# Inverse Domination of Some Special Graphs 

M. Hoorulayeen ${ }^{1}$, Dr. K.Ameenal Bibi ${ }^{2}$ and T.Aswini ${ }^{3}$<br>${ }^{1,3 .}$ M.Phil Scholars<br>2. Research Supervisor [PG and Research Department of Mathematics] Dhanabagiyam Krishnaswamy Mudaliar College For Women (Autonomous) Vellore - 1


#### Abstract

: Let $G=(V, E)$ be a simple, finite, undirected and connected graph. A non-empty subset $D \subseteq V$ is a dominating set of $G$ if every vertex in $V-D$ is adjacent to atleast one vertex in $D$. The domination number $\gamma(G)$ is the minimum cardinality taken over all the minimal dominating sets of $G$. Let $D$ be the minimum dominating set of $G$. If V-D contains a dominating set $D^{\prime}$ of $G$, then $D^{\prime}$ is an inverse dominating set with respect to $D$. The inverse domination number $\gamma^{\prime}(G)$ is the minimum cardinality of a minimal inverse dominating set of $G$. In this paper, the values of $\gamma^{\prime}(G)$ is obtained for some special graphs.


## Keywords :

Dominating set, Inverse dominating set, Domination number, Inverse domination number.

## Introduction :

Let $G=(V, E)$ be a simple, finite, undirected and connected graph with $|V|=n$ and $|E|=m$.
A non-empty subset $\mathrm{D} \subseteq \mathrm{V}$ is a dominating set of G if every vertex in V-D is adjacent to atleast one vertex in D . The domination number $\gamma(G)$ is the minimum cardinality taken over all the minimal dominating sets of G. Let D be the minimum dominating set of G. If V-D contains a dominating set $D^{\prime}$ of G, then $D^{\prime}$ is an inverse dominating set with respect to D . The inverse domination number $\gamma^{y}(G)$ is the minimum cardinality of a minimal inverse dominating set of G.
The purpose of this paper is to determine the values of $\gamma^{\prime}(G)$ for some special graphs and its relationship with other domination parameters.

Definitions of some named graphs :
Mongolian tent graph :
A graph with 7 vertices and 9 edges is called as Mongolian tent graph.

## Unit distance graph :

The Peterson graph is a unit distance graph. It is a 3 regular graph with 10 vertices and 15 edges.

## Pancyclic graph :

It is a graph with 5 vertices and 7 edges.

## Distance hereditary graph :

It is also called as completely separable graph. Distance hereditary graph was named and first studied by Howarka in 1977. It is a graph with 10 vertices and 17 edges.

## Truncated Tetrahedral graph :

A Truncated tetrahedral graph has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges.

## Tietze graph :

Tietze graph is an undirected cubic graph with 12 vertices and 18 edges. It is named after Heinrich Franz Friedrich Tietze who showed in 1910.

## Frucht graph :

The Frucht graph is polyhedral and Hamiltonian. It is a graph with 12 vertices and 18 edges. It is named after Robert Frucht.

## Lollipop graph :

It is a graph with 8 vertices and 17 edges.

## Prism graph :

It is a graph with 12 vertices and 18 edges.

## Cocktail party graph :

Cocktail party graph is a graph with 6 vertices and 12 edges.

## Dominating set :

A non empty subset $\mathrm{D} \subseteq \mathrm{V}$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a dominating set if every vertex in V-D is adjacent to some vertex in D . The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set of G .

## Inverse dominating set :

Let D be the minimum dominating set of G. If V-D contains a dominating set $D^{\prime}$ of G , then $D^{\prime}$ is an inverse dominating set w.r.to D . The inverse domination number $\gamma^{\prime}(G)$ is the minimum cardinality of a minimal inverse dominating set of G.

## Results on Inverse domination on some special graphs :

## Mongolian Tent graph :



Let $G$ be the Mongolian tent graph with 7 vertices and 9 edges. Let $V=\left\{v_{1}, v_{2} \ldots v_{7}\right\}$ be the set of vertices of $G$. Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$ be the outer vertices and $\left\{\mathrm{v}_{3}\right\}$ be the inner vertex. Let D be the dominating set. The minimum dominating set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{6}\right\}$ which dominates the entire vertices of V . Also there is an another set $D^{\prime}=$ $\left\{\mathrm{v}_{2}, \mathrm{v}_{7}\right\}$ which dominates the remaining vertices. Thus $D^{\prime}$ is the inverse dominating set of G .

$$
\gamma(G)=\gamma^{\prime}(G)=2
$$

## Unit distance graph :



Let $G=(V, E)$ be the unit distance graph. Let $V=\left\{v_{1}, v_{2} \ldots v_{10}\right\}$ be the vertex set of $G$. The vertex $v_{2}$ is adjacent to the vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{8}\right\}$ and the vertex $\mathrm{v}_{5}$ is adjacent to $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$ and the vertex $\mathrm{v}_{7}$ is adjacent to the vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{9}, \mathrm{v}_{10}\right\}$. The minimum dominating set is $\quad \mathrm{D}=\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{7}\right\}$. Also there is an inverse dominating set $D^{\prime}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$.

$$
\gamma(G)=\gamma^{\prime}(G)=3
$$

## Pancyclic graph :



Let $G$ be the pancyclic graph with 5 vertices and 7 edges. The minimum dominating set is $\left\{\mathrm{v}_{1}\right\}$ and $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ is the inverse dominating set which dominates the entire vertex set V .

$$
1=\gamma(G)<\gamma^{\prime}(G)=2
$$

## Distance hereditary graph :



Let $G$ be the distance hereditary graph with 10 vertices and 17 edges. Let $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{10}\right\}$ be the set of vertices. The minimum dominating set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{8}\right\}$. The inverse dominating set $D^{\prime}$ which dominates the remaining vertices is $\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}\right\}$.

$$
3=\gamma(G)<\gamma^{\prime}(G)=4
$$

## Truncated tetrahedral graph:



Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be the truncated tetrahedral graph with vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{12}\right\}$. The vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{8}\right\}$ be the outer vertices and $\left\{\mathrm{v}_{9}, \mathrm{v}_{10} \ldots \mathrm{v}_{12}\right\}$ be the inner vertices. Let D be the dominating set. The minimum dominating set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{11}\right\}$ then there is an inverse dominating set $D^{\prime}$ such that $D^{\prime}=\left\{\mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{9}\right\}$ dominates the entire vertex set V .

$$
\gamma(G)=\gamma^{\prime}(G)=3
$$

## Tietze graph :



Let $G$ be the Tietze graph. Let $V=\left\{v_{1}, v_{2} \ldots v_{12}\right\}$ be the vertex set of $G$. The vertex $v_{3}$ is adjacent to $\left\{v_{2}, v_{4}\right.$, $\left.\mathrm{v}_{11}\right\}$ and $\mathrm{v}_{6}$ is adjacent to $\left\{\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{12}\right\}$ and $\mathrm{v}_{9}$ is adjacent to $\left\{\mathrm{v}_{1}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ then the dominating set is $\left\{\mathrm{v}_{3}, \mathrm{v}_{6}\right.$, $\left.\mathrm{v}_{9}\right\}$ which is minimum. The inverse dominating set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{8}, \mathrm{v}_{12}\right\}$. Thus $\gamma^{\prime}(G)=4$.

$$
3=\gamma(G)<\gamma^{\prime}(G)=4
$$

## Frucht graph :



Let $G$ be the Frucht graph with 12 vertices and 18 edges. Let $V=\left\{v_{1}, v_{2} \ldots v_{12}\right\}$ be the set of vertices of $G$. The vertex set V is partitioned into 2 vertex subsets $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ such that
$\mathrm{V}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{7}\right\}$
$\mathrm{V}_{2}=\left\{\mathrm{v}_{8}, \mathrm{v}_{9} \ldots \mathrm{v}_{12}\right\}$
Where $\mathrm{V}_{1}$ is the set of outer vertices and $\mathrm{V}_{2}$ is the set of inner vertices. The minimum dominating set $\mathrm{D}=$ $\left\{\mathrm{v}_{2}, \mathrm{v}_{8}, \mathrm{v}_{12}\right\}$. Also there exists an inverse dominating set $D^{\prime}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{10}\right\}$ which dominates the whole vertex set V .

$$
3=\gamma(G)<\gamma^{\prime}(G)=4
$$

## Lollipop graph :



Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be the lollipop graph with 8 vertices and 17 edges. Let $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{8}\right\}$ be the set of vertices. The minimum dominating set is $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. The minimum inverse dominating set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{5}\right\}$.

$$
\gamma(G)=\gamma^{\prime}(G)=2
$$

## Prism graph :



Let $G$ be the Prism graph. Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{6}\right\}$ be the outer vertices and $\left\{\mathrm{v}_{7}, \mathrm{v}_{8} \ldots \mathrm{v}_{12}\right\}$ be the inner vertices. Let $V=\left\{v_{1}, v_{2} \ldots v_{12}\right\}$ be the vertex set of $G$. The dominating set is $\left\{\mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{11}\right\}$ which dominates the entire set. The minimum inverse dominating set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{10}\right\}$.

$$
\gamma(G)=\gamma^{\prime}(G)=4
$$

## Cocktail party graph :



Let $G$ be the Cocktail party graph. Let $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{6}\right\}$ be the set of vertices. The minimum dominating set $\mathrm{D}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}$ and the minimum inverse dominating set $D^{J}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ where $\mathrm{v}_{2}$ is adjacent to the vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $\mathrm{v}_{3}$ is adjacent to $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$.

$$
\gamma(G)=\gamma^{\prime}(G)=4
$$

## Conclusion :

In this paper, we obtained the inverse domination numbers of 10 different named graphs. The relationship between $\gamma(G)$ and $\gamma^{\prime}(G)$ is also analysed.

## References :

[1] Harary.F (1969) Graph Theory, Addison - Wesley Reading Mars.
[2] Haynes, T.W., Hedetniemi. S.T and Slater.P.J 1998a. Domination in Graphs. Advanced Topics, Marcel Dekker Inc. New York U.S.A.
[3] Haynes, T.W. Hedetniemi S.T and Slater. P.J 1998b. Fundamentals of domination in graphs, Marcel Dekkel Inc. New York, U.S.A.
[4] Ore, O. 1962 Theory of Graphs. American Mathematical Society colloq Publ., Providence, R1 38.
[5] Domke G.S., Dunbar J.E and Markus L.R (2007) The Inverse domination number of a graph, feb (2007).
[6] Kulli V.R and Sigarkanti S.C (1991). Inverse domination in graphs. National Academy Science Letters, 15.
[7] Paulraj Joseph.J and Arumugam S. (1995): Domination in graph, International Journal of Management Systems, 11:177-182.
[8] "THEORY OF DOMINATION IN GRAPHS" by V.R. Kulli, Vishwa International Publications, Gulbarga India.
[9] T. Tamizh chelvam and G.S Grace Prema, "Equality of domination and inverse domination numbers," Ars combinatorial, vol. 95, pp. 103-111, 2010.
[10] "ADVANCES IN DOMINATION THEORY" by V.R. Kulli is Vishwa International Publications, Gulbarga, India (2012).

