On Weakly η- regular Closed Sets in Generalized Topological Spaces

E. Elizabeth Vidhya^{#1} and S. Syed Ali Fathima^{*2}

^{1.} M.Phil Scholar, Department of Mathematics, Sadakathullah Appa College, Tirunelveli, Tamil Nadu-627011, India.

^{2.} Assistant Professor, Department of Mathematics, Sadakathullah Appa College, Tirunelveli, Tamil Nadu-627011,India.

Abstract

In this paper, we introduce a weak form of η -regular closed sets namely weakly η -regular closed sets (briefly, $w\eta r$ -closed) in generalized topological space. Also we discuss some of its properties. Further we introduce three types of continuous functions using $w\eta r$ -closed sets and characterise them.

Keywords: η -regular closed, $w\eta g$ -sets. (η, δ) continuous functions

AMS Subject classification: 54A05, 54C08

I. INTRODUCTION

In 2014, Ankit Gupta et el [1] given some decompositions of regular open sets and regular closed sets using PSregular sets in topological spaces. In 2015, Syed Ali Fathima [6] introduced wng-closed sets in GTS which is also the weak form the regular closed sets. The purpose of the present paper is to introduce weakly η regular closed sets and different types of continuous function using wnr- closed sets in GTS and discuss their basic properties.

II. PRELIMINARIES

Throughout this paper X,Y and Z means generalized topological space (X,η) , (Y,δ) and (Z,\mathcal{E}) respectively on which no separation axioms are assumed unless otherwise explicitly mentioned. The function $f:X \rightarrow Y$ denote the single valued function of space (X,η) into a space (Y,δ) . We recall the following definitions.

Definition 2.1. A generalized topology or simply GT η [3] on a nonempty set X is a collection of subsets of X such that $\phi \in \mu$ and μ is closed under arbitrary union. Elements of η are called η -open sets. A subset A of X is said to be η -closed if A^c is η -open. The pair (X, η) is called a generalized topological space (GTS). If A is a subset of X, then $C_{\eta}(A)$ is the smallest η -closed set containing A and $i_{\eta}(A)$ is the largest η -open set contained in A. A space (X, η) is said to be strong if $X \in \eta$.

Definition 2.2. A subset A of X is called a η - generalized closed set [2](briefly η g-closed set= g_{η} -closed[5]) iff $C_{\eta}(A) \subseteq U$ whenever $A \subseteq U$ where U is η -open in X.

Definition 2.3. Let (X,η) be a GTS and A $\subseteq X$. Then A is said to be η -regular closed [4] if A=C $_{\eta}i_{\eta}(A)$.

Definition 2.4. A subset A of X is called a PS – regular [1] if $A = i_{\sigma}C_{\sigma}(A)$

Definition 2.5. A function $f:X \rightarrow Y$ is said to be

(i) (η, δ) continuous functions [3] if $f^{-1}(U)$ is η -open in X for every δ -open set U of Y.

(ii) (η , W η g- δ) continuous functions [8] if $f^{-1}(U)$ is η – open in X for every W η g – open set U of Y.

(iii) (Wng-n, δ) continuous functions [8] if $f^{-1}(U)$ is Wng – open in X for every δ – open set U of Y.

(iv)Wng-irresolute [8] if $f^{-1}(U)$ is Wng – open in X for every Wng – open set U of Y.

III. WEAKLY η - Regular closed sets

DEFINITION 3.1. Let (X,η) be a GTS. A subset A of X is called weakly η -regular closed set (or in short, Wηrclosed) if $C_{\eta}i_{\eta}(A) \subseteq U$; whenever $A \subseteq U$ and U is ηg -open. The complement of a Wηr-closed set is called a Wηropen set and WηrO(X) denotes that set of all Wηr-opens sets in X.

EXAMPLE 3.2. Let $X = \{p_1, p_2, p_3\}$ with GT $\eta = \{\emptyset, X, \{p_1\}, \{p_1, p_2\}\}$. Here W η -closed sets are $\{\emptyset, X, \{p_2\}, \{p_3\}\}$.

THEOREM 3.3. Every η closed set is $W\eta r$ – closed set.

PROOF: Let A be any η closed set and $A \subseteq U$ where U is ηg -open. Since A is η -closed set $C_{\eta}(A)=A$. Also $i_{\eta}(A) \subseteq A \subseteq C_{\eta}(A) = A$. Then $i_{\eta}(A) \subseteq A$. Thus $C_{\eta}i_{\eta}(A) \subseteq C_{\eta}(A) = A \subseteq U$. This implies $C_{\eta}i_{\eta}(A) \subseteq U$. Therefore A is Wyr - closed.

Converse of the theorem need not be true as seen from the following example.

EXAMPLE 3.4. Let $X = \{p_1, p_2, p_3\}$ with $GT \eta = \{\emptyset, X, \{p_1\}, \{p_2, p_3\}, \{p_1, p_3\}\}$. Now $W\eta r$ -closed sets= $\{\emptyset, X, \{p_1\}, \{p_2\}, \{p_3\}, \{p_2, p_3\}, \{p_1, p_2\}\}$. It is easy to verify that $\{p_3\}$ and $\{p_1, p_2\}$ are $W\eta r$ -closed but not η - closed.

THEOREM 3.5. Every η - regular closed set is $w\eta r$ - closed.

PROOF: Suppose A is any η - regular closed set in X. Then $C_{\eta}i_{\eta}(A) = A$; whenever $A \subseteq U$ and U is ηg -open. This implies $C_{\eta}i_{\eta}(A) = A \subseteq U$; Clearly $C_{\eta}i_{\eta}(A) \subseteq U$; whenever $A \subseteq U$ and U is ηg -open. Hence A is W ηr - closed.

Converse of the above theorem need not be true as seen from the following example.

EXAMPLE 3.6. Let $X = \{p_1, p_2, p_3\}$ with $GT \eta = \{\emptyset, X, \{p_1\}, \{p_2, p_3\}, \{p_1, p_3\}\}$; Then η regular closed $=\{\{p_1\}, \{p_2p_3\}\}$ and $W\eta r$ - closed $=\{\emptyset, X, \{p_1\}, \{p_2\}, \{p_3\}, \{p_2, p_3\}, \{p_1, p_2\}\}$. Here easy to observe that $\{p_2\}\{p_3\}\{p_1, p_2\}$ are $W\eta r$ - closed but not η regular closed set.

THEOREM 3.7. Every Wηr – closed set is Wηg- closed set.

PROOF: Let A be the W η r – closed set and A \subseteq U and U is η -open. We know that every η -open is η g-open. Thus U is η g - open and A is W η r – closed. That is C_ni_n(A) \subseteq U. Hence A is W η g – closed.

Converse of the above theorem false as seen from the following example.

EXAMPLE 3.8. Let $X = \{p_1, p_2, p_3\}$ with $GT = \{\emptyset, X, \{p_1\}\}$. Then (X, η) . Here $W\eta r$ – closed $= \{\emptyset, X, \{p_2\}, \{p_3\}, \{p_2, p_3\}\}$ and $W\eta g$ – closed $= \{\emptyset, X, \{p_2\}, \{p_3\}, \{p_1, p_2\}, \{p_1, p_3\}, \{p_2, p_3\}\}$. Clearly, $\{p_1, p_2\}$ and $\{p_1, p_3\}$ are $W\eta g$ – closed set but not $W\eta r$ – closed set.

THEOREM 3.9. A subset A of a generalized topological space is $W\eta r - closed$ then $C_{\eta}i_{\eta}(A) \setminus A$ does not contain any non – empty ηg - closed set.

PROOF: Suppose A is Wnr – closed set in X. We assume that U be a ηg - closed set such that $C_{\eta}i_{\eta}(A) \setminus A \supseteq U$ and $U \neq \emptyset$. Here $U \subseteq C_{\eta}i_{\eta}(A) \setminus A$. Then $A \subseteq X \setminus U$; As U is ηg - closed, $X \setminus U$ is ηg -open. Since A is Wnr – closed set. Then by definition $C_{\eta}i_{\eta}(A) \subseteq X \setminus U$; Thus $U \subseteq X \setminus C_{\eta}i_{\eta}(A)$. Hence $U \subseteq (C_{\eta}i_{\eta}(A)) \cap (X \setminus C_{\eta}i_{\eta}(A))$. This implies $U=\emptyset$; this is a contradiction to our assumption. Hence $C_{\eta}i_{\eta}(A) \setminus A$ does not contain any non empty ηg - closed sets in X.

REMARK 3.10: The union of two Wnr – closed sets in GTS is generally not Wnr – closed set.

EXAMPLE 3.11. Let $X = \{p_1, p_2, p_3\}$ with $\eta = \{\emptyset, X, \{p_1, p_2\}\}$. Here $W\eta r - closed = \{\emptyset, X, \{p_1\}, \{p_2\}, \{p_3\}, \{p_1p_3\}, \{p_2, p_3\}\}$. Now consider $A = \{p_1\}$ and $B = \{p_2\}$. Then A and B are $W\eta r - closed$ sets in X. But AUB = $\{p_1, p_2\}$ is not $W\eta r - closed$ set in X.

THEOREM 3.12: If a Wηr – closed subset A of a GTS in X be such that $C_{\eta}i_{\eta}(A) \setminus A$ is ηg - closed. Then A is η – regular closed.

PROOF: Let A be a W η r – closed subset such that $C_{\eta}i_{\eta}(A) \setminus A$ is ηg - closed. Then $C_{\eta}i_{\eta}(A) \setminus A$ is ηg - closed subset of itself. Then by Theorem [3.9] $C_{\eta}i_{\eta}(A) \setminus A = \emptyset$. That implies $C_{\eta}i_{\eta}(A) = A$. Hence A is η - regular closed set.

Converse of the theorem is false as seen from the following example.

EXAMPLE 3.13: Let $X = \{p_1, p_2, p_3\}$ with GT $\eta = \{\emptyset, \{p_1\}, \{p_1, p_2\}\}$. Here η - regular closed set are $\{X, \{p_3\}\}$ and W η r – closed = $\{X, \{p_3\}, \{p_1, p_3\}, \{p_2, p_3\}\}$. Let $A = \{p_3\}$; A is both W η r – closed and η - regular closed set, but $C_{\eta}i_{\eta}(A) \setminus A = \emptyset$. \emptyset is not ηg - closed set.

COROLLARY 3.14: If a W η r – closed subset A of a GTS (X, η) be such that $C_{\eta}i_{\eta}(A) \setminus A$ is η g- closed, then A is PS – regular.

PROOF: Every η - regular closed set is PS – regular [by theorem 16[1]]. Now by theorem [3.12] A is η - regular closed. This implies A is PS – regular.

THEOREM 3.15: For every point x of a strong GTS X. $X \setminus \{x\}$ is W η r – closed or η g - open.

PROOF: Suppose $X \setminus \{x\}$ is not ηg - open. Then X is the only ηg -open set containing $X \setminus \{x\}$. This implies $C_{\eta} i_{\eta}(X \setminus \{x\}) \subseteq X$. Hence $X \setminus \{x\}$ is $W\eta r$ - closed.

REMARK 3.16: In GTS, ng - closed sets and Wnr - closed sets are independent.

EXAMPLE 3.17: Let $X = \{p_1, p_2, p_3\}$ with $GT \eta = \{\emptyset, X, \{p_1\}, \{p_1, p_3\}\}$. Then ηg - closed = $\{\emptyset, X, \{p_2\}, \{p_1, p_2\}, \{p_2, p_3\}\}$ and $W\eta r$ - closed = $\{\emptyset, X, \{p_2\}, \{p_3\}, \{p_1, p_2\}, \{p_2, p_3\}\}$. It is easy to verify that $\{p_3\}$ is $W\eta r$ - closed but not ηg - closed set.

EXAMPLE3.18:Let, $X = \{p_1, p_2, p_3\}$ with GT $\eta = \{\emptyset, X, \{p_1\}\}$. Then ηg -closed = $\{\emptyset, X, \{p_2\}, \{p_3\}, \{p_1, p_2\}, \{p_2, p_3\}, \{p_1, p_3\}\}$ and Wnr – closed = $\{\emptyset, X, \{p_2\}, \{p_3\}, \{p_2, p_3\}\}$. It is easy to see that $\{p_1, p_2\}$ and $\{p_1, p_3\}$ are ηg - closed but not Wnr – closed set.

THEOREM 3.19: If A is a Wyr – closed subset of GTS such that $A \subseteq B \subseteq C_{\eta}i_{\eta}(A)$ then B is also Wyr – closed.

PROOF: Let U be a ηg - open set in (X,η) such that $B \subseteq U$; Since A is $W\eta r$ - closed, $C_{\eta}i_{\eta}(A) \subseteq U$. Now, $B \subseteq C_{\eta}i_{\eta}(A)$ this implies $C_{\eta}i_{\eta}(B) \subseteq C_{\eta}i_{\eta}(A) \subseteq C_{\eta}i_{\eta}(A) \subseteq U$. Thus $C_{\eta}i_{\eta}(B) \subseteq U$. Hence B is $W\eta r$ - closed.

Converse part of the theorem is not true as shown from the following example.

EXAMPLE 3.20:Let $X = \{p_1, p_2, p_3, p_4\}$ with GT $\eta = \{\emptyset, \{p_2\}, \{p_1, p_2\}\}$. Then $W\eta r$ -closed= $\{X, \{p_3, p_4\}, \{p_1, p_3, p_4\}\}$. Now consider, $A = \{p_3, p_4\}$ and $B = \{p_1, p_3, p_4\}$. Clearly $A \subseteq B$; A and B are $W\eta r$ – closed. But B is not a subset of $C_\eta i_\eta(A)$.

THEOREM 3.21: A subset A of a GTS X is $W\eta r$ – open if and only if $F \subseteq i_{\eta}C_{\eta}(A)$; whenever $F \subseteq A$ and F is ηg - closed.

PROOF: Let A be any W η r – open. Then A^c is W η r – closed. Let F be η g - closed set contained in A. Then F^c is a η g - open set containing A^c. Since A^c is W η r – closed; C $_{\eta}i_{\eta}(A^c) \subseteq F^c$, This implies F $\subseteq i_{\eta}C_{\eta}(A)$

Conversely, Suppose that $F \subseteq i_{\eta}C_{\eta}(A)$; whenever $F \subseteq A$ and F is ηg - closed. Then F^{c} is ηg - open set containing A^{c} and $F \subseteq i_{\eta}C_{\eta}(A)$. Thus $C_{\eta}(i_{\eta}(A^{c})) \subseteq F^{c}$. Therefore A^{c} is $W\eta r$ – closed. This implies A is $W\eta r$ – open.

THEOREM 3.22: If $A \subseteq X$ is $W\eta r$ – closed then $C_{\eta}i_{\eta}(A) \setminus A$ is $W\eta r$ – closed.

PROOF: Suppose A is W η r – closed and F \subseteq C $_\eta i_\eta(A) \setminus A$; where F is η g - closed subset of X. Then by theorem [3.9] C $_\eta i_\eta(A) \setminus A = \emptyset$, F = \emptyset . Hence F $\subseteq [i_\eta C_\eta(A)(C_\eta i_\eta(A) \setminus A)]$. Then by theorem [3.19] C $_\eta i_\eta(A) \setminus A$ is W η r – closed.

IV. WEAKLY η – REGULAR CONTINUITY

DEFINITION 4.1. Let (X,η) and (Y,δ) be generalized topological space's. Then a mapping $f:X \rightarrow Y$ is said to be

- (i) (η , W η r- δ) continuous if $f^{-1}(U)$ is η open in X for every W η r open set U of Y.
- (ii) (Wnr-n, δ) continuous if $f^{-1}(U)$ is Wnr open in X for every δ open set U of Y.

(iii) (W η r- η , W η r- δ) continuous if $f^{-1}(U)$ is W η r – open in X for every W η r – open set U of Y.

EXAMPLE 4.2: Let $X = Y = \{p_1, p_2, p_3\}$ with $GT \eta = \{\emptyset, X, \{p_1\}, \{p_2, p_3\}, \{p_1, p_3\}\}$ and $\delta = \{\emptyset, Y, \{p_1\}, \{p_1, p_3\}\}$. Then $W\eta rO(Y) = \{\emptyset, X, \{p_1\}, \{p_3\}, \{p_1, p_3\}, \{p_1, p_2\}\}$. A mapping f: $(X, \eta) \rightarrow (Y, \delta)$ is defined by $f(p_1) = p_3$, $f(p_2) = p_1$, $f(p_3) = p_1$. Then f is $(\eta, W\eta r \cdot \delta)$ continuous.

EXAMPLE 4.3: Let $X = \{p_1, p_2, p_3\} = Y$ with GT $\eta = \{\emptyset, X, \{p_2, p_3\}, \{p_1, p_2\}\}$ and $\delta = \{\emptyset, Y, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}$. Then WnrO(X) = $\{\emptyset, X, \{p_2\}, \{p_2, p_3\}, \{p_1, p_3\}, \{p_1, p_2\}\}$. A mapping f: $(X, \eta) \rightarrow (Y, \delta)$ is defined by $f(p_1) = p_2$, $f(p_2) = p_2$, $f(p_3) = p_2$. Then f is (Wnr- η , δ) continuous.

EXAMPLE 4.4: Let $X = Y = \{p_1, p_2, p_3\}$ with $GT \eta = \{\emptyset, X, \{p_1\}, \{p_1, p_3\}\}$ and $\delta = \{\emptyset, Y, \{p_1\}\}$. Then $W\eta rO(X) = \{\emptyset, X, \{p_1\}, \{p_3\}, \{p_1, p_3\}, \{p_1, p_2\}\}$ and $W\eta rO(Y) = \{\emptyset, X, \{p_1\}, \{p_1, p_3\}, \{p_1, p_2\}\}$. A mapping f: $(X, \eta) \rightarrow (Y, \delta)$ is defined by $f(p_1) = p_2$, $f(p_2) = p_2$, $f(p_3) = p_1$. Then f is $(W\eta r - \eta, W\eta r - \delta)$ continuous.

THEOREM 4.5: Every $(\eta, W\eta r \cdot \delta)$ continuous function is (η, δ) continuous.

PROOF: Let f: $(X,\eta) \rightarrow (Y,\delta)$ be $(\eta, W\eta r \cdot \delta)$ continuous. Let A be a δ – open set in Y. We have every δ – open set is W\eta r \cdot \delta – open. This implies A is W\eta r · δ – open. Since f is $(\eta, W\eta r \cdot \delta)$ continuous, $f^{-1}(A)$ is η – open. Therefore f is (η, δ) continuous.

Converse of the theorem is false as seen from the following example.

EXAMPLE 4.6: Let $X = Y = \{p_1, p_2, p_3\}$ with $GT \eta = \{\emptyset, X, \{p_1\}, \{p_2, p_3\}, \{p_1, p_3\}\}$ and $\delta = \{\emptyset, Y, \{p_1\}, \{p_1, p_3\}\}$. Then $W\eta rO(Y) = \{\emptyset, X, \{p_1\}, \{p_3\}, \{p_1, p_3\}, \{p_1, p_2\}\}$. A mapping f: $(X, \eta) \rightarrow (Y, \delta)$ is defined by $f(p_1) = p_1, f(p_2) = p_3, f(p_3) = p_1$. Then f is (η, δ) continuous but not $(\eta, W\eta r \cdot \delta)$ continuous.

THEOREM 4.7: Every (η, δ) continuous function is $(W\eta r - \eta, \delta)$ continuous.

PROOF: Let f: $(X,\eta) \rightarrow (Y,\delta)$ be (η,δ) continuous. Let A be a δ – open set in Y. Since f is (η,δ) continuous, $f^{-1}(A)$ is η – open and every η – open set is W η r- η – open. This implies $f^{-1}(A)$ is W η r- η – open. Hence f is (W η r- η,δ) continuous.

Converse of the theorem is not true as seen from the following example.

EXAMPLE 4.8: Let $X = Y = \{p_1, p_2, p_3\}$ with $GT \eta = \{\emptyset, X, \{p_1\}, \{p_1, p_3\}\}$ and $\delta = \{\emptyset, Y, \{p_1\}\}$. Then $W\eta rO(X) = \{\emptyset, X, \{p_1\}, \{p_3\}, \{p_1, p_3\}, \{p_1, p_2\}\}$. A function f: $X \rightarrow Y$ is defined by $f(p_1) = p_2$, $f(p_2) = p_3$, $f(p_3) = p_1$. Then f is $(W\eta r \cdot \eta, \delta)$ continuous but not (η, δ) continuous.

THEOREM 4.9: Every $(W\eta r-\eta, \delta)$ continuous function is $(W\eta g-\eta, \delta)$ continuous.

PROOF: Let f: $(X,\eta) \rightarrow (Y,\delta)$ be $(W\eta r-\eta,\delta)$ continuous. Let A be a δ – open set in Y. Since f is $(W\eta r-\eta,\delta)$ continuous. $f^{-1}(A)$ is $W\eta r-\eta$ – open. Also Every $W\eta r$ – open set is $W\eta g$ – open. This implies $f^{-1}(A)$ is $W\eta g-\eta$ – open. Therefore f is $(W\eta g-\eta,\delta)$ continuous.

Converse of the above theorem is false as seen from the following example.

EXAMPLE 4.10: Let $X = \{p_1, p_2, p_3\} = Y$ with $GT \eta = \{\emptyset, X, \{p_1\}\}$ and $\delta = \{\emptyset, Y, \{p_1\}, \{p_1, p_3\}\}$. Then $W\eta rO(X) = \{\emptyset, X, \{p_1\}, \{p_1, p_3\}, \{p_1, p_2\}\}$ and $W\eta gO(X) = \{\emptyset, X, \{p_1\}, \{p_2\}, \{p_1, p_3\}, \{p_1, p_2\}\}$. A mapping f: $X \rightarrow Y$ is defined by $f(p_1) = p_3$, $f(p_2) = p_1$, $f(p_3) = p_2$. Then f is $(W\eta g - \eta, \delta)$ continuous but not $(W\eta r - \eta, \delta)$ continuous.

THEOREM 4.11: If $f:(X,\eta) \to (Y,\delta)$ is $(W\eta r-\eta, W\eta r-\delta)$ continuous and $g:(Y,\delta) \to (Z,\mathcal{E})$ is $(\delta, W\eta r-\mathcal{E})$ continuous. Then gof: $(X,\eta) \to (Z,\mathcal{E})$ is $(W\eta r-\eta, W\eta r-\mathcal{E})$ continuous.

PROOF: Let U be Wηr-E open in Z. Since g is $(\delta, W\eta r-E)$ continuous, $g^{-1}(U)$ is δ - open in Y. Further, Every δ – open set is Wηr- δ – open. This implies $g^{-1}(U)$ is Wηr- δ – open in Y. Since f is (Wηr- η , Wηr- δ) continuous, $f^{-1}(g^{-1}(U))$ is Wηr- η – open in X. Hence gof is (Wηr- η , Wηr-E) continuous.

THEOREM 4.12: If f: X \rightarrow Y is (Wηr-η, δ) continuous and g: Y \rightarrow Z is (δ , \mathcal{E}) continuous. Then gof : X \rightarrow Z is (Wηr-η, \mathcal{E}) continuous.

PROOF: Let V be \mathcal{E} – open set in Z. Since g is (δ,\mathcal{E}) continuous, $g^{-1}(V)$ is δ – open in Y. Since f is (W η r- η, δ) continuous, $f^{-1}(g^{-1}(V))$ is W η r- η – open in X. Hence gof is (W η r- η,\mathcal{E}) continuous.

THEOREM 4.13: If f: $(X,\eta) \rightarrow (Y,\delta)$ is $(\eta, W\eta g-\delta)$ continuous and g: $(Y,\delta) \rightarrow (Z,\mathcal{E})$ is $(W\eta r-\delta,\mathcal{E})$ continuous. Then gof: $(X,\eta) \rightarrow (Z,\mathcal{E})$ is (η,\mathcal{E}) continuous.

PROOF: Let U be \mathcal{E} – open in Z. Since g is (Wηr- δ , \mathcal{E}) continuous, $g^{-1}(U)$ is Wηr- δ – open in Y. We have every Wηr- δ – open set is Wηg- δ – open. This implies $g^{-1}(U)$ is Wηg- δ – open in Y. Since f is (η, Wηg- δ) continuous, $f^{-1}(g^{-1}(U))$ is η – open in X. Therefore gof : (X, η) \rightarrow (Z, \mathcal{E}) is (η, \mathcal{E}) continuous.

THEOREM 4.14: If f: $X \rightarrow Y$ is $(W\eta r-\eta, W\eta r-\delta)$ continuous and g: $Y \rightarrow Z$ is $(W\eta r-\delta, W\eta r-\epsilon)$ continuous. Then gof: $X \rightarrow Z$ is $(W\eta r-\eta, W\eta r-\epsilon)$ continuous.

PROOF: Let V be Wηr- \mathcal{E} – open set in Z. Since g is (Wηr- δ , Wηr- \mathcal{E}) continuous, $g^{-1}(V)$ is Wηr- δ – open in Y. Also f is (Wηr- η , Wηr- δ) continuous. This implies $f^{-1}(g^{-1}(V))$ is Wηr- η – open in X. Hence gof is (Wηr- η , Wηr- \mathcal{E}) continuous.

REMARK 4.15 : If f: $(X,\eta) \rightarrow (Y,\delta)$ is $(W\eta r-\eta, \delta)$ continuous and g: $(Y,\delta) \rightarrow (Z,\mathcal{E})$ is $(W\eta r-\delta, \mathcal{E})$ continuous. Then gof : $(X,\eta) \rightarrow (Z,\mathcal{E})$ is not $(W\eta r-\eta,\mathcal{E})$ continuous.

EXAMPLE 4.16: Let $X = Y = Z = \{p_1, p_2, p_3\}$ with $GT \eta = \{\emptyset, X, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}$ and $\delta = \{\emptyset, Y, \{p_1\}, \{p_1, p_3\}\}$ and $\xi = \{\emptyset, Z, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}$. Then $W\eta rO(X) = \{\emptyset, X, \{p_1\}, \{p_2\}, \{p_1, p_2\}\}$ and $W\eta rO(Y) = \{\emptyset, Y, \{p_1\}, \{p_3\}, \{p_1, p_3\}, \{p_1, p_2\}\}$. Mapping f: $(X, \eta) \rightarrow (Y, \delta)$ is defined by $f(p_1) = p_1, f(p_2) = p_3, f(p_3) = p_2$ and g: $(Y, \delta) \rightarrow (Z, \xi)$ is defined by $g(p_1) = p_1, g(p_2) = p_1, g(p_3) = p_2$. Then clearly f is $(W\eta r - \eta, \delta)$ continuous and g is $(W\eta r - \delta, \xi)$ continuous. But gof : $(X, \eta) \rightarrow (Z, \xi)$ is not $(W\eta r - \eta, \xi)$ continuous

THEOREM 4.17. If f: $X \to Y$ is $(\eta, W\eta r-\delta)$ continuous and g: $Y \to Z$ is $(\delta, W\eta r-\delta)$ continuous then gof : $X \to Z$ is $(\eta, W\eta r-\delta)$ continuous.

PROOF: Let V be W η r- \mathcal{E} – open set in Z. Since g is (δ , W η r- \mathcal{E}) continuous, $g^{-1}(V)$ is δ – open in Y. Also every δ – open set is W η r- δ – open. Therefore $g^{-1}(V)$ is W η r- δ – open in Y Since f is (η , W η r- δ) continuous, $f^{-1}(g^{-1}(V))$ is η – open in X. Hence gof is (η , W η r- \mathcal{E}) continuous.

THEOREM 4.18: If f: $(X,\eta) \rightarrow (Y,\delta)$ is $(W\eta r-\eta, W\eta g-\delta)$ continuous and g: $(Y,\delta) \rightarrow (Z,\mathcal{E})$ is $(W\eta r-\delta, W\eta g-\mathcal{E})$ continuous. Then gof : $(X,\eta) \rightarrow (Z,\mathcal{E})$ is $(W\eta r-\eta, W\eta g-\mathcal{E})$ continuous.

PROOF: Let U be Wng-E open in Z. Since g is (Wnr- δ , Wng-E) continuous, $g^{-1}(U)$ is Wnr- δ – open in Y. We have every Wnr- δ – open set is Wng- δ – open. This implies $g^{-1}(U)$ is Wng- δ – open in Y. Since f is (Wnr- η , Wng- δ) continuous, $f^{-1}(g^{-1}(U))$ is Wnr- η – open in X. Hence gof is (Wnr- η , Wng- ϵ) continuous.

THEOREM 4.19: If f: $(X,\eta) \rightarrow (Y,\delta)$ is (η,δ) continuous and g: $(Y,\delta) \rightarrow (Z,\mathcal{E})$ is (δ,\mathcal{E}) continuous. Then gof: $(X,\eta) \rightarrow (Z,\mathcal{E})$ is (η,\mathcal{E}) continuous.

PROOF: Let U be \mathcal{E} – open in Z. Since g is (δ, \mathcal{E}) continuous, $g^{-1}(U)$ is δ - open in Y. Since f is (η, δ) continuous, $f^{-1}(g^{-1}(U))$ is η – open in X. Hence gof is (η, \mathcal{E}) continuous.

V. Conclusions

In this paper, we have introduced the new class of sets namely weakly η -regular closed sets in generalized topological spaces and discussed its basic properties. Further we have defined three types of continuous function using weakly η -regular closed set and characterized them.

Acknowledgment

The authors express their deep sense of gratitude to all the well-wishers for their valuable suggestions.

REFERENCES

- [1] Ankit Gupta and Ratna Dev, "PS Regular Set in Topology and Generalized topology", Journal of Mathematics, volume 2014 (2014), Article ID 274592, 6 pages.
- [2] Bishwambhar Roy, "On a type of Generalized open set, Applied General Topology", 12 (2), 163-173, 2011
- [3] A. Csaszar, "Generalized topology, generalized continuity", Acta Math Hungar. 96, 351-357, 2002.
- [4] R. Jamunarani and P. Jeyanthi, "Regular sets in Generalized topological spaces", Acta Math Hungar, 113(4), 325-332, 2006.
- [5] S. Maragathavalli, M. Sheik John and D. Sivaraj, "On g-closed set in generalized topological spaces". J.Adv.Res.Pure Maths. 2(1). 57-64, 2010,
- [6] Min W.K, "Weak continuity on generalized topological spaces", Acta. Math. Hungar., 124(1-2)(2009), 73-81.
- [7] Syed Ali Fathima S., "On Weakly μg closed sets in generalized topological spaces", Journal of Advanced studies in topology. 6:4(2015), 125-128.
- [8] Syed Ali Fathima S., "On weakly μg- continuous functions in Generalized Topological Spaces", International Journal of Mathematical Archive 7(4), 2016, 33-36.