Strong Independent Functions

M. Kavitha ${ }^{1, *}$,
${ }^{1}$ Department of Mathematics, KPR Institute of Technology, Coimbatore - 641407, India.

Abstract

A subset S of the vertex set V of a graph G is said to be independent, if no two vertices of S are adjacent. Independent functions and maximal independent functions have been defined and studied already. In this chapter, strong independent functions, maximal strong independent functions and basic maximal strong independent functions are defined and a study of these is made.

Keywords: Strong Independent Function, Maximal Strong Independent Function, Universal Maximal Strong Independent Function

I. Introduction

A function $f: V(G) \rightarrow[0,1]$ is called a strong independent function, if the value of the closed strong neighbourhood of any vertex under f is 1 , if the vertex gets positive value under f. A function f is called a maximal strong independent function, if it is a strong independent function and the value of the function on the closed strong neighbourhood of a vertex which gets zero value under f is greater than or equal to one. A detailed study of these functions is made in the following.

Definition 1.1: Let $G=(V, E)$ be a simple graph. A function $f: V(G) \rightarrow[0,1]$ is called an independent function if for every vertex v with $f(v)>0, \sum_{u \in N[v]} f(u)=1$.

Definition 1.2: Let $G=(V, E)$ be a simple graph. An independent function $f: V(G) \rightarrow[0,1]$ is called a maximal independent function if for any $v \in V$ with $f(v)=0$,
$\sum_{u \in N[v]} f(u) \geq 1$.
Definition 1.3: Let $G=(V, E)$ be a simple graph. A function $f: V(G) \rightarrow[0,1]$ is called a maximal independent function if f is an independent function and for any independent function $g, f \leq g \Rightarrow f=g$.

II. Maximal Strong Independent Functions

Definition 2.1: A function $f: V(G) \rightarrow[0,1]$ is called a Strong Independent Function (SIF) if for any $u \in V(G), f(u)>0 \Rightarrow f\left(N_{s}[u]\right)=1$, where $N_{s}[u]=\{x \in N[u]: \operatorname{deg} x \geq \operatorname{deg} u\}$.

Definition 2.2: A function $f: V(G) \rightarrow[0,1]$ is called a Maximal Strong Independent Function (MSIF) if for any $u \in V(G)$,
$f(u)>0 \Rightarrow f\left(N_{s}[u]\right)=1$ and
$f(u)=0 \Rightarrow f\left(N_{s}[u]\right) \geq 1$.
Definition 2.3: $P_{f}=\{v \in V(G): f(v)>0\}$ and

$$
B_{f}^{s}=\left\{v \in V(G): f\left(N_{s}[v]\right)=1\right\} .
$$

Theorem 2.4: A function $f: V(G) \rightarrow[0,1]$ is a strong independent function if and only if $P_{f} \subseteq B_{f}^{s}$.

Proof:

Let $f: V(G) \rightarrow[0,1]$ be a strong independent function.

Let $u \in P_{f}$. Then $f(u)>0$.
Since f is a strong independent function, $f\left(N_{s}[u]\right)=1$.
Therefore, $u \in B_{f}^{s}$.
Conversely, let $P_{f} \subseteq B_{f}^{s}$.
Let $f(u)>0$. Then $u \in P_{f}$.
Therefore, $u \in B_{f}^{s}$.
Therefore, $f\left(N_{s}[u]\right)=1$.
Therefore, f is a strong independent function.
Theorem 2.5: Every MSIF is a minimal strong dominating function.

Proof:

Let $f: V(G) \rightarrow[0,1]$ be a MSIF.
Let $u \in V(G)$. Then $f\left(N_{s}[u]\right) \geq 1$.
Therefore, f is a strong dominating function.
Let $g: V(G) \rightarrow[0,1]$ be a strong dominating function such that $g \leq f$.
Suppose there exists $u \in V(G)$ such that $g(u)<f(u)$.
Therefore, $f(u)>0$.
Therefore, $f\left(N_{s}[u]\right) \geq 1$.
Since $g \leq f, g\left(N_{s}[u]\right)<1$.
Therefore, g is not a strong dominating function, a contradiction
Therefore, $g=f$.
Therefore, f is a minimal strong dominating function.
Remark 2.6: If f is a maximal strong independent function of G, then B_{f}^{s} is a strong dominating set of G.
Proof:
Let $u \in V(G)-B_{f}^{s}$.
Since $P_{f} \subseteq B_{f}^{s}, u \notin P_{f}$.
Therefore, $f(u)=0$.
Therefore, $f\left(N_{s}[u]\right) \geq 1$.
Therefore, there exists $v \in N_{s}(u)$ such that $f(v)>0$.
Therefore, $v \in P_{f}$. Therefore, $v \in B_{f}^{s}$.
Therefore, B_{f}^{s} strongly dominates u.
Therefore, B_{f}^{s} is a strong dominating set of G.
Remark 2.7: The convex combination of two strong independent functions need not be a strong independent function.
For example,
let $G=P_{3}$.
Let $V\left(P_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$ where u_{1} and u_{3} are pendant vertices.
Let $f_{1}, f_{2}, f_{3}: V(G) \rightarrow[0,1]$ be defined as follows:
$f_{1}\left(u_{1}\right)=0, f_{1}\left(u_{2}\right)=1, f_{1}\left(u_{3}\right)=0$
$f_{2}\left(u_{1}\right)=f_{2}\left(u_{3}\right)=1, f_{2}\left(u_{2}\right)=0$
$f_{3}\left(u_{1}\right)=f_{3}\left(u_{2}\right)=f_{3}\left(u_{3}\right)=\frac{1}{2}$.
$P_{f_{1}}=\left\{u_{2}\right\}$,
$B_{f_{1}}=\left\{u_{1}, u_{2}, u_{3}\right\}$,
$P_{f_{2}}=\left\{u_{1}, u_{3}\right\}$,
$B_{f_{2}}=\left\{u_{1}, u_{3}\right\}$,
$P_{f_{3}}=\left\{u_{1}, u_{2}, u_{3}\right\}$,
$B_{f_{3}}=\left\{u_{1}, u_{3}\right\}$.
Since $P_{f_{1}} \subseteq B_{f_{1}}, P_{f_{2}} \subseteq B_{f_{2}}, f_{1}$ and f_{2} are strong independent functions.
Here, f_{3} is not a strong independent function, since $P_{f_{3}} \nsubseteq B_{f_{3}}$.
Clearly, $f_{3}=\frac{1}{2} f_{1}+\frac{1}{2} f_{2}$.
f_{3} is a convex combination of strong independent functions f_{1} and f_{2}
and f_{3} is not a strong independent function.
Theorem 2.8: Let f_{1} and f_{2} be two strong independent functions of G.
Let $0<\lambda<1$.
Then $h_{\lambda}=\lambda f_{1}+(1-\lambda) f_{2}$ is a strong independent function if and only if $P_{f_{1}} \cup P_{f_{2}} \subseteq B_{f_{1}}^{s} \cap B_{f_{2}}^{s}$.
Proof:
Let f_{1} and f_{2} be strong independent functions of G. Let $0<\lambda<1$.
Let $h_{\lambda}=\lambda f_{1}+(1-\lambda) f_{2}$.
Suppose h_{λ} is a strong independent function.
Then $P_{h_{\lambda}} \subseteq B_{h_{\lambda}}^{s}$.
Let $u \in P_{f_{1}} \cup P_{f_{2}}$.
Therefore, $u \in P_{f_{1}}$ or $u \in P_{f_{2}}$.
If $u \in P_{f_{1}}$, then $u \in B_{f_{1}}^{s}$ (since f_{1} is a strong independent function of G).
Suppose $u \in P_{f_{2}}$.
Then $u \in B_{f_{2}}^{s}$ (since f_{2} is a strong independent function of G).
Therefore, $u \in B_{f_{1}}^{s} \cap B_{f_{2}}^{s}$.
Suppose $u \notin P_{f_{2}}$.
Therefore, $f_{2}(u)=0$.
$\begin{aligned} P_{h_{\lambda}}(u) & =\lambda f_{1}(u)+(1-\lambda) f_{2}(u) \\ & =\lambda f_{1}(u)\end{aligned}$
Since $P_{h_{\lambda}}(u) \subseteq B_{h_{\lambda}}^{s}(u), h_{\lambda}(N[u])=1$
That is, $\quad\left(\lambda f_{1}+(1-\lambda) f_{2}\right)(N[u])=1$
$\lambda f_{1}(N[u])+(1-\lambda) f_{2}(N[u])=1$

$$
\lambda+(1-\lambda) f_{2}(N[u])=1
$$

Therefore, $(1-\lambda) f_{2}(N[u])=1-\lambda$

$$
f_{2}(N[u])=1
$$

Therefore, $u \in B_{f_{2}}^{s}$.
Hence $P_{f_{1}} \cup P_{f_{2}} \subseteq B_{f_{1}}^{s} \cap B_{f_{2}}^{s}$.
Conversely, let $P_{f_{1}} \cup P_{f_{2}} \subseteq B_{f_{1}}^{s} \cap B_{f_{2}}^{s}$.
Let $u \in P_{h_{\lambda}}$. Therefore $h_{\lambda}(u)>0$.
If $u \in P_{f_{1}}$ and $u \in P_{f_{2}}$, then $u \in B_{f_{1}}^{s} \cap B_{f_{2}}^{s}$.
$f_{1}(N[u])=1, f_{2}(N[u])=1$.
Therefore, $\lambda f_{1}(N[u])+(1-\lambda) f_{2}(N[u])$

$$
=\lambda+1-\lambda=1 .
$$

Therefore, $u \in B_{h_{\lambda}}^{s}$.
Since $h_{\lambda}(u)>0, \lambda f_{1}(u)+(1-\lambda) f_{2}(u)>0$.
At least one of $f_{1}(u), f_{2}(u)$ is >0.

Suppose $u \in P_{f_{1}}$ and $u \notin P_{f_{2}}$.
(similar proof for $u \notin P_{f_{1}}$ and $u \in P_{f_{2}}$).
Then $f_{1}(N[u])=1$.
$\lambda f_{1}(N[u])+(1-\lambda) f_{2}(N[u])=\lambda+(1-\lambda) f_{2}(N[u]) \quad \longrightarrow(i)$
Since $u \in P_{f_{1}} \cup P_{f_{2}}, u \in B_{f_{1}}^{s} \cap B_{f_{2}}^{s}$.
Therefore, $u \in B_{f_{2}}^{s} . f_{2}(N[u])=1$.
Therefore, (i) gives $h_{\lambda}(N[u])=\lambda+1-\lambda=1$.
Therefore, $u \in B_{h_{\lambda}}^{s}$.
That is, $P_{h_{\lambda}} \subseteq B_{h_{\lambda}}^{s}$.
Hence h_{λ} is a strong independent function.
Remark 2.9: Let f and g be two strong independent functions. If $\lambda f+(1-\lambda) g$ is a strong independent function for some $\lambda, 0<\lambda<1$, then any convex combination of f and g is strong independent.

For, since $\lambda f+(1-\lambda) g$ is a strong independent function, $P_{f} \cup P_{g} \subseteq B_{f}^{s} \cap B_{g}^{s}$. Since this is independent of λ, any convex combination of f and g is also strong independent.

Remark 2.10: If f and g are strong independent functions, then either no convex combination of f and g is strong independent or every convex combination of f and g is strong independent.

Theorem 2.11: Let f and g be two maximal strong independent functions. Then either all convex combinations of f and g are maximal strong independent functions or no one of them is a maximal strong independent function.
Proof:
Let f and g be two maximal strong independent functions.
Let $0<\lambda<1$.
Let $h_{\lambda}=\lambda f+(1-\lambda) g$. Then h_{λ} is strong independent if and only if $P_{f} \cup P_{g} \subseteq B_{f}^{s} \cap B_{g}^{s}$.
Let $u \in V(G)$. Suppose $h_{\lambda}(u)=0$.
Therefore, $\lambda f(u)+(1-\lambda) g(u)=0$.
Therefore, $f(u)=0$ if and only if $g(u)=0$.
Since at least one of $f(u)$ or $g(u)$ is zero, we get that both $f(u)$ and $g(u)$ are equal to zero.
Therefore, $f(N[u]) \geq 1$ and $g(N[u]) \geq 1$ (since f and g are maximal strong independent functions).
Therefore, $\lambda f(N[u])+(1-\lambda) g(N[u]) \geq \lambda+(1-\lambda)$

$$
=1
$$

Therefore, $h_{\lambda}(N[u]) \geq 1$.
Therefore, h_{λ} is a maximal strong independent function if and only if
$P_{f} \cup P_{g} \subseteq B_{f}^{s} \cap B_{g}^{s}$.
Hence the theorem.
Remark 2.12: Let f and g be two MSIF ${ }^{s}$. If $h_{\lambda}=\lambda f+(1-\lambda) g$ is strong independent, then h_{λ} is a MSIF.
Definition 2.13: Let f be a MSIF. f is said to be Universal Maximal Strong Independent Function (UMSIF), if the convex combinaiton of f with any other maximal strong independent function is a MSIF.

Remark 2.14: A MSIF f of a graph G is universal if and only if $P_{f} \cup P_{g} \subseteq B_{f}^{s} \cap B_{g}^{s}$, for any MSIF g.

For example,

Let $G=K_{3}$.
Let $f: V(G) \rightarrow[0,1]$ be defined by
$f\left(v_{1}\right)=1, f\left(v_{2}\right)=f\left(v_{3}\right)=0$, where $V\left(K_{3}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$.
$f\left(N\left[v_{i}\right]\right)=1, \forall i, 1 \leq i \leq 3$
Therefore, f is a MSIF.

Let g be any MSIF on K_{3}.
$v_{i} \in P_{f} \cup P_{g}$ if and only if $f\left(v_{i}\right)>0$ (or) $g\left(v_{i}\right)>0$.
$f\left(N\left[v_{i}\right]\right)=1, \forall i, 1 \leq i \leq 3$.
Therefore, $v_{i} \in B_{f}^{s}$.
Suppose $g\left(v_{i}\right)=0$.
If $g\left(v_{j}\right)=1$, for $j \neq i$, then $g\left(N\left[v_{j}\right]\right)=2$, a contradiction.
Therefore, $g\left(v_{j}\right)=1$, for exactly one $\mathrm{j}, j \neq i, 1 \leq j \leq 3$.
Therefore, $g\left(N\left[v_{i}\right]\right)=1$.
Therefore, $v_{i} \in B_{g}$. Therefore, $v_{i} \in B_{f}^{s} \cap B_{g}^{s}$.
Therefore, $P_{f} \cup P_{g} \subseteq B_{f}^{s} \cap B_{g}^{s}$.
Hence f is a UMSIF.
Definition 2.15: A function $f: V(G) \rightarrow[0,1]$ is positive if $f(u)>0$ for at least one $u \in V(G)$.

Theorem 2.16: Any SIF on K_{3} which is positive is a UMSIF.

Proof:

Let f be a SIF on K_{3} whose vertex set is $\left\{v_{1}, v_{2}, v_{3}\right\}$.
Suppose f is positive on K_{3}.
Let $f\left(v_{1}\right)=\alpha>0, f\left(v_{2}\right)=\beta$ and $f\left(v_{3}\right)=\gamma$.
Then $\beta+\gamma+\alpha=1$.
Therefore, $f\left(N\left[v_{i}\right]\right)=1, \forall i, 1 \leq i \leq 3$.
Therefore, f is a MSIF. Let g be a MSIF.
Suppose $h_{\lambda}=\lambda f+(1-\lambda) g$ is strong independent.
Then $P_{f} \cup P_{g} \subseteq B_{f}^{s} \cap B_{g}^{s}$.
Let $h_{\lambda}\left(v_{1}\right)=1$. Therefore, $\lambda f\left(v_{1}\right)+(1-\lambda) g\left(v_{1}\right)=0$.
Therefore, $f\left(v_{1}\right)=0$ and $g\left(v_{1}\right)=0$.
Therefore, $f\left(N\left[v_{1}\right]\right) \geq 1$ and $g\left(N\left[v_{1}\right]\right) \geq 1$.
Therefore, $h_{\lambda}\left(N\left[v_{1}\right]\right) \geq 1$.
Therefore, h_{λ} is a MSIF.
Let $0<\lambda<1$. Let $u \in P_{f} \cup P_{g}$.
Clearly, $f(N[u])=1$ and $g(N[u])=1, \forall u \in V\left(K_{3}\right)$.
Therefore, $u \in B_{f}^{s} \cap B_{g}^{s}$. Therefore $B_{f} \cap B_{g}=V\left(K_{3}\right)$.
Therefore, $P_{f} \cup P_{g} \subseteq B_{f}^{s} \cap B_{g}^{s}$.
Therefore, for any $\lambda, 0<\lambda<1, h_{\lambda}$ is SIF.
Hence f is a UMSIF.
Remark 2.17: Any SIF on K_{n} which is positive is a UMSIF.
Observation 2.18: If f is a UMSIF, then $B_{f}^{s}=V(G)$.

Proof:

Let $u \in V(G)$.
Then $\{u\}$ is strong independent and hence is contained in a maximal strong independent set, say D of G.
Therefore, χ_{D} is a maximum strong independent function of G.
Since f is a UMSIF, $P_{f} \cup P_{\chi_{D}} \subseteq B_{f}^{s} \cap B_{\chi_{D}}^{s}$.
Since $\chi_{D}(u)=1, u \in P_{\chi_{D}}$.
Therefore, $u \in P_{f} \cup P_{\chi_{D}}$.

Therefore, $u \in B_{f}^{s} \cap B_{\chi_{D}}^{s}$.
Therefore, $u \in B_{f}^{s}$.
Therefore, $V(G) \subseteq B_{f}^{s}$.
But $B_{f}^{s} \subseteq V(G)$.
Hence $B_{f}^{s}=V(G)$.
Observation 2.19: If there exist two $\operatorname{MSIF}^{s} f$ and g such that $B_{f}^{s} \cap B_{g}^{s}=\phi$, then the graph G has no UMSIF.

Proof:

Suppose G has a UMSIF h.
Therefore, any convex combination of h and f is a MSIF.
Therefore, $P_{f} \cup P_{h} \subseteq B_{f}^{s} \cap B_{h}^{s}$.
Similarly, $P_{h} \cup P_{g} \subseteq B_{h}^{s} \cap B_{g}^{s}$.
Therefore, $P_{h} \subseteq B_{f}^{s} \cap B_{g}^{s}$.
$B_{f}^{s} \cap B_{g}^{s}=\phi$, by hypothesis.
Therefore, $P_{h}=\phi$.
Since h is a MSIF, $P_{h} \neq \phi$, a contradiction.
Hence G has no UMSIF.
Observation 2.20: Let G be a regular bipartite graph with $\delta(G) \geq 2$. Then G has no UMSIF.

Proof:

Let G be a regular bipartite graph with $\delta(G) \geq 2$.
Let V_{1} and V_{2} be the bipartitions of $V(G)$.
Define f and g by $f(v)=1, \quad$ if $v \in V_{1}$ and

$$
\begin{array}{ll}
f(v)=0, & \text { if } v \in V_{2} \\
g(v)=1, & \text { if } v \in V_{2} \text { and } \\
g(v)=0, & \text { if } v \in V_{1}
\end{array}
$$

Then f and g are MSIF^{s} with $B_{f}^{s} \cap B_{g}^{s}=\phi$.
Therefore, by the above observation, G has no UMSIF.

REFERENCES

[1] Acharya, B.D., The Strong Domination Number of a Graph and Related Concepts, J.Math. Phys. Sci., 14,471-475(1980).
[2] Allan R.B., and Laskar.R.C., On Domination and Independent Domination Number of a Graph, Dicrete Math., 23, 73-76(1978).
[3] Arumugam.S. and Regikumar.K., Basic Minimal Dominating Functions, Utilitas Mathematica, 77, pp. 235-247(2008).
[4] Arumugam.S. and Regikumar.K., Fractional Independence and Fractional Domination Chain in Graphs, AKCE J.Graphs Combin., 4, No.2, pp.161-169(2007).
[5] Arumugam.S. and Sithara Jerry.A., A Note On Independent Domination in Graphs, Bulletin of the Allahabad Mathematical Society, Volume 23, Part 1.(2008).
[6] Arumugam.S. and Sithara Jerry.A., Fractional Edge Domination in Graphs, Appl. Anal. Discrete Math.,(2009).
[7] Berge.C., Theory of Graphs and its Applications, Dunod, Paris(1958).
[8] Berge.C., Graphs and Hypergraphs, North-Holland, Amsterdam(1973).
[9] Cockayne E.J., Dawes R.M. and Hedetniemi.S.T., Total domination in graphs, Networks, 10, 211-219(1980).
[10] Cockayne E.J., Favaron O., Payan C. and Thomasaon A.G., Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math., 33, 249-258(1981).
[11] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions and universal in graphs, Bull. Inst. Combin. Appl., 5, 37-38(1992).
[12] Cockayne E.J. and Mynhardt C.M., Convexity of minimal dominating functions of trees: A survey, Quaestiones Math., 16, 301-317(1993).
[13] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions of trees-II, Discrete Math., 125, 137-146(1994).
[14] Cockayne E.J. and Mynhardt C.M., A characterization of universal minimal total dominating functions in trees, Discrete Math., 141, 75-84(1995).
[15] Cockayne.E.J., Fricke.G., Hedetniemi.S.T. and Mynhardt.C.M., Properties of Minimal Dominating Functions of Graphs, Ars Combin., 41,107-115(1995).
[16] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions of trees, Utilitas Mathematica, 48, 129-144(1995).
[17] Cockayne.E.J. and Hedetniemi.S.T., Towards a Theory of Domination in Graphs, Networks, 7,247-261(1977).
[18] Cockayne.E.J. and Mynhardt.C.M., Minimality and Convexity of dominating and related functions in Graphs, A unifying theory, Utilitas Mathematica, 51,145-163(1997).
[19] Cockayne.E.J. and Mynhardt.C.M. and Yu.B., Universal Minimal Total Dominating Functions in Graphs, Networks, 24, 83-90(1994).
[20] Grinstead D. and Slater P.J., Fractional Domination and Fractional Packing in Graphs, Congr., Numer., 71, 153-172(1990).
[21] Harary.F., Graph Theory, Addison-Wesley, Reading, Mass(1969).
[22] Hedetniemi.S.T. and Laskar.R.L., Bibliography on Domination in Graphs and Some Basic Definitions of Domination Parameters, Discrete Math., 86,pp 257-277(1990).
[23] Ore.O, Theory of Graphs, AMS(1962).
[24] Regikumar K., Dominating Functions - Ph.D thesis, Manonmaniam Sundaranar University(2004).
[25] Sampathkumar.E and Pushpa Latha.L., Strong Weak Domination and Domination Balance in a Graph, Discrete Math., 161,235242(1996).
[26] Scheinerman E.R. and Ullman D.H., Fractional Graph Theory: A rational approach to the theory of graphs, John Wiley and Sons Inc.,(1997).
[27] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc.,(1998).
[28] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Domination in Graphs: Advanced Topics Marcel Dekker Inc., New York(1998).
[29] Yu.B., Convexity of Minimal Total Dominating Functions in Graphs, J.Graph Theory, 24,313-321(1997).

