A Study on Pseudo 0 - Distributivity And Super 0 – Distributivity In The Subgroup Lattice of 2X2 Matrices Over Z₃, Z₅ AND Z₇

Dr. R. Murugesan¹, R. Seethalakshmi², Dr.P.Namasivayam³

¹Associate Professor and Head, Department of Mathematics St, John's College, Palayamkottai, Tirunelveli-627 002 ²Register No.:17221072092022, Research Scholar Department of Mathematics The MDT Hindu College, Pettai, ManonmaniamSundaranar University Abishekapatti, Tirunelveli 627 012 Tamilnadu, India. ³Associate Professor of Mathematics The MDT Hindu College, Tirunelveli – 627010

Abstract: In this paper we verify the lattice theoretic properties like the pseudo 0 - distributivity and super 0 – distributivity in the subgroup lattice of 2x2 matrices over z_3 , z_5 and z_7 .

Keywords: Matrix group, subgroups, Lattice, pseudo 0 – distributivity, super 0 -distributivity

1. Introduction:

Let L(G) denotes the lattice of subgroups of G, where G is the group of 2×2 matrices over Zp having determinant value 1 under matrix multiplication modulo p, where p is a prime number. Let $\mathcal{G} = \{\begin{pmatrix} a & b \\ c & d \end{pmatrix}:a,b,c,d \in \mathbb{Z}_p, ad-bc \neq 0\}$. Then \mathcal{G} is a group under matrix multiplication modulo p. Let $G = \{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \mathcal{G}: ad-bc = 1\}$. Then G is a subgroup of \mathcal{G} . We have, $o(\mathcal{G}) = p(p^2-1)(p-1)$ [6] and $o(G) = p(p^2-1).$ [6]

2. Preliminaries:

Definition 2.1

A partial order on a non-empty set P is a binary relation \leq on P that is reflexive, anti-symmetric and transitive. The pair (P, \leq) is called a **partially ordered set or poset**. A poset. (P, \leq) is totally ordered if every x, y \in P are comparable, that is either x \leq y or y \leq x. A non-empty subset S of P is a chain in P if S is totally ordered by \leq .

Definition 2.2

Let (P, \leq) be a poset and let $S\subseteq P$. An upper bound of S is an element $x\in P$ for which $s\leq x$ for all $s\in S$. The least upper bound of S is called the **supremum or join** of S.A lower bound for S is an element $x \in P$ for which $x\leq s$ for all $s\in S$. The greatest lower bound of S is called the **infimum or meet** of S.

Definition 2.3

Poset (P, \leq) is called a **lattice** if every pair x, y elements of P has a supremum and an infimum, which are denoted by $x \lor y$ and $x \land y$ respectively.

Definition 2.4

For two elements a and b in P, a is said to *cover* b or b is said to be covered by a (in notation, a > b or b < a) if and only if b < a and, for no $x \in P$, b < x < a.

Definition 2.5

An element $a \in P$ is called an *atom*, if a > 0 and it is a dual atom, if a < 1.

Definition 2.6

A Lattice L is said to be *distributive* if $a \lor (b \land c) = [(a \lor b) \land (a \lor c)]$ for all a, b, c \in L.

Definition 2.7

A Lattice L is said to be *0-distributive* if for all x, y, $z \in L$, whenever $x \wedge y = 0$ and $x \wedge z = 0$ then $x \wedge (y \vee z) = 0$.

Definition 2.8

A lattice L is said to be **pseudo 0-distributive** if for all x, y, $z \in L$ with $x \wedge y = 0$, $x \wedge z = 0$ we have $(x \vee y) \wedge z = y \wedge z$.

Definition 2.9

A lattice L is said to be **super 0-distributive** if for all x, y, $z \in L$, $x \wedge y = 0$ implies that $(x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$.

We give below the diagrams of L(G) when P=3 and 5.

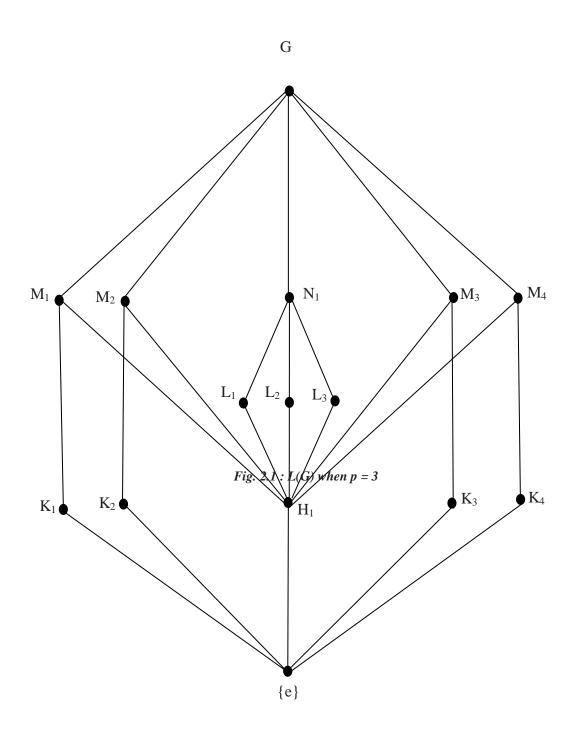


Fig. 2.1 : L(G) *when* p = 3

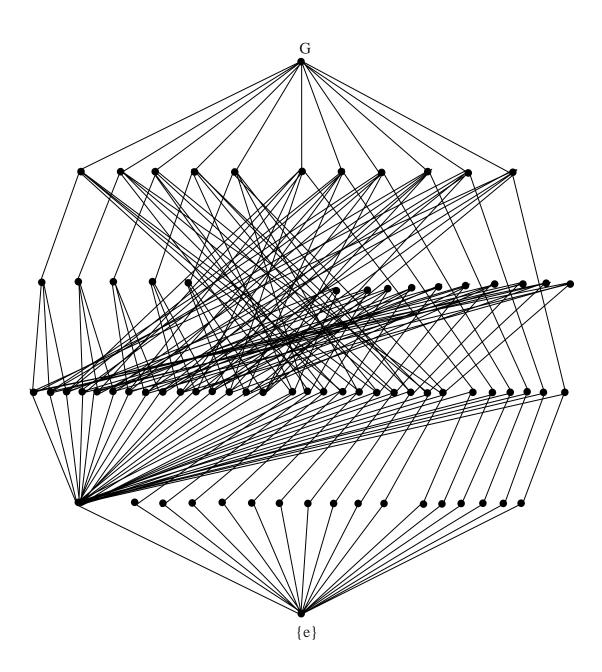


Fig. 2.2 : L(G) *when* p = 5

Row I : (Left to right): S_1 to S_5 and T_1 to T_6

Row II : (Left to right): P_1 to P_5 and R_1 to R_{10}

Row III: (Left to right): L_1 to L_{15} , N_1 to N_{10} and Q_1 to Q_6

Row IV: (Left to right): H_1 , K_1 to K_{10} and M_1 to M_6 .

3. Lattice identities in the subgroup lattice of 3x3 matrices over Z₃,Z₅ and Z₇

Lemma: 3.1

L(G) is not Pseudo 0-distributive if P = 3, 5 and 7.

Proof.

When p = 3

We choose three subgroups K_1 , $K_2 \& H_1$ in L (G) such that $K_1 \land K_2 = \{e\}$ and $K_1 \land H_1 = \{e\}$

Now, $(K_1 \lor K_2) \land H_1 = G \land H_1 = H_1$

But $K_2 \wedge H_1 = \{e\} \neq H_1$.

Therefore, L(G) is not Pseudo 0-distributive when P = 3.

When p = 5

We choose three subgroups K_1 , $K_2 \& M_1$ in L (G) such that $K_1 \land K_2 = \{e\}$ and $K_1 \land M_1 = \{e\}$

Now $(K_1 \lor K_2) \land M_1 = G \land M_1 = M_1$

But $K_2 \land M_1 = \{e\} \neq M_1$. Therefore L(G) is not Pseudo 0-distributive when P = 5.

When p = 7

We choose three subgroups N₁, N₂ & K₂ in L(G) when P = 7, such that N₁ \land N₂ = {e} and N₁ \land K₂ = {e}

Now, $(N_1 \vee N_2) \wedge K_2 = G \wedge K_2 = K_2$

But N₂ \land K₂ = {e} \neq K₂.

Therefore, L(G) is not Pseudo 0-distributive when p = 7.

Hence L(G) is not Pseudo 0-distributive when p = 3, 5 and 7.

Lemma: 3.2

L(G) is not super 0-distributive if p = 3, 5 and 7.

Proof

When p = 3

We consider three subgroups K_1 , $K_2 \& K_3$ in L(G) such that $K_1 \land K_2 = \{e\}$

Now, $(K_1 \lor K_2) \land K_3 = G \land K_3 = K_3$

But, $(K_1 \land K_3) \lor (K_2 \land K_3) = \{e\} \lor \{e\} = \{e\}$

Therefore, $(K_1 \lor K_2) \land K_3 \neq (K_1 \land K_3) \lor (K_2 \land K_3)$

Therefore, L(G) is not super 0-distributive when p = 3.

When p = 5

Consider three elements K_1 , $K_2 \& M_1$ in L (G) such that $K_1 \land K_2 = \{e\}$

Now, $(K_1 \lor K_2) \land M_1 = G \land M_1 = M_1$

But, $(K_1 \land M_1) \lor (K_2 \land M_1) = \{e\} \lor \{e\} = \{e\}$

Therefore, $(K_1 \lor K_2) \land M_1 \neq (K_1 \land M_1) \lor (K_2 \land M_1)$

Therefore, L(G) is not super 0-distributive when p = 5.

When p = 7

Consider three subgroups N₁, N₂ & K₁ in L (G) when p = 7, such that N₁ \land N₂ = {e}

Now, $(N_1 \vee N_2) \wedge K_1 = G \wedge K_1 = K_1$

But, $(N_1 \land K_1) \lor (N_2 \land K_1) = \{e\} \lor \{e\} = \{e\}$

Therefore, $(N_1 \lor N_2) \land K_1 \neq (N_1 \land K_1) \lor (N_2 \land K_1)$

Therefore, L(G) is not super 0-distributive when p = 7.

Hence L(G) is not super 0-distributive when p = 3, 5 and 7.

4. CONCLUSION

In this paper we proved that the pseudo 0 - distributivity and super 0 – distributivity in the subgroup lattice of 2x2 matrices over z_3 , z_5 and z_7

References

- Bourbaki N. Elements of Mathematics, Algebra I, Chapter 1-3 Springer Verlag Berlin Heidelberg, New York, London Paris Tokio.1974.
- [2] Fraleigh. J.B, A first course in Abstract Algebra, Addison Wesley, London, 1992.
- [3] Gardiner. C.F, A first course in group theory, Springer-Verlag, Berlin, 1997.
- [4] Gratzer. G, General Lattice theory:BirkhauserVeslag, Basel,1998.
- [5] Herstien I.N, Topics in Algebra, John Wiley and sons, New York, 1975.
- [6] Jebaraj Thiraviam. D, A Study on some special types of lattices, Ph.D thesis, ManonmaniamSundaranar University, 2015.
- [7] Vethamanickam. A., and Jebaraj Thiraviam., On Lattices of Subgroups, Int. Journal of Mathematical Archiv-6(9), 2015,1-11.