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Abstract

In this paper we consider the coupled Lotka-Volterra competition-diffusion interaction model. We employ the
concept of Lie group theory in constructing the Lie generator, developed the k™ order prolongation of the generator
of the coupled system. The invariant solution and the new symmetry solutions of the coupled Lotka-Volterra
competition-diffusion system are obtained when the diffusive coefficients are equal. The group transformations of
solutions of the system are also presented.
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I. Introduction

Lotka-Volterra competition equations are generally accepted in the field of population biology. The equations are
physiological models that describe competing interaction of multispecies. In this paper we consider two competing
species whose interactions exhibit coupled density oscillation with diffusion. The differential equation that models
diffusion accounts for heterogeneity of both the populations and the environmental resources involved [1].
Reference [2] explains that the spatial pattern formation even in the absence of environmental heterogeneity is
another phenomenon associated with diffusion models. The Lotka-Volterra system can be modified by taking into
account diffusion of the two species in one-dimensional space to obtain a general coupled Lotka-Volterra
competition-diffusion interaction system of partial differential equations given as [3], [4];

U — U, =U (K1 —ou— ﬁ1V) (1a)

Vi — 72V ZV(KZ _azv_ﬁzu) (1b)

where o >0 andg, >0 model inter-specific competition, the terms involving partial derivatives u, and v,
model the population density change of the competing species with respect to time ;t while u_and v model the
effect of transportation in the habitat, 5 and g, being the strength of the interaction for the two species while y,
and y,are diffusion coefficients. The interaction terms g, and g, represents logistic growth with competition. The
model under consideration in this study is the modified coupled Lotka-Volterra competition-diffusion system [5], [6]

Ur =nUy +xU (1_31U _801\/) (2a)

Vi =y Vo + 6V (1-3U —p,V) (2b)
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whereU (T, X )andv (T, X ) denote the population densities at position X and timeT of two different species

that compete for the same resources ; x;are net birth ratesiare carrying capacities, J,are competition

i
coefficients and », are diffusion coefficients.
We non dimensionalise the system to obtain
U, =U, +u(l-u—pAv) 3
v, = v, +av(1-Bu—v) (3b)

By setting

1
2 3
x:x(ﬂJz ﬂl:&,ﬂzzrz ,t=K1T,u=31U,V=SZV,a:ﬁ,d:ﬁ
71 §2 ~3 K, 71

Assuming the first population outcompete the second then we have 3 <0 A, > 0.

Reference [1] used the (G’/G)-expansion method in getting travelling wave solutions of system of the Lotka-
Volterra competition equations with diffusion terms which they classified into three sub-classes as trigonometric,
hyperbolic and rational. Through numerical simulations, they further explored exact solutions. To construct the
explicit solutions Li-Chang used Ansdtz method hence obtaining new exact travelling solutions of the coupled
Lotka-Volterra systems of two competing species by constructing explicit solutions. Using travelling wave
solutions, further determination on which species would survive the completion was conducted. The result showed
that the system has four equilibriums and the asymptotic behavior of the solution y (x,0),v(x,0)>0can be

classified into four cases [7]. Reference [8] investigated the competition diffusion system of partial differential
equation assuming that the coefficients diffusivity of the system are not equal hence proving the existence of a wave
front solution connecting two nonzero rest points for systems of two equations of the kind (3). The travelling wave
solution of two species coupled completion-diffusion systems with the Lotka-Volterra type interaction was studied
and the magnitude of the diffusion coefficients of the former species over the latter explained as small enough [9].
Reference [3] made an investigation on the existence of travelling wave solutions of the formy =u(g),

v=v(Z)- The solutions obtained were positive and monotone about £ in the interval of negative infinity to
positive infinity and satisfy the boundary condition

(u(—oo):u_,u(+oo)=u+) and (V(—oo)zv_,v(+00):V+) with (u_,v_),(u,,v, ) being the rest points

of the system and & = x+ct . The value of wave speed, C for the coupled Lotka-Volterra competition-diffusion

system was also estimated. The same system for N- equations (species) we as for the system with 3-equations (one
predator-two prey model) was investigated establishing the existence of a positive steady-state solution as well as
the existence and stability of various semi trivial steady —state solutions in terms of the natural growth rates of the
three species [10], [11].

Kan-On proved the linearized stability of the travelling waves for the system [12]. The existence of the travelling
waves of the Lotka-Volterra competition-diffusion equations was investigated with an assumption that the first
population outcompete the second such that &, >ﬂ1,,32 >, and the boundary conditions u=1v=0 at
Z—>—o0,u=0,v=1 at z —> +oo under certain restrictions on the values of the parameter. It was also shown that
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in general case, the system of differential equations cannot be analytically solved but some analytical results can be

obtained only in special case where& =K =K, = 1, ,31 + ﬁz =2 [13].
el

Reference [14] did an investigation on the existence of travelling wave fronts connecting the equilibrium states

(1, 0) and (0, 1) for the bi-stable case thus B, B, >1. The comparison principle was applied to couple Lotka-

Volterra competition-diffusion equations on R in proving the existence of an entire solution which behaves as two
monotone waves propagating from both sides of x-axis, such that the entire solution is defined for all space and time
variable. It was also shown that the global dynamics for this entire solution exhibits the extinction of the inferior
species by the superior species invading from both sides of the x-axis [15]. Guo and Wu presented the entire
solutions for a two- component competition-diffusion system while Wang and Li did investigate the entire solutions
of coupled Lotka-Volterra competition-diffusion system with nonlocal delays [16], [17]. Rodrigo and Mimera
applied certain ansatz to the coupled Lotka-Volterra competition-diffusion equations obtaining exact travelling
wave and standing wave solutions under certain parameter restrictions and for some given correlations between

diffusivity coefficients ¥, and ¥, such that }; #},. Among the obtained results solutions for the case when

Y1 =75, such that 72 =1 are missing [18]. Nikolay and Anastasia did an investigation on the painlev’e property
N
and found the exact travelling wave solutions of the coupled Lotka-Volterra competition-diffusion equations for the

case ; =7, . They also obtained the periodic solutions which they expressed in terms of the Weierstrass elliptic
function [5].

In this study, we constructed the Lie generator of the system, develop the k™ order prolongation of the generator for
the system and use them in obtaining the invariant solutions and the group transformations of solutions of the system

with the restrictions that the diffusivity coefficients 7; andy, are equal and their ratio is one.

1. Symmetry Solutions of Lotka-Volterra Competition-Diffusion Interaction Model

Assuming the connectivity of the transformation group G and since the system has two independent variables X,t
and two dependent variables U, V, the required symmetry groups of transformation takes the form

t'=A(xt,u,v;2), X =B(x,t,u,v;1),u" =C(x,t,u,v;1), v =D(xt,u,v; 1),

With the corresponding infinitesimals as

OA(X,t,u,v;: A oB(x,t,u,v: 4
é(X,t,u,V): %h_o ,T(X,t,u,V): %1_0 y

oC(x,t,u,v:A oD(x,t,u,v:A4
¢(X,t,U,V)= ( 8/1 )ll_O ’ ¢(X1t1u’v): ( aﬂ, )1—0

the infinitesimal generator given as

0 0 0 0
U =&(t, x,u,v)—+7(t, x,u,v) — + 4(t, X,u,v) — + o(t, X,u,v) —
&( )6x 7( )8t é( )au o( )av “

The prolongation of the vector field U defined by equation (4) [19],[20], [21], [22] is given by
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B=1 p=1 1

YU :ggy(x,v)a%ﬁ-z +Zz¢ﬁ (X v ) 5)

Such that the second summation Z extends to all multi-indices J = ( I Joveen by )withls Jh E=ml<l <Kk,
J

thek™ prolongation coefficients ¢; are given by

m m
k
o (x,v( >)=DJ £¢ﬂ—zl:§yvf]+zl“§7vfy (6)
V= r=
ov” 8v/j
Where, Vf =—, v/ =" and D, is the total derivative that treat the dependent variablesu,Vv and their

ox, T ax,

derivatives as functions of independent variables and is defined as

D, =—+V/ —+V] avi+....;7/:1,2,...,q @

Since the Lotka-Volterra competition-diffusion system is a second order partial differential equation, we obtain the
first and second prolongation of its infinitesimal generator as follows;

pru =§(t,x,u,v)§+r(t,x,u,v)§+¢(t,x,u,v)%+gp(t,x,u,v)%
$3/06-Sa o |2

= /=1
Priy =§(t,x,u,v)a—ax+r(t,x,u,v)§+¢(t,x,u,v)%+(p(t,x,u,v)%

+2.>| D Lqﬁﬂ Z; jz%x v

priy =§(t,x,u,v)§+r(t,x,u,v)§+¢(t,x,u,v)%ﬂo(t,x,u,v)%
X

+ n Z [iﬂ/f%Jery avﬂ ][% Z@ ] 257 (8)

T Lox

T 1

To obtain the first prolongations we set

a=2n=p=2m=y=2k=1
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PrYu =/j(t,X,U,V)§+T(t,X,U,V)§+¢(I,X,U,V)%+(o(t,X,U,V)%

2 0 0
D o U Do e

A=l 1

PrYu :g(t,x,u,v)§+r(t,x,u,v)§+¢(t,x,u,v)%ﬂp(t,x,u,v)%

+¢" (t,x,u,v)ailjxﬂoX (t,x,u,v)a\%ﬂzﬁt (t,x,u,v)@%tﬂpt (t,x,u,v)it o

while the second prolongations is obtained as follows by setting

a=2n==2m=y=2;k=2
Prou =§(t,x,u,v)§+r(t,x,u,v)§¢(t,x,u,v)%+gp(t,x,u,v)%

+¢* (t, x,u,v)£+¢X (t, x,u,v)@\/ijwﬁt (t,x,u,v)£+¢t (t,x,u,v)@vi

X X t t

+¢™ (t, x,u,v)£+(pXX (t, x,u,v)avi+¢Xt (t, X,U,V)%—F@Xt (t, x,u,v)avi

XX XX xt xt

+¢" (1, X,U,V)i+(0ﬁ (t, x,u,v)i
au’[t tt (10)

These generators always satisfy the necessary and sufficient criterion of infinitesimal invariance

[Zf (0¥) g 2o (V) o+ 250 () 20 }[N( VO Ly iy =0

) p=1 3 J

where | ( k)) means evaluated on the surface A7(X,V(k))=0 and Pr)U is the k™ prolongation of the
vector field U.

We use the obtained second prolongations in solving the system as

Prou (U, —u, —u+u”+Auv) =0,
Prou (v, —v, —av+av’ +aB,uv) =0

for simplicitycf(t, X, u,v)% = f%,w (t, X, u,v)% =¢" %,etc we obtain

X X
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0 0 0 0 0
et
* " ' ' (ut—uxx—u+u2+ﬂluv):0
+¢XX 6 +¢ a ¢ a +¢ 8 +¢tt a +¢tti
au XX 8V)(X xt aVXt autt avtt
LRI BN )
H Al W W )
(vt—vxx—av+av +aﬂ2uv):0
+¢XX a +¢XX a +¢Xt a +¢Xt a +¢tt a +¢tt a
au XX XX 8” Xt av)(t au t avtt
On expansion we get
0 0 0 0 . O o) 0
fg(ut)+ra(ut)+¢a(ut)+(p5(ut)+¢ ou, (u)+e o, (ut)+¢ta(u)
0 « O « O « O & O 0
+¢’t&(ut)+¢ @(Ut)ﬂ” av—xx(ut)+¢‘In(ut)ﬂo‘av—m(ut)w“a—%(ut)
€ 0 V-l Vel (U V-6 (4 Ve 2 (u Vg O 0
+@ aVn (ut) fﬁx(uxx) Tat(UXX) ¢8u(uxx) q)av(uxx) ¢ aux (uxx) Y 8\/X (uxx)
B N S e S A S T S AP S
¢ aut (uxx) @ th (uxx) ¢ auxx(uxx) Y aVXX (uxx) ¢ auXt (uxx) 4 aVXt (uxx)
w 0 9 Vel =2l (=02 (1) -2 (u) - g C
¢ aun (uXX) (0 avtt (UXX) é:ax(u) Tat(u) ¢8U(U) (oav(u) ¢ aux(u)
w0 N Oy 0 e Oy e Oy e O ¢ 0
O O e o)
0 0 0 0 0 0 . O
W0t (W g () g () + 9 () o ()4 ()
x O 0 0 o O o O )
v S A Gl A CO A @(“2)“” W) ()
+p" 0 (u2)+¢"i(u2)+(pt‘i( ) § (,Buv) (ﬁuv)+¢£(ﬂuv)
N, autt A ' ' aut
+p 2 (p)+ 4 X(ﬂluv) x(ﬂluv>+¢ta—ut(ﬂluwwtavit(ﬂluv)
+g 0 (Buv)+g (,Buv)+¢“i(ﬂuv) n 0 (,Buv)+¢“i(/3uv)
u XX ' aVXX ' au xt ' 8VXI ' auﬁ '

+o" —( Buv) =
OV (11a)
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5 8 8 8 .0 .0 5
fg(vt)*'fa(vt)+¢a(vt)+¢g(vt)+¢ 8ux(vt)+¢ o, (Vt)"'(éta_ut(vt)
0 w O w O i O « O d
+¢ta(Vt)+¢ a—XX(Vt)H” 8V—XX(V1)+¢tﬁn(Vt)ﬂ”t@V—Xt(Vt)W“a(Vt)
N AT PYNE VR U Y.
+@ aVn (Vt) féx(vxx) at(vxx) ¢8U( xx) ¢av(vxx) ¢ 8ux (Vxx) 4 6’\/)( (Vxx)
4 0 4 0 o O % o 0 w0
ou XX ov XX ou XX ov XX ou Vxx) ® ov (Vxx)
t( ) t( ) ¢ xx( ) ¢ xx( ) ¢ xt( Xt
w O 4 0 0 0 0 0 _x 0
B e G R G R Gl R e G R A )
—p" a\it (av)- “—n(av)—(p“avin(av)+§§(av2)+r§ av2)+¢%(av2)
o (vt ) g (@) 0 (@ )+ ¢ (v )+ gt (o) g = ()
ov ou, ov, ou, ov, o
w O X . 0 0
+@ o (0{V2)+¢t - (05V2)+q0t - ((){V2)+¢tt a0, (av2)+¢“a(av2)
0 0

—

&2 (apa) e L (apa) g 2 (apan) o L (apn) e apa)

ou

X

+o" a\alx (aBuv)+¢' aiut(a'gzuv)HPt avit(oc/i’zuv)ﬂzﬁXX aix (aB,uv)+p* a\ix (aByuv)
+* 0 (aBuv)+o* i(ozﬂ uv)+¢" i(ozﬂ uv)+g" i(aﬁ uv)=0
ou ? oV ? ou ? ov, - ¢

xt xt tt tt (11b)

We now differentiate partially with respect to the partial variables U, V,, U,, V., U, V., U;, Vi, Uy, V, and

t? X! X! XX? TXx? e tt? xt? Uxt

t, X, U, V as algebraic variables and on substitution for ¢t, (ot, ¢™ and @™ obtained from equations (6) and (7)
as in equations (12)-(21) below

¢t = ¢t _é:tux +(¢u _Tt)ut _§uuxut _Tuutz

(12)
@' =@~ &V + (P — T )V — SNV — TN (13)
¢ =@~ U +(4 — &)U, —&u’ —rul, (14)
P =@, — TV (D = &)V — &N — T Y, (15)
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¢* =D? ¢p—u D?* E-uD? r—2u D E-2u D,z
D% (9)= @+ 2V, P + Vi, + V2,0,
D%(&)=¢&, +2u &, +U &, +UNE,,
D%(r)=17, +2u,7,, +Uu,7, +U7,,

2 3
¢XX = O« +(2¢xu _gxx )ux _Txxut +(¢uu _zéxu )ux _fouuxut _é:uuux
—T U U, + (6, — 28, Uy — 27U, —3E,U U, — 7, U, Uy, —27,U,U

U= XXt

XX

% =0 (20, — o Wy — TV +( @y — 28, )V, 2 =20,V Y, — &N,

2
TV Vit ((0\, - Zéx )Vxx - 2Txvxt - 3§VVXV —T ViV — 2Tvvxvxt

XX

¢tt = ¢tt +(2¢ut —Tw )ut _étux +(¢uu _ZTut )ut2 _Zé:utuxut _Tuuuts

2
—GuUU +(¢u _ZTt)utt _Zé:tuxt _3Tuututt _éuuxutt _Zé:uutuxt

uu — X
q’tt =@ +(2¢7v1 _Tw)vt =&Vt ((ow -2z, )Vt2 -2V, V, _vatS

2
_éngxV ¢ T (¢v - ZTt )Vtt - 2é:tvxt _STthVtt - gvvxvtt - Zétvvtvxt

X

2 2 2
_étvvx —T Vg — (sgvvxvtt - gvvtvxx TVt TVt (¢W Ty~ éxv )Vtvx

tX

2 2 2
_étvvx - z-tht - (:vvxvtt - égvvtvxx - Txvvt - vat Vit (ww Ty~ éxv )Vtvx
we get

¢t _gtux +(¢u -0 )ut _‘):uuxut _Tuutz _¢xx _(2¢xu _gxx)ux + 7 _(¢uu - 2gxu )ux2
+27, U, + &, U° + 7, U U, — (6, — 28, ) Uy +27,U

Xu—Xx U= X XXt

—¢+2ud+ Vo + fup =0

+3&,u,u,, +7,uu, +27,uu

U= XXX XX U= X=Xt

D =Py +(¢xv _Ttx)vt — &V +(¢’w _‘fm)vx =28 V,V, — 27,V _‘fwvat +(¢’v -2z, _é:x)vxt

D =Py +(¢xv _Ttx)vt _gtvxx +(¢tv _gb()vx _Zévvxvxt _ZTVTVD( _ngfvt +(¢v _2Tt _gx)vxt

(16)

(17

(18)

(19)

(20)

1)

(22a)
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2 2
@ — étvx + ((Dv iz )vt - é:vvxvt —TNV O — (2¢xv - é:xx )vx TV — (q)w - 2‘§xv )Vx
20, VY, + EN + TV = (0, = 26 )V + 27V, +3ENVy + TV, + 27V, V

XXt VXXX VUXUxt
—ap+2avp + B,aup+ B,avg =0 (22b)

On replacing U, by U, +U —u’ — AUV and V, by V,, +av—av’ —oyB,uV whenever they occurs, Since &, 7,
¢, ¢ are functions of X,t,U,V, then equating the coefficients of various monomials in the first, second and the

other order partial derivatives of U,v and their powers, we obtain the determining equations for the symmetry
group of the coupled Lokta-Volterra competition-diffusion bellow;

2r,=0 27,=0 27,=0 £, =0 ¢&=0 7,=0 1¢,=0

7,=0 &,=0 & =0 £, =0 ¢,=0 ¢,=0

b9 +9=0 @ -p,+p=0 —&—-(24,-¢,)=0

4 -(20,-8x)=0  d-r+7,—(4-25)=0 —(p,—25,)=0
P10 = (2, =26,)=0 @ -7 +7,+20+ fo—afp=0
ap,—ar, +ar, +20-po+ofp=0 ¢ +7,—-7,-7,=0

—ad, +ar, —ar, —a’t, =0 B, + Bzt - pr, =0 —(¢,-2£,)=0
—af,p, +of,t, —of,r, =0 & +2r,+35,=0 & +27,+35,=0

-£+2r,=0 -af,+2ar,=0 2r,+7,=0 2ar,+ar,=0 (23)

After lengthy and straightforward calculations, we obtain and express 7, &, @, @ the infinitesimal transformations

in the standard basis to get the spinning set of the Lie algebra of the infinitesimal symmetries Ui of coupled Lotka-
Volterra competition-diffusion equations as;

Ul=g, u, =3,U3=ui+vg,u4 =2t2+x3, U, =2t2—xu£—xvﬁ
ot OX ou ov ot ox

U, =4t° £+4tx£—(2ut + xzu)i—(th + sz)ﬁ
ot OX ou ov (24)

The one-parameter group G; admitted by the infinitesimal generatorsU,,U,,U;,U,,U;,and U, are determined
by solving the corresponding Lie equations which gives the groups as;

%;G1 =X, (x,t,u,v; ) > X, (X, t+4,u,v)
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&;G2 =X, (x,t,u,v; 1) > X, (x+4,t,u,v)

ua—au+v§;G3 =X3(x,t,u,v;/”t)—>X3(x,t+/1,e‘u,e‘v)

0 0
2ta+ x&;c-}4 =X, (xtu,v;1)>X, (e‘x,e”t,u,v)

2% _ul_ xvg;G5 =X, (X,t,u,v; 4) = X, (x + 21,8, ue_(imzt),ve_(lxwt))
OX ou ov
4t? 2+4t£—(2ut+ xzu)i—(th + XZV)Q;GG =Xs(xt,u,v; 1)
ot OoX ou ov

—ax?

x ume[w],vmew]

X ) )
®l1-4at'1- 44t

We note that the groupsU. and Uy are non-trivial whileU,;,U,,U, and U, are translations and scaling (trivial
groups).

I11. Invariant Solutions

Suppose a group G of transformations T map a solution into itself the resulting solution is known as group
invariant solution [23]. For the infinitesimal generator (4) of the coupled Lotka-Volterra competition-diffusion
equation (3a,b), we obtain the invariant solution generated by U under the one —parameter group such that the
general solution is obtained by integrating the corresponding characteristic system of ordinary differential equations

dx dt du dv

E(xtuv)  E(xtuv) g(xtuv) o(xtu,v) (25)

to obtain the independent invariants Q, =k (x,t), Q, = u(x,t,u), Q; =w(xt,v)

We then designate two of the invariants as a function of the other as 2 =¥ (€} )and = ©(€) ) and solve with

respect to U and V. the obtained results are tabulated bellow:
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Table |

Invariant Solution of Coupled Lotka-Volterra Competition-Diffusion Equations

Generator U,

Invariants solutions

Ulzg u=Y(x), v=0(x)
ot
Uzzﬁ u="¥¢(t), v=0(t)
OX
U3=ui+v_ U=‘P(X,t),v=®(x,t)
ou
0 0 X X
U, =Xx—+2t— _wl X _ol X
4 Xax_'_ ot u ‘P[tj,v @(tj
0 0 0 @ 2
U5 =2t——XU——XV— u :‘P(x,t)e‘“, V=®(X,t)e4t

OX ou ov

U, = 4t? §+4tx%—(2tu +x2u)%—(2tv+x2v)%

u

‘P(xe_iJ(Zt +x2)™*

1
V= ®£xe tJ(th +x3)*!
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Table Il

New Symmetry Solutions of Coupled Lotka-Volterra Competition-Diffusion Equations underU 6

Generator U,

New Symmetry solutions

U, T
ot OX
—(2tu+x2u)i
ou

0
2
—(2tv+ X v)—

—ax?

—2x?
= POETTT . s (T

—ax?

—ax?
Uz =P (1) i+ 4/1te[““tj Vs = @(t)me(w]

—Ax2

— —Ax?
Uss = ‘P(x,t)41+4ﬂte[“‘”‘j, Vs = @(x,t)me[w]

—x?

o = ‘PG)Me[MJ, Gus = @@me@ﬁ

X2 —ax2 2 Y
Uss = P(x,t)e’ V1+ Mte(““t], Vss = O(x,t)e Me[““‘]

1 —ax?
Uss = \P(xe t }(Zt +x3) 1+ 4Ate(l+mJ,

1 —ax?
Ve = @(xe t ] (2t +x3) 1+ 4ﬂute(1+“tJ

Since symmetry groups transform solutions of any equation into new solutions of the same equation, then; we let
x=g(xtuv), t=h(xtuv), u,="f (xtuUv)

for N dependent variables be a symmetry transformation group of coupled partial differential equation and suppose

u, =¢, (x,t) solve the equation, we can write the solutions in the new variables as E =g, ()_(f) Suppose (15)

are group transformations of coupled partial differential equation with E of the form m =1//_n(x,t,un,/1) for

IV. Group Transformations of Solutions

(26)

some explicit functions ¥, , then by applying the inverse mapping, the new solutions takes the form

o= (0 () ()4 @
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The symmetry inversion theory requires that for each symmetry group Gi admitted by the infinitesimal generators

U, and suppose U =/(X,t) and v=©(X,t) are solutions of the coupled Lotka-Volterra competition-diffusion

~

equation (3a,b), then the functions (, and v, are also solutions since symmetry transformations changes known
solutions into new solutions [22] and we obtain

0 =y(xt-1), ,=0(xt-1)

0, =y (x—4,t), V,=0(x-1,t)

U, =e’w(x,t), V,=e’®(xt)

0, =y (e*x.e?t), v, =0(e"xe*t)

—ix+/12t)

w(x—22t,t), \75:e( O(x—24t,t)

—Ax2 —Ax?
0 = 1 (1+4/1t)l// X ’ t V= 1 (1+4/1t)® X ’ t
© +4at 1+42t' 1442t ) % A+ 4at 1+ 47t "1+ 44t
V. Conclusion

In this work, the coupled Lotka-Volterra competition-diffusion interaction system of equations which models two
competing species whose interactions exhibit coupled density oscillation with diffusion are studied. We first non-
dimensionalise (2a, b) to (3a, b) reducing the number of constants. We then constructed the Lie generator (4) of the
system, develop the k'™ order prolongation (8) of the generator for the system and use them in obtaining the
invariant solutions (Table 1), new symmetry solutions (Table I1) and the group transformations of solutions (section

4) of the system with the restrictions that the diffusivity coefficients 7; andy, are equal and their ratio is one. We
recommend that a study on this topic be done using non-classical Lie symmetry groups and potential symmetries.
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