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Abstract
This study examines the new different varieties of soliton structures of the unstable nonlinear Schrodinger

equation through the generalized Kudryshov method. This model has valuable applications in mathematical
physics. The obtained new different types of soliton structures are represented in names of the rational, and
exponential functions show that the considered approach is useful to investigate the nonlinear dispersive
equations in mathematical physics.
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I.INTRODUCTION

Nonlinear evolution equations (NLEES) have been contained with paramount importance due to its diversity
of uses in physics, mathematical sciences and engineerings such as electrostatics, fluids dynamics, elasticity,
quantum mechanics and electrodynamics. Lately, numerous novel dominant processes have been recommended
for attaining the exact solution of NLEEs such as modified (G'/G)-expansion method [1, 2], new generalized
(G'/G)-expansion method [3, 4, 5], new generalized (G'/G)-expansion method [6], the exp- #(&) -expansion
method [7, 8], finite series Jacobi elliptic cosine function ansatz [9], residual power series method [10],
Variation of Parameters Method [11], Riccati-Bernoulli sub-ODE method [12], Extended mapping method [13],
Extended direct algebraic sech method [14], extended modified mapping method [15], Sech-tanh method [16],
the direct algebraic function method [17], Generalized unified method [18], the generalized exponential function
[19], eneral bilinear form [20], modified Kudryashov method [21] and many more.

The paper applied the generalized Kudryshov method [23] to derive the different type of soliton structures for
unstable Schrédinger equation [21, 22].

Let us consider that the general form of unstable Schrédinger equation:
W, +Wiy +2py [W°W —2p,W =0 (1)
where, p; is a real number and W (x, t ) is a complex-valued function, is a special type of nonlinear evolution

equations that arises in the vast areas of applied sciences, such as nonlinear optics, plasma physics, quantum
mechanics, and so on.

Il. Glimpse of the generalized Kudryshov method

Step 1: We consider that a NLEE for W (x, t):
(W oW d°W

EIC A
where, K represents a polynomial in W.
To locate the transformation of equation 2:
W =W(x,t) =W(&),& = x—ct 3
From Equation (2) and equation (3),we locate the following ODE:

=0 @)
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LW, W' W",......) =0 )

Step 2: Calculate M and N through the balance rule on equation (4).

Step 3:Let us consider that:
N .
2o
W) =S—

i
0"

®)

where, A and Bj are real constants, N and M are positive integers such that Ay, By, # 0and ‘¥ satisfies the
following ODE:

v'(&)=v?(&)-w() (6)
The general solution of equation (6) is of the form:
1
= 7
w(S) T @)

where, his any arbitrary constant.

Step 4: Determine the positive integers N and M in equation (5) by balancing the highest order
derivative term with the nonlinear term of W(&) in equation (2) or equation (4). Moreover, we
define the degree of W(¢) as D(W(&))=N-—M, which gives rise to the degree of other expression

as

dw
ded
where, p, g, s are integer numbers. Thus, we can find the value of N and M in equation (5).

D( )=N-M+q, D(\Np(%)%(N—M)pH(N—Mw) (8)

Step 5: Applying equation (5) into equation (4) and equation (8), collecting all terms with the same order
of @ together. Equating each coefficient of this polynomial to zero, yields a set of algebraic equations
which can be solved to find the values of ®(&) with the help of MAPLE.

I11. Solitons to the unstable nonlinear Schrodinger equation
Let us consider that the general form of unstable Schrdinger equation:
W, + Wi, +2pg W] °W —2p,W =0 )
Using W(x,t) = (I)(ef)ei’7 , Where &= px+qt, =rx+st,ten equation (9) converts into the following
ODE:
P2D"(£) - (r +5+2p,)D(E) + 2P, @3 (£) =0 (10)
Applying the rule of homogeneous balance on equation (10), then we get:

Ay + ALY + A2

q)(é:) - BO + Bl\P

(11)

By equation (11) and equation (10) and then equating each coefficients of ﬂi to zeros, we get:
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Figure 1: Graphical representation of the solution in W, (x,t) and its projection at t = 0.01 for the unknown
parameters a=0.35and b, = 0.5 within the interval —10 < x,t <10.
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Figure 2: Graphical representation of the solution in W3(x,t)and its projection at t = 0.01 for the unknown
parameters a=0.35and b, = 0.5 within the interval —10 < x,t <10.
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Figure 3: Graphical representation of the solution in Wx(x,t) and its projection at t = 0.01 for the unknown
parameters a=0.35and b, = 0.5 within the interval —10 < x,t <10.
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Figure 4: Graphical representation of the solution in W5 (x,t) and its projection at t = 0.01 for the unknown
parameters a=0.35and b, = 0.5 within the interval —10 < x,t <10.
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[r242p,+5
p=y-2r2 —4p, -25, p3= 2—[?2'%20' A =3By,
i

2
A, __Bi(r"+2p; +5) By =0
P1P3
where, g, Pg, P, and Bjare constants. Using the values of phase one, equation (10) and (11), we have

0.8, 1 _By(r’+2p, +5) 1 ?
S 1+ peprrat PLP3 1+ pePx+at

1
1+ pePdt

2
r+2p,+s
p=—\/—2r2—4p2—25, p4=—,/Tp2 »Ag=0, A =p4By,
1

2
A, __Bi(r"+2p, +s), By =0,
P1Ps
Where @, pg, P, and B, are constants. Similarly, we get

2
B 1 B,(r? +2p, +5) 1
Paby px+qt | px+qt )
1+ pe P1Ps 1+ pe @i (rx+st)

1
Bl(1+ pe p”th

—4r?2 -8p, —4s
p=yr?—4p, +s, p5=\/ P2 . Ap=0, A =psBy,

P1

Phase one:

ei(rx+st)

Wl(X,t) =
B1

Phase two:

W2 (X,t) =

Phase three:

Ay, =—psBy, By =-2B,,

where, 0, Pg, Po and By are constants. Similarly, we get

2
1 1
PsByo (pmqt] — PsBo (qutJ
Wi (x,t) = 1+ pe 1+ pe pi(nest)

1
o ZB(lpequ

Phase four:

a— 2_ —
p=—\/r2+2pz+51pe=_\/ L 4S'%=0n

P
A =PeBo, Ay =—PgBg, B =—2By,
where, 0, Pg, P2, Bgand By are constants. Similarly, we get
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2
1 1
PeBy| g |~ PeBo| - prrat
681(1_'_ IDepx+qt) 6 0(1+ pepx+qt] ei(rx+st)

1
P ZB[lpepq]

2 2 2
—-r°—2p,-s r-+2p,+s Bi(rc+2p, +s
p=, P2 ,p7=/ P2 A= ( P2 )1
2 2p 4ppy

2
r<+2p, +s

p =Bl P2+S) A _ B, B, —-058,
2P py

where, 0, Pg, P2, Bgand By are constants. Similarly, we get

W, (x,t) =

Phase five:

2
B,(r? +2p, +5) Bl(r2+2p2+s)( 1 J+p 51( 1 J
_ By
Wy (x,1) = 4pypy 2p;py 1+ pePrat 1+ pePx*at ilpesst)
By —0.5B, %
1+ peP**d
Phase six:
oo [Z=2pms o Pe2ps ) B +2p, +9)
2 2p; 4p;pg
2
Al.:_Bl(r +2p2 +S)1 A2 = pSBl’ B]_ Z—O.SBo,
2Py Pg
where, 0, Pg, P2, Bgand By are constants. Similarly, we get
2
B,(r? +2p, +5) Bl(r2+2p2+s)( 1 ]+ ( 1 ]
_ 6B ——————
W (x 1) = —P1Pe 2ppg 1+ peP L+ pe™™ %) | sicocest

1

Phase seven:

2 2
p=y—2r% —4p, 25, pg= |2 tAP2¥25 1, Bo(rT+2p; +5)
Py P1Pg

2r?By —r?B, + 4p,By —2p,B, + 25B, — sB,)
A =
PPy
where, Py, T1,S, Py, Bgand Bjare constants. Similarly, we get

v Ay =PoBy,
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2
Bo(r? +2p2+s)+ZBOrZ_r281+4p280—2pZBl+ZSBO—SBl)[ 1 }p B[ 1 ]
- X+qt 9%1 X+qt
Wy (x1) = P1Pg 2p1pg 1+ pePX*d 1+ peP**d (Pt
1
Bo+Bj| —————
Phase eight:

p=— —2r2—4p2—23 bro = — 2r2+4p2+23 AOZ_BO(r2+2p2+s)
P P1P10

_ 2r%By —r?By +4p,By —2p,By + 25B) —5By)
P1P1o
where, p;,T1,S, Py, Byand Bjare constants. Similarly, we get

A . Ay = poBy,

2
Bo(r2+2p2 +S)+ZBOrZ_rZBl+4pZBO—2p281+ZSBO—SBl)[ 1 ]+p B]_( 1 ]
_ 108y ——
P1P10 P1P10 1+ pe Pt 1+ pePXHd! pi(ncrst)

1
BO + Bl[l+ pe px+qt J

WS (X,t) =

IV. CONCLUSIONS

In this paper, we have extracted different types of solitons which are shown in the Figures (1- 4) of the
equation (1) and the equation through the generalized Kudryshov method. The study model is a critical
nonlinear evolution equations that arises in the vast areas of applied sciences, such as nonlinear optics,
plasma physics, quantum mechanics. The studied technique is straightforward, brief, outspoken, and sincere
to execute as well as it is pretty proficient for generating new different types of solitons of distinct nonlinear
evolution equations.
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