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Abstract — Let  be a vector space and  be a cone in , then  is an ordered vector space. In this paper, 

we assumed the cone  to be a reflexive cone and show that  is an Archimedean space. Among other 

things, we also show that if an ordered Banach space  with normal, generating and reflexive cone  has a 

Riesz decomposition property, then  is a Riesz space. 
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I. INTRODUCTION 

Given a vector space , a non-empty subset  of a vector space  is called a convex cone (wedge) if  

and  for all   A convex cone  is said to be pointed if  Apart from the norm 
structure, a given vector space can also be equipped with a partial order structure, such a partial order can be 

naturally induced by a cone   A partial order ― ‖ on  induced by a cone  is defined such that  if and 

only if  for all  thus,  is said to be an ordered vector space. We also called  as 

ordered vector space only if the translation invariance (i.e., ) 

and positive homogeneity (i.e.  ) properties are satisfied. 
Cone has a lot of applications in both pure and applied mathematics. For instance, due to the natural order of a 
cone, it plays a vital role in the study of partially ordered spaces and vector optimization (see, [1,6]). Similarly, 

in mathematical economics (see, [2]), the theory of partially ordered spaces are used in general equilibrium 

theory. In [8], Cones that are locally isomorphic to the positive cone of  were studied, where the author 

gives a necessary and sufficient conditions for an infinite dimensional, closed cone  of a Banach space  to be 

locally isomorphic to the positive cone  of . This result help so much in the development of another 
class of cones called Reflexive cones (cones with weakly compact intersection with the unit ball or in other 

words, cones that coincide with their second dual  i.e., ), (see, e.g., [4,5,9]).  In this paper, the 

concept of reflexive cones and the natural order induced by the cone  on  is being employed and some 

properties of the space ( ) have been studied. 

In the following, we always represent a pointed cone  as just a cone   a vector space and ― ‖ a partial 

ordering with respect to .   

II. PRELIMINARIES 

Definition 2.1 (Partial ordering) A partial ordering is a binary relation ― ‖over a non-empty set , such that for 

all , the following are satisfied: 

   1.  (reflexive), 

   2.  and  (anti-symmetric),                              

   3.  and  (transitive). 

The pair  is called a partially ordered set. 

 

Definition 2.2 (ordered vector space) A vector space  over  endowed with a partial ordering ― ‖, is called an 
ordered vector space if: 

    1.  for all ,     (translation invariance), 

    2. for all  and ,        (positive homogeneity), 
are satisfied. 

 

Definition 2.3 [10] (Riesz space) A Riesz space is an ordered vector space  such that for any pair , 

 and  denoted by  and  respectively, exist in . 

 

Definition 2.4 [10] (Riesz Norm) A norm on a Riesz space (vector lattice) , is called a Riesz norm (lattice 
norm) if 

                      Implies  for all , where  
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The pair ( , ) is called a normed Riesz space (normed lattice). A complete normed Riesz space is a called a 
Banach lattice. 

 

Definition 2.5 [2](Cone) A non-empty subset  of a vector space is said to be a convex cone if the following 
conditions are satisfied 

    i)                       Closure under vector addition, 

   ii)                    Closure under scalar multiplication with non-negative real number. 

If in addition, , then  is called a pointed cone. 
                                      

Some authors, used to refer to a convex cone as wedge and a pointed cone as just a cone respectively. For a 

given cone , where  is a vector space, we define a partial ordering ― ‖ with respect to  by  if 

and only if .  

 

Definition 2.6 (Generating Cone): A cone  of a vector space  is said to be generating or reproducing if 

. 

 

Definition 2.7 (Normal Cone): A cone  of a Banach space  is said to be normal, if there exist a constant 

 such that for all  

 
 

Definition 2.8 [5] (Reflexive Cone) A Cone  of a Banach space  is reflexive, if the positive part  

is weakly compact. Where  is the unit ball defined by 
                               

 
In other words, a cone  is reflexive if .  

 

Definition 2.9 (Open Decomposition): A cone  of a Banach space  is said to give an open decomposition if 

there exist  so that . 

 

Definition 2.10 [10] (Riesz Decomposition Property): An ordered vector space  is said to have the Riesz 

decomposition property if for all elements  satisfying  there exist an elements 

 such that  and  
  

Definition 2.11 (Reflexive Normed Space): A normed space  is said to be reflexive, if the canonical mapping 

of  into its bidual  is surjective. 
 

III. RESULTS 

We will begin the section with a result based on the Riesz decomposition property which is due to [3], and use it 

in proving some of our results that will follow. 

  

Theorem 3.1 [3] For an ordered Banach space  with a closed, generating and normal cone, the following are 
equivalent: 

i.   has the Riesz decomposition property 

ii.   is a Riesz space   

iii.   has the Riesz decomposition property. 
 

Theorem 3.2 [7] Let  be a complete, metrizable topological linear space. Suppose that  are closed wedges 

such that, given , there exist a bounded sequences  and  such that . Then 

 gives an open decomposition of . 
 

The above theorem can be simply put as: In a Banach space any closed and generating cone gives an open 

decomposition. 

 

The following proposition is due to a remark given in [5]. 

 

Proposition 3.3 If a Banach space  has a reflexive and generating cone . Then  is reflexive. 
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Proof   

Let  be a Banach space with reflexive and generating cone  . Since  is a reflexive cone, then if  and 

, there exist  such that 
                      

 
Thus,  is closed. Since  is closed and also generating, by Theorem 3.2  gives an open decomposition. i.e. 

there exist  so that . But the cone  is reflexive, therefore  is weakly compact. 

Thus,  is also weakly compact. Therefore the space X is reflexive. 

 

Theorem 3.4 [3] If the cone  in a locally convex space  is normal, then it dual wedge  is generating. That is 

.  
 

Theorem 3.5 [3] If the cone of an ordered Banach space is closed and generating, then its dual cone is norm 

normal 
 

Since locally convex spaces are examples of topological vector space that generalizes normed spaces, we can 

connect the two theorems above, and have the following Corollary. 

 

Corollary 3.6 If the cone of an ordered Banach space is closed, normal and generating, then its dual cone  is 
norm normal and generating. 

 

Proposition 3.7 If an ordered Banach space  with a normal, generating and reflexive cone P has a Riesz 

decomposition property. Then,  is a Riesz space. 

 

Proof 2 

Let  be an ordered Banach space with normal, generating and reflexive cone , from the proof of Proposition 

3.3 we know that a reflexive cone in a Banach space is closed. Thus,  is an ordered Banach space with closed, 

generating and normal cone  and by Theorem 3.1, the dual  is also a Riesz space, since  has a Riesz 
decomposition property. 

By Corollary 3.6 the dual cone of  is also a norm normal and generating, because  has a closed, normal and 

generating cone. Thus  has a Riesz decomposition property from Theorem 3.1, which means the second dual 

 is also a Riesz space. 

Now since the cone  is reflexive, by Proposition 3.3, X is also reflexive. Hence the canonical embedding 

between  and  is isometrically isomorphic. Thus,  is a Riesz space. 
                                         

Theorem 3.8 Let  be an ordered normed vector space with a reflexive cone . Then,  is an ordered Banach 
space. 

Proof   

Let  and  be two arbitrary Cauchy sequence in  and  be a reflexive cone. Since  is an ordered normed 
vector space. Then, 

                               

 
It suffices to show that  and . Taking the limit of both side, we have 

, since  is reflexive 

 
       

       
 

Thus,  . Hence  and . 
 

Remark 3.9  

If  is an ordered Banach space, the cone  in  is not necessarily reflexive. The following theorem gives the 

necessary and sufficient condition for a cone  of a Banach space to be reflexive. 
 

Theorem 3.10 [5] A closed cone  of a Banach space  is reflexive if and only if  does not contain a closed 

cone isomorphic to the positive cone of . 
                                           

Example 3.11 Let be the space of real sequences   such that endowed with a norm 
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Let also  be the space of real bounded sequences x =   endowed with a supremum norm 

 
Let  be the positive cone of  defined by  
The above spaces   and   are all Banach spaces but their positive cones are isomorphic to the positive cone 

 defined above. Thus, by Theorem 3.10  and  are not reflexive. 
 

Definition 3.12 [3] An ordered vector space  is said to be Archimedean or has an Archimedean property 

whenever it follows from , and  for all  and . 
 

A cone  of a vector space  is said to be Archimedean if the order induced by  on  makes  an 
Archimedean ordered vector space. 

 

Proposition 3.13 Let  be an ordered vector space with a reflexive cone . Then,  is an Archimedean space. 

Proof   

We are to show that  for  and . 

Let for  and , then . But  is reflexive, thus 

, hence  which implies that . 

                                           

Below are some examples of an ordered vector space with a Reflexive cone that are Archimedean. 

 

Example 3.14          

1. The space  with a positive cone  which has 

a coordinate-wise ordering is an Archimedean space. The cone  defined above is a Reflexive cone in 

.   

2. Let . The sequence space  with a cone 

 with the same ordering as above, is 

an Archimedean space. 

We are now ready to give another property of an Archimedean space in terms of reflexive cone which is 

Archimedean Riesz space. Archimedean Riesz space has some interesting property that Band and Disjoint 
complement in them are the same, see [10]. 

 

Theorem 3.15 If an ordered Banach space with normal, generating and reflexive cone  has a Riesz 

decomposition property. Then  is an Archimedean Riesz space. 

 

Proof   

Let  be an ordered Banach space with normal, generating and reflexive cone  which has a Riesz 

decomposition property, then  is a Riesz space by Proposition 3.7. Also by Proposition 3.13 the space  is 

Archimedean. Hence  is an Archimedean Riesz space. 
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