Unique Metro Domination of Cube of Paths

Kishori P. Narayankar^{#1}, Denzil Jason Saldanha^{#2}, John Sherra^{#3}

^{#1}Department of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574199, India.

^{#2}Department of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574199, India.

^{#3}Department of Mathematics (Retired), St Aloysius College (Autonomous), Mangalore-575003, India.

Abstract — A dominating set D of G which is also a resolving set of G is called a metro dominating set. A metro dominating set D of a graph G(V,E) is a unique metro dominating set (in short an UMD-set) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$ and the minimum cardinality of an UMD-set of G is the unique metro domination number of G denoted by $\gamma_{uB}(G)$. In this paper, we determine unique metro domination number of P_n^3 graphs.

Keywords — Domination, metric dimension, metro domination, unique metro domination.

I. INTRODUCTION

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between two vertices u and v in a graph G is called the distance between u and v and is denoted by d(u, v). For a vertex v of a graph, N(v) denote the set of all vertices adjacent to v and is called open neighborhood of v. Similarly, the closed neighborhood of v is defined as $N[v] = N(v) \cap \{v\}$. Let G(V, E) be a graph. For each ordered subset $S = \{v_1, v_2, v_3, ..., v_k\}$ of V, each vertex $v \in V$ can be associated with a vector of distances denoted by $\Gamma(v/S) = (d(v_1, v), d(v_2, v), ..., d(v_k, v))$. The set S is said to be a resolving set of G, if $\Gamma(v/S) \neq \Gamma(u/S)$, for every $u, v \in V - S$. A resolving set of minimum cardinality is a *metric basis* and cardinality of a metric basis is the *metric dimension* of G. The k-tuple, $\Gamma(v/S)$ associated to the vertex $v \in V$ with respect to a metric basis S, is referred as a code generated by S for that vertex v. If $\Gamma(v/S) = (c_1, c_2, ..., c_k)$, then $c_1, c_2, c_3, ..., c_k$ are called components of the code of v generated by S and in particular $c_i, 1 \le i \le k$, is called i^{th} -component of the code of v generated by S.

A dominating set D of a graph G(V, E) is the subset of V having the property that for each vertex $v \in V - D$, there exists a vertex $u \in D$ such that uv is in E. A dominating set D of G which is also a resolving set of G is called a *metro dominating set*. A metro dominating set D of a graph G(V, E) is a *unique metro dominating set* (in short an UMD - set) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$ and the minimum of cardinalities of UMD-sets of G is the *unique metro domination number* of G denoted by $\gamma_{\mu\beta}(G)$.

Consider P_n , $n \ge 4$. Join v_i to v_{i+2} and v_{i+3} for $1 \le i \le n-3$. The resulting graph is denoted by P_n^3 .

Lemma 1: For any positive integer $n, \gamma_{\mu\beta}(P_n^3) \ge \left[\frac{n}{7}\right]$.

Proof: A vertex v_i dominates seven vertices $v_i, v_{i-1}, v_{i-2}, v_{i-3}, v_{i+1}, v_{i+2}, v_{i+3}$. Therefore, if D is a minimal dominating set then $|D| \ge \frac{n}{7}$. Hence we have $\gamma(P_n^3) \ge \lceil \frac{n}{7} \rceil$.

End vertex v_1 of P_n^3 can dominate only 4 vertices v_1, v_2, v_3 and v_4 . As we have to minimize |D|, we include v_4 in D, which dominates $v_1, v_2, v_3, v_4, v_5, v_6$ and v_7 .

Lemma 2: For n = 7k, $\gamma(P_n^3) = \left|\frac{n}{7}\right|$. **Proof**: When k = 1, v_4 dominates all vertices of $P_7^3 = 1$. Hence $\gamma(P_n^3) = 1$. Let n = 7k. Then $D = \{v_4, v_{11}, v_{18}, ..., v_{7k-3}\}$ and |D| = k. When n = 7(k + 1), take $D' = D \cup \{v_{7k+4}\}$. Observe that |D'| = k + 1 and D' dominates all vertices. From Lemma1, we have $\gamma(P_{7(k+1)}^3) \ge \left[\frac{7(k+1)}{7}\right] = k + 1$, and |D'| = k + 1. Therefore we conclude that $\gamma(P_{7(k+1)}^3) = k + 1$. Thus by induction $\gamma(P_n^3) = k = \lceil\frac{n}{7}\rceil$.

Lemma 3: If n = 7k, then $\gamma_{\mu\beta}(P_n^3) = k = \left[\frac{n}{7}\right]$.

Proof: In P_n^3 , consider any v_j and v_{j+7} , $j \ge 4$ in D. Vertex v_j dominates v_{j-3} , v_{j-2} , v_{j-1} , v_{j+1} , v_{j+2} , v_{j+3} . Vertex v_{j+7} dominates v_{j+4} , v_{j+5} , v_{j+6} , v_{j+8} , v_{j+9} and v_{j+10} . These vertices are uniquely dominated by v_j and v_{j+7} . The vertices v_1 , v_2 and v_3 are uniquely dominated by v_4 . The vertex v_{7k} , v_{7k-1} and v_{7k-2} are uniquely dominated by v_{7k-3} .

If j > i + 14, then $d(v_i, v_j) = \left[\frac{j-i}{3}\right]$, $d(v_{i+7}, v_j) = \left[\frac{j-i-7}{3}\right]$ and $d(v_{i+14}, v_j) = \left[\frac{j-i-14}{3}\right]$. Hence if j = 3k and j > i + 14 then $d(v_i, v_{j-1}) = d(v_i, v_j) = d(v_i, v_{j+1})$, whereas $d(v_{i+7}, v_j) = d(v_{i+7}, v_{j+1}) = d(v_{i+7}, v_{j+2})$ and $d(v_{i+14}, v_{j+1}) = d(v_{i+14}, v_{j+2}) = d(v_{i+7}, v_{j+3})$. Hence codes generated by v_i, v_{i+7}, v_{i+14} to $v_j, j > i + 14$ are all distinct and therefore $\{v_i, v_{i+7}, v_{i+14}\}$ resolves them. Now take j = 3k, i < j < i + 7.

Observe that $d(v_i, v_{j-1}) = d(v_i, v_j) = d(v_i, v_{j+1})$, $d(v_{i+7}, v_{j-1}) = d(v_{i+7}, v_j) = d(v_{i+7}, v_{j+1})$ and $d(v_{i+14}, v_j) = d(v_{i+14}, v_{j+1}) = d(v_{i+14}, v_{j+2})$. Hence codes generated by $\{v_i, v_{i+7}, v_{i+14}\}$ to v_j and v_{j+1} is the same. Observe that if r < i + 21 then $d(v_{i+21}, v_r) = \left[\frac{i+21-r}{3}\right]$. Hence $d(v_{i+21}, v_j) \neq d(v_{i+21}, v_{j+1})$. Therefore $\{v_i, v_{i+7}, v_{i+14}, v_{i+21}\}$ resolves v_j , i < j < i + 7. Similarly we observe that codes generated by $\{v_i, v_{i+7}, v_{i+14}\}$ to v_j and v_{j+1} where i + 7 < j = 3k < i + 14 are same. But $d(v_{i+21}, v_j) \neq d(v_{i+21}, v_{j+1})$. Hence $\{v_i, v_{i+7}, v_{i+14}, v_{i+21}\}$ resolves all vertices $v_j, j > i$. When i = 4, the codes generated by $\{v_4, v_{11}, v_{18}, v_{25}\}$ to v_1, v_2, v_3 are (1,4,6,8), (1,3,6,8), (1,3,5,8) and hence $\{v_4, v_{11}, v_{18}, v_{25}\}$ resolves all vertices of P_n^3 . Therefore to resolve all vertices of P_n^3 we take $n \ge 22$. We observe that $D=\{v_4, v_{11}, v_{18}, \dots, v_{7k-3}, v_{7k+4}\}$ is a UMD set. Therefore $\gamma_{\mu\beta}(P_n^3) = k = \left[\frac{n}{7}\right]$.

When n = 7k + 1, 7k + 2, 7k + 3 and 7k + 4, $D = \{v_1, v_8, v_{15}, ..., v_{7k-6}, v_{7k+1}\}$ is a UMD set. When n = 7k + 5, 7k + 6 we have $D = \{v_4, v_{11}, v_{18}, ..., v_{7k-3}, v_{7k+4}\}$ is a UMD set. Therefore $\gamma_{\mu\beta}(P_n^3) = k + 1$. In all these cases $|D| = k + 1 = \left[\frac{n}{7}\right]$. Thus we obtain that $\gamma_{\mu\beta}(P_n^3) = \left[\frac{n}{7}\right]$, $\forall n \ge 22$. If n < 22, then we observe that $\gamma_{\mu\beta}(P_n^3) = n$. Hence we have

II. CONCLUSION

Theorem 1.
$$\gamma_{\mu\beta}(P_n^3) = \begin{cases} \left[\frac{n}{7}\right], & \text{for } n \ge 22\\ n, & \text{for } n < 22 \end{cases}$$
.

REFERENCES

- [1] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Dominations in Graphs, Marcel Dekker, New York (1998)
- [2] Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R.Oellermann. Resolvability in graphs and the metric dimension of a graph. *Discrete Appl. Math.*, 105(1-3)(2000) 99-113.
- [3] Harary F, Melter R.A., On the Metric dimention of a graph, Ars Combinatoria 2 (1976) 191-195
- [4] S. Kuller, B. Raghavachari and A. Rosenfied, Land marks ingraphs, Disc. Appl. Math.70 (1996) 217-229
- [5] C. Poisson and P. Zhang, The metric dimension of unicyclicgraphs, J. Comb. Math Comb. Compu. 40 (2002) 17-32.

[6] P. J. Slater, Domination and location in acyclic graphs, Networks17 (1987) 55-64

- [7] P. J. Slater, *Locating dominating sets*, in Y. Alavi and A. Schwenk, editors, Graph Theory, Combinatorics, and Applications, Proc.Seventh Quad International Conference on the theory and applications of Graphs. John Wiley & Sons, Inc. (1995) 1073-1079
- [8] B. Sooryanarayana and John Sherra, Unique metro domination in graphs, Adv Appl Dis- crete Math., Vol 14(2), (2014),
- [9] H.B.Walikar, Kishori P. Narayankar and Shailaja S. Shirakol, *The Number of Minimum Dominating Sets in P_n × P₂*, International J.Math. Combin. Vol.3 (2010), 17-21.
- [10] B. Sooryanarayana and John Sherra, Unique Metro Domination Number of Circulant Graphs, International J.Math. Combin.Vol.1(2019), 53-61