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Abstract 

This study examines the new different varieties of soliton structures of the unstable nonlinear Schrodinger 

equation through the generalized Kudryshov method. This model has valuable applications in mathematical 

physics. The obtained new different types of soliton structures are represented in names of the rational, and 

exponential functions show that the considered approach is useful to investigate the nonlinear dispersive 

equations in mathematical physics. 
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I. INTRODUCTION 

Nonlinear evolution equations (NLEEs) have been contained with paramount importance due to its diversity 

of uses in physics, mathematical sciences and engineerings such as electrostatics, fluids dynamics, elasticity, 

quantum mechanics and electrodynamics. Lately, numerous novel dominant processes have been recommended 

for attaining the exact solution of NLEEs such as modified (G'/G)-expansion method [1, 2], new generalized 

(G'/G)-expansion method [3, 4, 5], new generalized (G'/G)-expansion method [6], the exp- )( -expansion 

method [7, 8], finite series Jacobi elliptic cosine function ansatz [9], residual power series method [10], 

Variation of Parameters Method [11], Riccati-Bernoulli sub-ODE method [12], Extended mapping method [13], 

Extended direct algebraic sech method [14],  extended modified mapping method [15], Sech-tanh method [16], 

the direct algebraic function method [17], Generalized unified method [18], the generalized exponential function 

[19], eneral bilinear form [20],  modified Kudryashov method [21] and many more. 

 

The paper applied the generalized Kudryshov method [23] to derive the different type of soliton structures for 

unstable Schrödinger equation [21, 22]. 

 

Let us consider that the general form of unstable Schrödinger equation: 

              022 2
2

1  WpWwpWiW xxt                                                                                              (1) 

where, 1p  is a real number and W (x, t ) is a complex-valued function, is a special type of nonlinear evolution 

equations that arises in the vast areas of applied sciences, such as nonlinear optics, plasma physics, quantum 

mechanics, and so on. 

 

II. Glimpse of the generalized Kudryshov method 

 

 Step 1: We consider that a NLEE for W (x, t ): 
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where,  K represents a polynomial in W. 

To locate the transformation of equation 2: 

                  ctxWtxWW  ),(),(                                                                                                       (3) 

From Equation (2) and equation (3),we locate the following ODE: 
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 Step 2: Calculate M and N through the balance rule on equation (4). 
 

 Step 3:Let us consider that: 
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where, iA  and  jB  are real constants, N and M are positive integers such that 0, MN BA and Ψ satisfies the 

following ODE: 
 

                      )()()( 2                                                                                                                      (6) 

The general solution of equation (6) is of the form: 
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where, h is any arbitrary constant. 

Step 4: Determine the positive integers N and M in equation (5) by balancing the highest order 

derivative term with the nonlinear term of W(ξ) in equation (2) or equation (4). Moreover, we 

define the degree of W(ξ) as ,))(( MNWD   which gives rise to the degree of other expression 

as 
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where,  p, q, s are integer numbers. Thus, we can find the value of N and M in equation (5). 

  

Step 5: Applying equation (5) into equation (4) and equation (8), collecting all terms with the same order 

of Φ together. Equating each coefficient of this polynomial to zero, yields a set of algebraic equations 

which can be solved to find the values of Φ(ξ) with the help of MAPLE. 

 

III. Solitons to the unstable nonlinear Schrodinger equation 
 

Let us consider that the general form of unstable Schrdinger equation: 

                        022 2
2

1  WpWwpWiW xxt                                                                                          (9) 

Using 
 ietxW )(),(  , where qtpx , ,strx  ten equation (9) converts into the following 

ODE: 

                    0)(2)()2()( 3
12

22    ppsrp                                                                   (10) 

Applying the rule of homogeneous balance on equation (10), then we get: 
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By equation (11) and equation (10) and then equating each coefficients of 
i  to zeros, we get: 
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(a) Absulute value 3D 

surface  

 
(b) Real 3D surface 

 
(c) Complex  3D surface 

 
(d) Real contour shape 

 
(e) Complex contour 

shape 

 
(f) Absulute value 2D 

shape 

 
(g) Real 2D shape 

 
(h) Complex 2D shape 

 

Figure 1: Graphical representation of the solution in ),(1 txW and its projection at 01.0t for the unknown 

parameters 35.0a and 5.02 b within the interval .10,10  tx  
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(b) Real 3D surface 

 
 

(c) Complex 3D surface 

 
 

(d) Real contour shape 

 
(e) Complex contour 

shape 

 
(f) Absolute value 2D 

shape 

 
(g) Real 2D shape 

 
(h) Complex 2D 

shape 
 

Figure 2: Graphical representation of the solution in ),(3 txW and its projection at 01.0t for the unknown 

parameters 35.0a and 5.02 b within the interval .10,10  tx  
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(a) Absolute value 
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(b) Real 3D surface 

 
c) Complex 3D surface 

 
(d) Real contour shape 

 
(e) Complex contour 

shape 

 
(f) Absolute value 2D 

shape 

 
(g) Real 2D shape 

 
(h) Complex 2D shape 

 

Figure 3: Graphical representation of the solution in ),(5 txW and its projection at 01.0t for the unknown 

parameters 35.0a and 5.02 b within the interval .10,10  tx  
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(g) Real 2D shape  
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Figure 4: Graphical representation of the solution in ),(7 txW and its projection at 01.0t for the unknown 

parameters 35.0a and 5.02 b within the interval .10,10  tx  
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where, 20  , , ppq and 1B are constants. Using the values of phase one, equation (10) and (11), we have 
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Where 20  , , ppq and 1B are constants. Similarly, we get 
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Phase three:  
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where, 20  , , ppq and 1B are constants. Similarly, we get 
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Phase four:  
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where, 020  , , , Bppq and 1B are constants. Similarly, we get 
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Phase five:  
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where, 020  , , , Bppq and 1B are constants. Similarly, we get 
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Phase six:  
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where, 020  , , , Bppq and 1B are constants. Similarly, we get 
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Phase seven:  
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where, 021  , , , , Bpsrp and 1B are constants. Similarly, we get 
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 Phase eight:  
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where, 021  , , , , Bpsrp and 1B are constants. Similarly, we get 
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IV. CONCLUSIONS 
 

In this paper, we have extracted different types of solitons which are shown in the Figures (1- 4) of the 

equation (1) and the equation through the generalized Kudryshov method. The study model is a critical 

nonlinear evolution equations that arises in the vast areas of applied sciences, such as nonlinear optics,  

plasma physics, quantum mechanics. The studied technique is straightforward, brief, outspoken, and sincere 

to execute as well as it is pretty proficient for generating new different types of solitons of distinct nonlinear 

evolution equations. 
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