Inverse Domination of Some Special Graphs

M. Hoorulayeen¹, Dr. K.Ameenal Bibi² and T.Aswini³

^{1, 3.} M.Phil Scholars

^{2.} Research Supervisor [PG and Research Department of Mathematics] Dhanabagiyam Krishnaswamy Mudaliar College For Women (Autonomous) Vellore – 1

Abstract :

Let G = (V, E) be a simple, finite, undirected and connected graph. A non-empty subset $D \subseteq V$ is a dominating set of G if every vertex in V-D is adjacent to atleast one vertex in D. The domination number $\gamma(G)$ is the minimum cardinality taken over all the minimal dominating sets of G. Let D be the minimum dominating set of G. If V-D contains a dominating set D' of G, then D' is an inverse dominating set with respect to D. The inverse domination number $\gamma'(G)$ is the minimum cardinality of a minimal inverse dominating set of G. In this paper, the values of $\gamma'(G)$ is obtained for some special graphs.

Keywords :

Dominating set, Inverse dominating set, Domination number, Inverse domination number.

Introduction :

Let G = (V,E) be a simple, finite, undirected and connected graph with |V| = n and |E| = m.

A non-empty subset $D \subseteq V$ is a dominating set of G if every vertex in V-D is adjacent to atleast one vertex in D. The domination number $\gamma(G)$ is the minimum cardinality taken over all the minimal dominating sets of G. Let D be the minimum dominating set of G. If V-D contains a dominating set D' of G, then D' is an inverse dominating set with respect to D. The inverse domination number $\gamma'(G)$ is the minimum cardinality of a minimal inverse dominating set of G.

The purpose of this paper is to determine the values of $\gamma'(G)$ for some special graphs and its relationship with other domination parameters.

Definitions of some named graphs :

Mongolian tent graph :

A graph with 7 vertices and 9 edges is called as Mongolian tent graph.

Unit distance graph :

The Peterson graph is a unit distance graph. It is a 3 regular graph with 10 vertices and 15 edges.

Pancyclic graph :

It is a graph with 5 vertices and 7 edges.

Distance hereditary graph :

It is also called as completely separable graph. Distance hereditary graph was named and first studied by Howarka in 1977. It is a graph with 10 vertices and 17 edges.

Truncated Tetrahedral graph :

A Truncated tetrahedral graph has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges.

Tietze graph :

Tietze graph is an undirected cubic graph with 12 vertices and 18 edges. It is named after Heinrich Franz Friedrich Tietze who showed in 1910.

Frucht graph :

The Frucht graph is polyhedral and Hamiltonian. It is a graph with 12 vertices and 18 edges. It is named after Robert Frucht.

Lollipop graph :

It is a graph with 8 vertices and 17 edges.

Prism graph :

It is a graph with 12 vertices and 18 edges.

Cocktail party graph :

Cocktail party graph is a graph with 6 vertices and 12 edges.

Dominating set :

A non empty subset $D \subseteq V$ in a graph G = (V,E) is a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set of G.

Inverse dominating set :

Let D be the minimum dominating set of G. If V-D contains a dominating set D' of G, then D' is an inverse dominating set w.r.to D. The inverse domination number $\gamma'(G)$ is the minimum cardinality of a minimal inverse dominating set of G.

Results on Inverse domination on some special graphs : Mongolian Tent graph :

Let G be the Mongolian tent graph with 7 vertices and 9 edges. Let $V=\{v_1, v_2...v_7\}$ be the set of vertices of G. Let $\{v_1, v_2, v_4, v_5, v_6, v_7\}$ be the outer vertices and $\{v_3\}$ be the inner vertex. Let D be the dominating set. The minimum dominating set is $\{v_1, v_6\}$ which dominates the entire vertices of V. Also there is an another set $D' = \{v_2, v_7\}$ which dominates the remaining vertices. Thus D' is the inverse dominating set of G.

$$\gamma(G) = \gamma'(G) = 2$$

Unit distance graph :

Let G=(V,E) be the unit distance graph. Let V={ v_1 , v_2 ... v_{10} } be the vertex set of G. The vertex v_2 is adjacent to the vertices { v_1 , v_3 , v_8 } and the vertex v_5 is adjacent to { v_1 , v_4 , v_6 } and the vertex v_7 is adjacent to the vertices { v_1 , v_9 , v_{10} }. The minimum dominating set is $D = {v_2, v_5, v_7}$. Also there is an inverse dominating set $D' = {v_1, v_4, v_6}$.

$$\gamma(G) = \gamma'(G) = 3$$

Pancyclic graph :

Let G be the pancyclic graph with 5 vertices and 7 edges. The minimum dominating set is $\{v_1\}$ and $\{v_3, v_4\}$ is the inverse dominating set which dominates the entire vertex set V.

$$1 = \boldsymbol{\gamma}(\boldsymbol{G}) < \boldsymbol{\gamma}'(\boldsymbol{G}) = 2$$

Distance hereditary graph :

Let G be the distance hereditary graph with 10 vertices and 17 edges. Let $V = \{v_1, v_2...v_{10}\}$ be the set of vertices. The minimum dominating set is $\{v_1, v_2, v_8\}$. The inverse dominating set D' which dominates the remaining vertices is $\{v_3, v_5, v_7, v_9\}$. $3 = \gamma(G) < \gamma'(G) = 4$

Let G=(V,E) be the truncated tetrahedral graph with vertices $\{v_1, v_2...v_{12}\}$. The vertices $\{v_1, v_2...v_8\}$ be the outer vertices and $\{v_9, v_{10}...v_{12}\}$ be the inner vertices. Let D be the dominating set . The minimum dominating set is $\{v_1, v_4, v_{11}\}$ then there is an inverse dominating set D' such that $D' = \{v_3, v_6, v_9\}$ dominates the entire vertex set V.

$$\gamma(G) = \gamma'(G) = 3$$

Let G be the Tietze graph. Let $V = \{v_1, v_2...v_{12}\}$ be the vertex set of G. The vertex v_3 is adjacent to $\{v_2, v_4, v_{11}\}$ and v_6 is adjacent to $\{v_5, v_7, v_{12}\}$ and v_9 is adjacent to $\{v_1, v_8, v_{10}\}$ then the dominating set is $\{v_3, v_6, v_9\}$ which is minimum. The inverse dominating set is $\{v_1, v_3, v_8, v_{12}\}$. Thus $\gamma'(G) = 4$. $3 = \gamma(G) < \gamma'(G) = 4$

Let G be the Frucht graph with 12 vertices and 18 edges. Let $V = \{v_1, v_2...v_{12}\}$ be the set of vertices of G. The vertex set V is partitioned into 2 vertex subsets V_1 and V_2 such that $V_1 = \{v_1, v_2...v_7\}$

$$\mathbf{V}_1 = \{\mathbf{v}_1, \mathbf{v}_2...\mathbf{v}_7\}$$

 $\mathbf{V}_2 = \{\mathbf{v}_8, \mathbf{v}_9...\mathbf{v}_{12}\}$

Where V₁ is the set of outer vertices and V₂ is the set of inner vertices. The minimum dominating set $D = \{v_2, v_8, v_{12}\}$. Also there exists an inverse dominating set $D' = \{v_1, v_3, v_6, v_{10}\}$ which dominates the whole vertex set V.

 $3 = \gamma(G) < \gamma'(G) = 4$

Lollipop graph :

Let G=(V,E) be the lollipop graph with 8 vertices and 17 edges. Let V={ v_1 , v_2 ... v_8 } be the set of vertices. The minimum dominating set is { v_3 , v_4 }. The minimum inverse dominating set is { v_2 , v_5 }.

$$\gamma(G) = \gamma'(G) = 2$$

Prism graph :

Let G be the Prism graph. Let $\{v_1, v_2...v_6\}$ be the outer vertices and $\{v_7, v_8...v_{12}\}$ be the inner vertices. Let $V = \{v_1, v_2...v_{12}\}$ be the vertex set of G. The dominating set is $\{v_3, v_6, v_8, v_{11}\}$ which dominates the entire set. The minimum inverse dominating set is $\{v_1, v_5, v_7, v_{10}\}$.

$$\gamma(G) = \gamma'(G) = 4$$

Cocktail party graph :

Let G be the Cocktail party graph. Let $V = \{v_1, v_2...v_6\}$ be the set of vertices. The minimum dominating set D = $\{v_1, v_4\}$ and the minimum inverse dominating set $D' = \{v_2, v_3\}$ where v_2 is adjacent to the vertices $\{v_1, v_4, v_5, v_6\}$ and v_3 is adjacent to $\{v_1, v_4, v_5, v_6\}$.

$$\gamma(G) = \gamma'(G) = 4$$

Conclusion :

In this paper, we obtained the inverse domination numbers of 10 different named graphs. The relationship between $\gamma(G)$ and $\gamma'(G)$ is also analysed.

References :

- [1] Harary.F (1969) Graph Theory, Addison - Wesley Reading Mars.
- Haynes, T.W., Hedetniemi. S.T and Slater.P.J 1998a. Domination in Graphs. Advanced Topics, Marcel Dekker Inc. New York [2] U.S.A.
- [3] Haynes, T.W. Hedetniemi S.T and Slater. P.J 1998b. Fundamentals of domination in graphs, Marcel Dekkel Inc. New York, U.S.A.
- Ore, O. 1962 Theory of Graphs. American Mathematical Society colloq Publ., Providence, R1 38. [4]
- Domke G.S., Dunbar J.E and Markus L.R (2007) The Inverse domination number of a graph, feb (2007). [5]
- Kulli V.R and Sigarkanti S.C (1991). Inverse domination in graphs. National Academy Science Letters, 15. [6]
- Paulraj Joseph J and Arumugam S. (1995): Domination in graph, International Journal of Management Systems, 11: 177-182. [7]
- "THEORY OF DOMINATION IN GRAPHS" by V.R. Kulli, Vishwa International Publications, Gulbarga India. [8]
- T. Tamizh chelvam and G.S Grace Prema, "Equality of domination and inverse domination numbers," Ars combinatorial, vol. 95, [9] pp. 103-111, 2010. "ADVANCES IN DOMINATION THEORY" by V.R. Kulli is Vishwa International Publications, Gulbarga, India (2012).
- [10]