1 =(ei, {hj
ij}) μi },(ɗg,E)  ={ɗ2: ɗ2 = (ei, {hj

ij}) i is the ɗ - set   

(ɗk ,E)  = (ɗf ,E)  ⃑⃑⃑  (ɗg,E)  = {ɗ3 : ɗ3 = (ei, {hj
ij}) ϗi}, ij = max{ij , ij}  , 

 ϗij = max{μi , i}    i , j    . 

Definition 2.15. 

The ɗ - intersection of two ɗ - sets (ɗf ,E)  , (ɗg,E)  generated by the same soft set such that (ɗf ,E)  = {ɗ1: ɗ1 

=(ei, {hj
ij}) μi },(ɗg,E)  ={ɗ2: ɗ2 = (ei, {hj

ij}) i  

is the ɗ - set  (ɗk ,E)  = (ɗf ,E)  ⃑⃑⃑  (ɗg,E)  = {ɗ3 : ɗ3 = (ei, {hj
ij}) ϗi}, 

 ij = min{ij , ij}  , ϗij = min{μi , i}   i , j    . 

Example 2.16.  

Let (ɗf ,E)  = { (d1, {c1
0.5, c2

0.0})0.3, (d2, {c1
0.3, c2

0.3})0.4} and 

(ɗg,E)  = { (d1, {c1
0.1, c2

0.0} )0.1, (d2, {c1
0.7, c2

0.1})0.2}  then 

(ɗf ,E)  ⃑⃑⃑  (ɗg,E)  = (hf ,E) = { (d1, {c1
0.5, c2

0.0})0.3, (d2, {c1
0.7c2

0.3})0.4}    
(ɗf ,E)  ⃑⃑⃑  (ɗg,E)  = (kf ,E) =  {(d1, {c1

0.1, c2
0.0})0.1, (d2, {c1

0.3, c2
0.1})0.2} . 

Example 2.17. 

Let  X = {h1, h2} ,  E = {e1, e2} ,  

(ɗf ,E)  = { (e1, {h1
0.5, h2

0.0})
0.1

, (e2, {h1
0.0, h2

0.3})
0.2

}    

(ɗg,E)  = { (e1, {h1
0.9, h2

0.0})
0.3

, (e2, {h1
0.0, h2

0.7})
0.4

} be two ɗ - sets  

since  (ɗf ,E)  ⃑⃑  (ɗg,E)  then 

(ɗf ,E)  ⃑⃑⃑  (ɗg,E)  = {(e1, {h1
0.9, h2

0.0})
0.3

, (e2, {h1
0.0, h2

0.7})
0.4

} = (ɗg,E)  

(ɗf ,E)  ⃑⃑⃑  (ɗg,E)  = {(e1, {h1
0.5, h2

0.0})
0.1

, (e2, {h1
0.0, h2

0.3})
0.2

} = (ɗf ,E)  . 

Remarks 2.18. 

(1) (ɗf ,E)  ⃑⃑⃑  (ɗf ,E)
c  ≠ Ф⃑⃑⃑   .  (2)   (ɗf ,E)  ⃑⃑⃑  (ɗf ,E)

c  ≠ X⃑⃑   . 
Example 2.19.  

Let  X = {h1, h2} ,  E = {e1, e2}    
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(ɗf ,E) = {(e1, {h1
0.5, h2

0.0})
0.9

, (e2, {h1
0.0, h2

0.3})
0.2

}     

(ɗf ,E) 
c
 = {(e1, {h1

0.5, h2
1.0})

0.1
, (e2, {h1

1.0, h2
0.7})

0.8
}  then   

(ɗf ,E)  ⃑⃑⃑  (ɗf ,E) 
c = {(e1, {h1

0.5, h2
0.0})

0.1
, (e2, {h1

0.0, h2
0.3})

0.2
} ≠ Ф⃑⃑⃑  

(ɗf ,E)  ⃑⃑⃑  (ɗf ,E) 
c = {(e1, {h1

0.5, h2
1.0})

0.9
, (e2, {h1

1.0, h2
0.7})

0.8
} ≠ X⃑⃑  

Definition 2.20.  

The ɗ - set is ɗ - finite if its ɗ - elements are finite and the ɗ - set is ɗ - infinite if its ɗ - elements are infinite .  

Definition 2.21.   

More generally, for a family of ɗ - sets , {(ɗf ,E)  :   , where  is an infinite index set}, the ɗ -union is 

defined by: 

(ɗh,E)  = ⃑⃑⃑  (ɗf ,E)   ={ ɗ : ɗ  = (ei, {hj 

ij})i  , ij  Sup {ij : ij are the memberships of each 

soft element of the ɗ - sets (ɗf ,E)   and ij  Sup {ij : ij are the memberships of each soft member of the 

ɗ - sets  (ɗf ,E)   i,jϗ , where ϗ is an infinite index set .  

the ɗ -intersection is defined by:  

(ɗh,E)  = ⃑⃑⃑  (ɗf ,E)   = { ɗ : ɗ  = (ei, {hj 

ij})i  , ij  Inf {ij : ij are the memberships of each 

soft element of the ɗ - sets (ɗf ,E)  } and ij  Inf {ij : ij are the memberships of each soft member of the 

ɗ - sets  (ɗf ,E)  },  i,jϗ , where ϗ is an infinite index set .  

 

3- Generating ɗ - Topological Space 

 

In this part we will construct a new concept ɗ - Topological Space which is a generalization of general topology 

that provides a tool to construct a models in many real life example . 

Definition 3.1.  

Let X be non-empty set , E be a set of parameters , let T⃑⃑  be the collection of ɗ - sets generated by the soft set X̃ , 

if T⃑⃑  satisfies the following axioms : 

(1)  Ф⃑⃑⃑ , X⃑⃑   are in  T⃑⃑  .     

(2) The ɗ -union of any members of ɗ -sets in T⃑⃑   belongs to T⃑⃑  . 

(3) The ɗ -intersection of any two ɗ -sets in T⃑⃑   belong to T⃑⃑  . 

Then  T⃑⃑  is called (dual fuzzy soft topology) (simply ɗ - Topology) . 

The triple (X,T⃑⃑ ,E) is called dual fuzzy soft topological space over X   

(simply ɗ - Topological space) , the ɗ - sets of  T⃑⃑  are called ɗ - open sets their complements  are called ɗ - closed 

sets . 

Examples 3.2. 

(1) Let X = {h1, h2, h3} , E = {e1, e2} then T⃑⃑  ={ Ф⃑⃑⃑ ,  X⃑⃑  } is the  

 ɗ -Indiscrete topology . 

(2) Let X = {h1, h2, h3}, E = {e1, e2} ,  

(ɗf ,E)  = { (e1, {h1
0.7, h2

0.9, h3
0.9})

0.5
, (e2, {h1

0.5, h2
0.3, h3

0.0})
0.7

}  

               then T⃑⃑  = { Ф⃑⃑⃑ , (ɗf ,E) , X⃑⃑  } be ɗ - Topology  . 

(3) The previous example give us an abstract vision of a universe that we live which contain a matters �⃑⃑�   (with 

its elements and their ratios ) , an empty space Ф⃑⃑⃑    
(which contains no elements) and a sub matter (ɗf ,E) as a part of that universe that contain a specific elements 

but not others, and the anti-matter (ɗf ,E)
c
 which is not belong to T⃑⃑ ,where T⃑⃑  represent the whole universe with 

some of its possibilities Ф⃑⃑⃑ , (ɗf ,E) , X⃑⃑   . 
Definition 3.3.  

Let (X,T⃑⃑  ,E) be ɗ - Topological space , ɗ  ⃑⃑  (ɗg,E)  then (ɗg,E)  is said to be ɗ - neighborhood of ɗ  if there exist 

an ɗ - open set (ɗf ,E) such that ɗ ⃑⃑  (ɗf ,E)  ⃑⃑  (ɗg,E) . 

Remark 3.4.  

Every ɗ - open set is ɗ - neighbourhood but the converse is not necessary true . 

Example 3.5.  

Let X = {h1, h2, h3}, E = {e1, e2} ,  

(ɗf ,E)  = { (e1, {h1
0.7, h2

0.5, h3
0.1})

0.5
, (e2, {h1

0.5, h2
0.3, h3

0.5})
0.7

}  
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then T⃑⃑  = { Ф⃑⃑⃑ , (ɗf ,E) , X⃑⃑ } be an ɗ -Topology on X̃ , (ɗf ,E)  is an  ɗ - open set it is also a  ɗ - neighborhood of  ɗ = 

(e1, {h2
0,5})

0.5
  , while 

(ɗg,E)  = { (e1, {h1
0.8, h2

0.5, h3
0.9})

0.6
, (e2, {h1

0.5, h2
0.7, h3

1.0})
0.8

} is 

 ɗ - neighbourhood  of  ɗ  = (e1, {h2
0,5})

0.6
 but not ɗ - open set . 

 

4- Generating Dual Fuzzy Soft Algebras ( ɗ - Algebra )  

 

The aim to constructing ɗ - Algebra is to construct a collection that contains a sets and their complements which 

is not satisfied in ɗ - topology . 

Definition 4.1. 

A collection A  of subsets of  MFS(X) is dual fuzzy soft algebra over X (simply ɗ - Algebra ), if it satisfies the 

following properties: 

1. Ф⃑⃑⃑ ,  X⃑⃑   ∈ A  . 

2. For all (ɗf ,E) ∈ A , (ɗf ,E) 
c
 ∈ A  . 

3. For all (ɗf ,E) , (ɗg,E)  ∈ A  , (ɗf ,E) ⃑⃑⃑  (ɗg,E) ∈ A  . 

Examples 4.2. 

The collection P(X⃑⃑ ) of all subsets of  X⃑⃑   is dual fuzzy soft algebra .  

Proposition 4.3. 

Let (ɗf ,E) , (ɗg,E)  are two dual fuzzy soft sets in MFS(X)  that belongs to A , then, 

1. (ɗf ,E) ⃑⃑⃑  (ɗg,E)  ∈ A 

2. (ɗf ,E) \⃑  (ɗg,E) ∈ A 

3. (ɗf ,E) ∆⃑⃑   (ɗg,E) ∈ A   

[ where  (ɗf ,E)  ∆⃑⃑   (ɗg,E) = [ (ɗf ,E) \⃑  (ɗg,E) ) ⃑⃑⃑  ( (ɗg,E)\⃑ (ɗf ,E))  ] 

 Proof : 

1. Since (ɗf ,E) , (ɗg ,E) ∈ A , and A is  ɗ - Algebra , ( (ɗf ,E)
 c
 ⃑⃑⃑  (ɗg,E) 

 c
)

 c
 ∈ A .  

The result follows from the fact that ((ɗf ,E) 
c
 ⃑⃑⃑  (ɗg,E)

 c
)

 c
 =(ɗf ,E) ⃑⃑⃑  (ɗg,E) . 

2. It follows from proposition 4.3.(1) and definition 4.1.(2) and the fact that  

(ɗf ,E) \⃑  (ɗg,E) = (ɗf ,E) ⃑⃑⃑  (ɗg,E) 
c 
. 

3. It follows from proposition 4.3.(2) and definition 4.1.(3) and the fact that  

 (ɗf ,E) ∆⃑⃑   (ɗg,E) = ( (ɗf ,E) \⃑  (ɗg,E) ) ⃑⃑⃑  ( (ɗg,E) \⃑   (ɗf ,E) ). 

Proposition 4.4. 

Given  MFS(X) , if  (ɗf ,E) 1 , (ɗf ,E) 2 , .. (ɗf ,E) n ∈ A , then 

1. ⃑⃑⃑ i=1
n

 (ɗf ,E) i ∈ A  

2. ⃑⃑⃑ i=1
n

 (ɗf ,E) i ∈ A  

Proof :   By induction . 

 

5- A Comparative View Between Dual Fuzzy Soft Topology 

and Dual Fuzzy Soft Algebra 

 

       In this section we will introduce a comparative between two structures dual fuzzy soft topology and dual 

fuzzy soft algebra with additional theorems of finite intersection and finite union on these structures  . 

Proposition 5.1. 

Every ɗ - Algebra  is ɗ - topology  . 

Proof :  directly from definition (3.1.) (4.1.) . 

Remark 5.2.  

The converse of proposition (5.1.)is not necessary true . 

Examples 5.3.  

Let X = {h1, h2, h3} , E = {e1, e2}    

(ɗf ,E) = { (e1, {h1
0.7, h2

0.9, h3
0.9})

0.1
, (e2, {h1

0.5, h2
0.3, h3

0.0})
0.2

}  

then T⃑⃑  = { Ф⃑⃑⃑ , (ɗf ,E) , X⃑⃑  } be a ɗ - Topology  but not ɗ - Algebra  since  

(ɗf ,E)
c
 = { (e1, {h1

0.3, h2
0.1, h3

0.1})
0.9

, (e2, {h1
0.5, h2

0.7, h3
1})

0.8
} T⃑⃑   . 

Theorem 5.4. 

The finite ɗ - intersection of ɗ - algebra is ɗ - algebra . 
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Proof : Let , are two ɗ - algebras  

1. Ф⃑⃑⃑  , X⃑⃑  ∈   and  Ф⃑⃑⃑  , X⃑⃑  ∈   then  Ф⃑⃑⃑   ∈     , X⃑⃑  ∈    .     

2. Let (ɗf ,E) ∈      ⟹  (ɗf ,E) ∈   ˄  (ɗf ,E) ∈  then 

(ɗf ,E) 
c
 ∈  ˄  (ɗf ,E) 

c
 ∈   ⟹  (ɗf ,E) 

c
 ∈     . 

3. Let (ɗf ,E) , (ɗg,E)  ∈     ⟹ (ɗf ,E) , (ɗg,E) ∈    ˄   (ɗf ,E) , (ɗg,E) ∈     

⟹ (ɗf ,E) ⃑⃑⃑  (ɗg,E) ∈    ˄   (ɗf ,E) ⃑⃑⃑  (ɗg,E) ∈     

      ⟹ (ɗf ,E) ⃑⃑⃑  (ɗg,E) ∈    .     

Theorem 5.5. 

The finite ɗ - union of ɗ - algebra is ɗ - algebra . 

Proof : Let , are two ɗ - algebras  

1. Ф⃑⃑⃑  , X⃑⃑  ∈   and  Ф⃑⃑⃑  , X⃑⃑  ∈   then  Ф⃑⃑⃑   ∈    , X⃑⃑  ∈    .     

2. Let (ɗf ,E) ∈     ⟹  (ɗf ,E) ∈   ˅  (ɗf ,E) ∈  then 

     (ɗf ,E) 
c
 ∈  ˅  (ɗf ,E) 

c
 ∈   ⟹  (ɗf ,E) 

c
 ∈     . 

3. Let (ɗf ,E) , (ɗg,E)  ∈     ⟹ (ɗf ,E) , (ɗg,E) ∈    ˅   (ɗf ,E) , (ɗg,E) ∈     

      ⟹ (ɗf ,E)
 c
 , (ɗg,E)

 c
 ∈    ˅  (ɗf ,E)

 c
 , (ɗg,E)

 c
 ∈    

      ⟹ (ɗf ,E)
 c 

 ⃑⃑⃑   (ɗg,E)
 c 

 ∈    ˅  (ɗf ,E)
 c 

 ⃑⃑⃑   (ɗg,E)
 c
 ∈    

      ⟹ (ɗf ,E)
 
 ⃑⃑⃑  (ɗg,E)

 
 ∈    ˅  (ɗf ,E)

 
 ⃑⃑⃑  (ɗg,E)

 
 ∈  

      ⟹ (ɗf ,E)
 
 ⃑⃑⃑  (ɗg,E)

 
 ∈     . 

Theorem 5.6. 

The finite ɗ - intersection of ɗ - topology is ɗ - topology . 

Proof : Let T⃑⃑ , T⃑⃑  are two ɗ - topologies 

1. Ф⃑⃑⃑  , X⃑⃑  ∈ T⃑⃑    and  Ф⃑⃑⃑  , X⃑⃑  ∈ T⃑⃑   then  Ф⃑⃑⃑   ∈ T⃑⃑     T⃑⃑   , X⃑⃑  ∈ T⃑⃑    T⃑⃑   .     

2. Let (ɗf ,E) ,  (ɗg ,E)  ∈ T⃑⃑   T⃑⃑    then 

(ɗf ,E) ,  (ɗg ,E)  ∈T⃑⃑   ˄  (ɗf ,E) ,  (ɗg ,E)  ∈ T⃑⃑   

⟹ (ɗf ,E) ⃑⃑⃑   (ɗg ,E)  ∈ T⃑⃑    ˄  (ɗf ,E) ⃑⃑⃑   (ɗg ,E)  ∈ T⃑⃑    

⟹ (ɗf ,E) ⃑⃑⃑   (ɗg ,E)  ∈ T⃑⃑    T⃑⃑     . 

3. Let (ɗf ,E) ∈ T⃑⃑    T⃑⃑     then 

(ɗf ,E)  ∈ T⃑⃑    ˄  (ɗf ,E)  ∈ T⃑⃑     

⟹   (ɗf ,E)∈ T⃑⃑    ˄    (ɗf ,E) ∈ T⃑⃑    

⟹  (ɗf ,E) ∈ T⃑⃑    T⃑⃑   . 

Theorem 5.7. 

The finite ɗ - union of ɗ - topology not necessary ɗ - topology . 

Example 5.8.  

Let X = {h1, h2, h3}, E = {e1, e2} ,  

(ɗf ,E)  = { (e1, {h1
0.7, h2

0.9, h3
0.9})

0.5
, (e2, {h1

0.5, h2
0.3, h3

0.0})
0.7

}  

(ɗg ,E)  = { (e1, {h1
0.7, h2

0.9, h3
0.9})

0.6
, (e2, {h1

0.5, h2
0.3, h3

0.0})
0.8

}  

then T⃑⃑  = { Ф⃑⃑⃑ , (ɗf ,E) , X⃑⃑  }  and T⃑⃑   = { Ф⃑⃑⃑ , (ɗg ,E) , X⃑⃑  } are ɗ - Topologies but 

T⃑⃑     T⃑⃑  = { Ф⃑⃑⃑ , (ɗf ,E) , (ɗg ,E), X⃑⃑  } is not ɗ - Topology . 
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