
1

Strong Independent Functions
M. Kavitha1,∗,

1Department of Mathematics, KPR Institute of Technology, Coimbatore - 641407, India.

Abstract

A subset S of the vertex set V of a graph G is said to be independent, if no two vertices of S are adjacent.
Independent functions and maximal independent functions have been defined and studied already. In this chapter,
strong independent functions, maximal strong independent functions and basic maximal strong independent functions
are defined and a study of these is made.
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I. INTRODUCTION

A function f : V (G) → [0, 1] is called a strong independent function, if the value of the closed strong
neighbourhood of any vertex under f is 1, if the vertex gets positive value under f . A function f is called a
maximal strong independent function, if it is a strong independent function and the value of the function on the
closed strong neighbourhood of a vertex which gets zero value under f is greater than or equal to one. A detailed
study of these functions is made in the following.

Definition 1.1: Let G = (V,E) be a simple graph. A function f : V (G) → [0, 1] is called an independent
function if for every vertex v with f(v) > 0,

∑
u∈N [v]

f(u) = 1.

Definition 1.2: Let G = (V,E) be a simple graph. An independent function f : V (G) → [0, 1] is called a
maximal independent function if for any v ∈ V with f(v) = 0,∑
u∈N [v]

f(u) ≥ 1.

Definition 1.3: Let G = (V,E) be a simple graph. A function f : V (G)→ [0, 1] is called a maximal independent
function if f is an independent function and for any independent function g, f ≤ g ⇒ f = g.

II. MAXIMAL STRONG INDEPENDENT FUNCTIONS

Definition 2.1: A function f : V (G) → [0, 1] is called a Strong Independent Function (SIF) if for any
u ∈ V (G), f(u) > 0⇒ f(Ns[u]) = 1, where Ns[u] = {x ∈ N [u] : deg x ≥ deg u}.

Definition 2.2: A function f : V (G) → [0, 1] is called a Maximal Strong Independent Function (MSIF) if
for any u ∈ V (G),
f(u) > 0⇒ f(Ns[u]) = 1 and
f(u) = 0⇒ f(Ns[u]) ≥ 1.

Definition 2.3: Pf = {v ∈ V (G) : f(v) > 0} and
Bs
f = {v ∈ V (G) : f(Ns[v]) = 1}.

Theorem 2.4: A function f : V (G)→ [0, 1] is a strong independent function if and only if Pf ⊆ Bs
f .

Proof:
Let f : V (G)→ [0, 1] be a strong independent function.

*Corresponding author: M. Kavitha, E-mail: kavinandhu7204@gmail.com

vts-1
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 66 Issue 3- March 2020

vts-1
Text Box
ISSN: 2231-5373                                             http://www.ijmttjournal.org                                          Page 5



2

Let u ∈ Pf . Then f(u) > 0.
Since f is a strong independent function, f(Ns[u]) = 1.
Therefore, u ∈ Bs

f .
Conversely, let Pf ⊆ Bs

f .
Let f(u) > 0. Then u ∈ Pf .
Therefore, u ∈ Bs

f .
Therefore, f(Ns[u]) = 1.
Therefore, f is a strong independent function.

Theorem 2.5: Every MSIF is a minimal strong dominating function.
Proof:
Let f : V (G)→ [0, 1] be a MSIF.
Let u ∈ V (G). Then f(Ns[u]) ≥ 1.
Therefore, f is a strong dominating function.
Let g : V (G)→ [0, 1] be a strong dominating function such that g ≤ f .
Suppose there exists u ∈ V (G) such that g(u) < f(u).
Therefore, f(u) > 0.
Therefore, f(Ns[u]) ≥ 1.
Since g ≤ f , g(Ns[u]) < 1.
Therefore, g is not a strong dominating function, a contradiction
Therefore, g = f .
Therefore, f is a minimal strong dominating function.

Remark 2.6: If f is a maximal strong independent function of G, then Bs
f is a strong dominating set of G.

Proof:
Let u ∈ V (G)−Bs

f .
Since Pf ⊆ Bs

f , u /∈ Pf .
Therefore, f(u) = 0.
Therefore, f(Ns[u]) ≥ 1.
Therefore, there exists v ∈ Ns(u) such that f(v) > 0.
Therefore, v ∈ Pf . Therefore, v ∈ Bs

f .
Therefore, Bs

f strongly dominates u.
Therefore, Bs

f is a strong dominating set of G.
Remark 2.7: The convex combination of two strong independent functions need not be a strong independent

function.
For example,
let G = P3.
Let V (P3) = {u1, u2, u3} where u1 and u3 are pendant vertices.
Let f1, f2, f3 : V (G)→ [0, 1] be defined as follows:
f1(u1) = 0, f1(u2) = 1, f1(u3) = 0

f2(u1) = f2(u3) = 1, f2(u2) = 0

f3(u1) = f3(u2) = f3(u3) =
1

2
.

Pf1 = {u2},
Bf1 = {u1, u2, u3},
Pf2 = {u1, u3},
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Bf2 = {u1, u3},
Pf3 = {u1, u2, u3},
Bf3 = {u1, u3}.
Since Pf1 ⊆ Bf1 , Pf2 ⊆ Bf2 , f1 and f2 are strong independent functions.
Here, f3 is not a strong independent function, since Pf3 6⊆ Bf3 .

Clearly, f3 =
1

2
f1 +

1

2
f2.

f3 is a convex combination of strong independent functions f1 and f2
and f3 is not a strong independent function.

Theorem 2.8: Let f1 and f2 be two strong independent functions of G.
Let 0 < λ < 1.
Then hλ = λf1 + (1− λ)f2 is a strong independent function if and only if Pf1 ∪ Pf2 ⊆ Bs

f1
∩Bs

f2
.

Proof:
Let f1 and f2 be strong independent functions of G. Let 0 < λ < 1.
Let hλ = λf1 + (1− λ)f2.
Suppose hλ is a strong independent function.
Then Phλ ⊆ Bs

hλ
.

Let u ∈ Pf1 ∪ Pf2 .
Therefore, u ∈ Pf1 or u ∈ Pf2 .
If u ∈ Pf1 , then u ∈ Bs

f1
(since f1 is a strong independent function of G).

Suppose u ∈ Pf2 .
Then u ∈ Bs

f2
(since f2 is a strong independent function of G).

Therefore, u ∈ Bs
f1
∩Bs

f2
.

Suppose u /∈ Pf2 .
Therefore, f2(u) = 0.
Phλ(u) = λf1(u) + (1− λ)f2(u)

= λf1(u)

Since Phλ(u) ⊆ Bs
hλ
(u), hλ(N [u]) = 1

That is, (λf1 + (1− λ)f2)(N [u]) = 1

λf1(N [u]) + (1− λ)f2(N [u]) = 1

λ+ (1− λ)f2(N [u]) = 1

Therefore, (1− λ)f2(N [u]) = 1− λ
f2(N [u]) = 1

Therefore, u ∈ Bs
f2

.
Hence Pf1 ∪ Pf2 ⊆ Bs

f1
∩Bs

f2
.

Conversely, let Pf1 ∪ Pf2 ⊆ Bs
f1
∩Bs

f2
.

Let u ∈ Phλ . Therefore hλ(u) > 0.
If u ∈ Pf1 and u ∈ Pf2 , then u ∈ Bs

f1
∩Bs

f2
.

f1(N [u]) = 1, f2(N [u]) = 1.
Therefore, λf1(N [u]) + (1− λ)f2(N [u])

= λ+ 1− λ = 1.
Therefore, u ∈ Bs

hλ
.

Since hλ(u) > 0, λf1(u) + (1− λ)f2(u) > 0.
At least one of f1(u), f2(u) is > 0.
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Suppose u ∈ Pf1 and u /∈ Pf2 .
(similar proof for u /∈ Pf1 and u ∈ Pf2).
Then f1(N [u]) = 1.
λf1(N [u]) + (1− λ)f2(N [u]) = λ+ (1− λ)f2(N [u]) −→ (i)

Since u ∈ Pf1 ∪ Pf2 , u ∈ Bs
f1
∩Bs

f2
.

Therefore, u ∈ Bs
f2

. f2(N [u]) = 1.
Therefore, (i) gives hλ(N [u]) = λ+ 1− λ = 1.
Therefore, u ∈ Bs

hλ
.

That is, Phλ ⊆ Bs
hλ

.
Hence hλ is a strong independent function.

Remark 2.9: Let f and g be two strong independent functions. If λf +(1−λ)g is a strong independent function
for some λ, 0 < λ < 1, then any convex combination of f and g is strong independent.

For, since λf + (1− λ)g is a strong independent function, Pf ∪ Pg ⊆ Bs
f ∩Bs

g . Since this is independent of λ,
any convex combination of f and g is also strong independent.

Remark 2.10: If f and g are strong independent functions, then either no convex combination of f and g is
strong independent or every convex combination of f and g is strong independent.

Theorem 2.11: Let f and g be two maximal strong independent functions. Then either all convex combinations
of f and g are maximal strong independent functions or no one of them is a maximal strong independent function.
Proof:
Let f and g be two maximal strong independent functions.
Let 0 < λ < 1.
Let hλ = λf + (1− λ)g. Then hλ is strong independent if and only if Pf ∪ Pg ⊆ Bs

f ∩Bs
g .

Let u ∈ V (G). Suppose hλ(u) = 0.
Therefore, λf(u) + (1− λ)g(u) = 0.
Therefore, f(u) = 0 if and only if g(u) = 0.
Since at least one of f(u) or g(u) is zero, we get that both f(u) and g(u) are equal to zero.
Therefore, f(N [u]) ≥ 1 and g(N [u]) ≥ 1 (since f and g are maximal strong independent functions).
Therefore, λf(N [u]) + (1− λ)g(N [u]) ≥ λ+ (1− λ)

= 1.
Therefore, hλ(N [u]) ≥ 1.
Therefore, hλ is a maximal strong independent function if and only if
Pf ∪ Pg ⊆ Bs

f ∩Bs
g .

Hence the theorem.
Remark 2.12: Let f and g be two MSIFs. If hλ = λf + (1− λ)g is strong independent, then hλ is a MSIF.
Definition 2.13: Let f be a MSIF. f is said to be Universal Maximal Strong Independent Function (UMSIF),

if the convex combinaiton of f with any other maximal strong independent function is a MSIF.
Remark 2.14: A MSIF f of a graph G is universal if and only if Pf ∪ Pg ⊆ Bs

f ∩Bs
g , for any MSIF g.

For example,
Let G = K3.
Let f : V (G)→ [0, 1] be defined by
f(v1) = 1, f(v2) = f(v3) = 0, where V (K3) = {v1, v2, v3}.
f(N [vi]) = 1, ∀ i, 1 ≤ i ≤ 3

Therefore, f is a MSIF.
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Let g be any MSIF on K3.
vi ∈ Pf ∪ Pg if and only if f(vi) > 0 (or) g(vi) > 0.
f(N [vi]) = 1, ∀ i, 1 ≤ i ≤ 3.
Therefore, vi ∈ Bs

f .
Suppose g(vi) = 0.
If g(vj) = 1, for j 6= i, then g(N [vj ]) = 2, a contradiction.
Therefore, g(vj) = 1, for exactly one j, j 6= i, 1 ≤ j ≤ 3.
Therefore, g(N [vi]) = 1.
Therefore, vi ∈ Bg. Therefore, vi ∈ Bs

f ∩Bs
g .

Therefore, Pf ∪ Pg ⊆ Bs
f ∩Bs

g .
Hence f is a UMSIF.

Definition 2.15: A function f : V (G)→ [0, 1] is positive if f(u) > 0 for
at least one u ∈ V (G).

Theorem 2.16: Any SIF on K3 which is positive is a UMSIF.
Proof:
Let f be a SIF on K3 whose vertex set is {v1, v2, v3}.
Suppose f is positive on K3.
Let f(v1) = α > 0, f(v2) = β and f(v3) = γ.
Then β + γ + α = 1.
Therefore, f(N [vi]) = 1, ∀ i, 1 ≤ i ≤ 3.
Therefore, f is a MSIF. Let g be a MSIF.
Suppose hλ = λf + (1− λ)g is strong independent.
Then Pf ∪ Pg ⊆ Bs

f ∩Bs
g .

Let hλ(v1) = 1. Therefore, λf(v1) + (1− λ)g(v1) = 0.
Therefore, f(v1) = 0 and g(v1) = 0.
Therefore, f(N [v1]) ≥ 1 and g(N [v1]) ≥ 1.
Therefore, hλ(N [v1]) ≥ 1.
Therefore, hλ is a MSIF.
Let 0 < λ < 1. Let u ∈ Pf ∪ Pg.
Clearly, f(N [u]) = 1 and g(N [u]) = 1, ∀ u ∈ V (K3).
Therefore, u ∈ Bs

f ∩Bs
g . Therefore Bf ∩Bg = V (K3).

Therefore, Pf ∪ Pg ⊆ Bs
f ∩Bs

g .
Therefore, for any λ, 0 < λ < 1, hλ is SIF.
Hence f is a UMSIF.

Remark 2.17: Any SIF on Kn which is positive is a UMSIF.
Observation 2.18: If f is a UMSIF, then Bs

f = V (G).
Proof:
Let u ∈ V (G).
Then {u} is strong independent and hence is contained in a maximal strong independent set, say D of G.
Therefore, χD is a maximum strong independent function of G.
Since f is a UMSIF, Pf ∪ PχD ⊆ Bs

f ∩Bs
χD .

Since χD(u) = 1, u ∈ PχD .
Therefore, u ∈ Pf ∪ PχD .
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Therefore, u ∈ Bs
f ∩Bs

χD .
Therefore, u ∈ Bs

f .
Therefore, V (G) ⊆ Bs

f .
But Bs

f ⊆ V (G).
Hence Bs

f = V (G).
Observation 2.19: If there exist two MSIFs f and g such that Bs

f ∩Bs
g = φ, then the graph G has no UMSIF.

Proof:
Suppose G has a UMSIF h.
Therefore, any convex combination of h and f is a MSIF.
Therefore, Pf ∪ Ph ⊆ Bs

f ∩Bs
h.

Similarly, Ph ∪ Pg ⊆ Bs
h ∩Bs

g .
Therefore, Ph ⊆ Bs

f ∩Bs
g .

Bs
f ∩Bs

g = φ, by hypothesis.
Therefore, Ph = φ.
Since h is a MSIF, Ph 6= φ, a contradiction.
Hence G has no UMSIF.

Observation 2.20: Let G be a regular bipartite graph with δ(G) ≥ 2. Then G has no UMSIF.
Proof:
Let G be a regular bipartite graph with δ(G) ≥ 2.
Let V1 and V2 be the bipartitions of V (G).
Define f and g by f(v) = 1, if v ∈ V1 and

f(v) = 0, if v ∈ V2
g(v) = 1, if v ∈ V2 and
g(v) = 0, if v ∈ V1.

Then f and g are MSIFs with Bs
f ∩Bs

g = φ.
Therefore, by the above observation, G has no UMSIF.
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