Unique Metro Domination of Cube of Paths

Kishori P. Narayankar ${ }^{\# 1}$, Denzil Jason Saldanha ${ }^{\# 2}$, John Sherra ${ }^{\# 3}$
\#l Department of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574199, India.
\#2 Department of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574199, India.
${ }^{\# 3}$ Department of Mathematics (Retired), St Aloysius College (Autonomous), Mangalore-575003, India.

Abstract

A dominating set D of G which is also a resolving set of G is called a metro dominating set. A metro dominating set D of a graph $G(V, E)$ is a unique metro dominating set (in short an UMD-set) if $|N(v) \cap D|=1$ for each vertex $v \in V-D$ and the minimum cardinality of an UMD-set of G is the unique metro domination number of G denoted by $\gamma_{\mu \beta}(G)$. In this paper, we determine unique metro domination number of $P_{n}{ }^{3}$ graphs.

Keywords - Domination, metric dimension, metro domination, unique metro domination.

I. INTRODUCTION

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between two vertices u and v in a graph G is called the distance between u and v and is denoted by $d(u, v)$. For a vertex v of a graph, $N(v)$ denote the set of all vertices adjacent to v and is called open neighborhood of v. Similarly, the closed neighborhood of v is defined as $N[v]=N(v) \cap\{v\}$. Let $G(V, E)$ be a graph. For each ordered subset $S=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\}$ of V, each vertex $v \in V$ can be associated with a vector of distances denoted by $\Gamma(v / S)=\left(d\left(v_{1}, v\right), d\left(v_{2}, v\right), \ldots d\left(v_{k}, v\right)\right)$. The set S is said to be a resolving set of G, if $\Gamma(v / S) \neq \Gamma(u / S)$, for every $u, v \in V-S$. A resolving set of minimum cardinality is a metric basis and cardinality of a metric basis is the metric dimension of G. The k-tuple, $\Gamma(v / S)$ associated to the vertex $v \in V$ with respect to a metric basis S , is referred as a code generated by S for that vertex v. If $\Gamma(v / S)=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$, then $c_{1}, c_{2}, c_{3}, \ldots, c_{k}$ are called components of the code of v generated by S and in particular $c_{i}, 1 \leq i \leq k$, is called $i^{t h}$-component of the code of v generated by S.
A dominating set D of a graph $G(V, E)$ is the subset of V having the property that for each vertex $v \in V-D$, there exists a vertex $u \in D$ such that $u v$ is in E. A dominating set D of G which is also a resolving set of G is called a metro dominating set. A metro dominating set D of a graph $G(V, E)$ is a unique metro dominating set (in short an $U M D-s e t$) if $|N(v) \cap D|=1$ for each vertex $v \in V-D$ and the minimum of cardinalities of UMD-sets of G is the unique metro domination number of G denoted by $\gamma_{\mu \beta}(G)$.
Consider $P_{n}, n \geq 4$. Join v_{i} to v_{i+2} and v_{i+3} for $1 \leq i \leq n-3$. The resulting graph is denoted by P_{n}^{3}.
Lemma 1: For any positive integer $n, \gamma_{\mu \beta}\left(P_{n}^{3}\right) \geq\left\lceil\frac{n}{7}\right\rceil$.
Proof: A vertex v_{i} dominates seven vertices $v_{i}, v_{i-1}, v_{i-2}, v_{i-3}, v_{i+1}, v_{i+2}, v_{i+3}$. Therefore, if D is a minimal dominating set then $|D| \geq \frac{n}{7}$. Hence we have $\gamma\left(P_{n}^{3}\right) \geq\left\lceil\frac{n}{7}\right\rceil$.
End vertex v_{1} of P_{n}^{3} can dominate only 4 vertices v_{1}, v_{2}, v_{3} and v_{4}. As we have to minimize $|D|$, we include v_{4} in D, which dominates $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ and v_{7}.

Lemma 2: For $n=7 k, \gamma\left(P_{n}^{3}\right)=\left\lceil\frac{n}{7}\right\rceil$.
Proof: When $k=1, v_{4}$ dominates all vertices of $P_{7}^{3}=1$. Hence $\gamma\left(P_{n}^{3}\right)=1$.
Let $n=7 k$. Then $D=\left\{v_{4}, v_{11}, v_{18}, \ldots, v_{7 k-3}\right\}$ and $|D|=k$. When $n=7(k+1)$, take $D^{\prime}=D \cup\left\{v_{7 k+4}\right\}$. Observe that $\left|D^{\prime}\right|=k+1$ and D^{\prime} dominates all vertices.
From Lemma1, we have $\gamma\left(P_{7(k+1)}^{3}\right) \geq\left\lceil\frac{7(k+1)}{7}\right\rceil=k+1$, and $\left|D^{\prime}\right|=k+1$. Therefore we conclude that $\gamma\left(P_{7(k+1)}^{3}\right)=k+1$. Thus by induction $\gamma\left(P_{n}^{3}\right)=k=\left\lceil\frac{n}{7}\right\rceil$.

Lemma 3: If $n=7 k$, then $\gamma_{\mu \beta}\left(P_{n}^{3}\right)=k=\left\lceil\frac{n}{7}\right\rceil$.
Proof: In P_{n}^{3}, consider any v_{j} and $v_{j+7}, j \geq 4$ in D. Vertex v_{j} dominates $v_{j-3}, v_{j-2}, v_{j-1}, v_{j+1}, v_{j+2}, v_{j+3}$. Vertex v_{j+7} dominates $v_{j+4}, v_{j+5}, v_{j+6}, v_{j+8}, v_{j+9}$ and v_{j+10}. These vertices are uniquely dominated by v_{j} and v_{j+7}. The vertices v_{1}, v_{2} and v_{3} are uniquely dominated by v_{4}. The vertex $v_{7 k}, v_{7 k-1}$ and $v_{7 k-2}$ are uniquely dominated by $v_{7 k-3}$.

If $j>i+14$, then $d\left(v_{i}, v_{j}\right)=\left\lceil\frac{j-i}{3}\right\rceil, d\left(v_{i+7}, v_{j}\right)=\left\lceil\frac{j-i-7}{3}\right\rceil$ and $d\left(v_{i+14}, v_{j}\right)=\left\lceil\frac{j-i-14}{3}\right\rceil$. Hence if $j=3 k$ and $j>i+14$ then $d\left(v_{i}, v_{j-1}\right)=d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{j+1}\right)$, whereas $d\left(v_{i+7}, v_{j}\right)=d\left(v_{i+7}, v_{j+1}\right)=d\left(v_{i+7}, v_{j+2}\right)$ and $d\left(v_{i+14}, v_{j+1}\right)=d\left(v_{i+14}, v_{j+2}\right)=d\left(v_{i+7}, v_{j+3}\right)$. Hence codes generated by v_{i}, v_{i+7}, v_{i+14} to $v_{j}, j>i+14$ are all distinct and therefore $\left\{v_{i}, v_{i+7}, v_{i+14}\right\}$ resolves them. Now take $j=3 k, i<j<i+7$.
Observe that $d\left(v_{i}, v_{j-1}\right)=d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{j+1}\right), d\left(v_{i+7}, v_{j-1}\right)=d\left(v_{i+7}, v_{j}\right)=d\left(v_{i+7}, v_{j+1}\right) \quad$ and $d\left(v_{i+14}, v_{j}\right)=d\left(v_{i+14}, v_{j+1}\right)=d\left(v_{i+14}, v_{j+2}\right)$. Hence codes generated by $\left\{v_{i}, v_{i+7}, v_{i+14}\right\}$ to v_{j} and v_{j+1} is the same. Observe that if $r<i+21$ then $d\left(v_{i+21}, v_{r}\right)=\left\lceil\frac{i+21-r}{3}\right\rceil$. Hence $d\left(v_{i+21}, v_{j}\right) \neq d\left(v_{i+21}, v_{j+1}\right)$. Therefore $\left\{v_{i}, v_{i+7}, v_{i+14}, v_{i+21}\right\}$ resolves $v_{j}, i<j<i+7$. Similarly we observe that codes generated by $\left\{v_{i}, v_{i+7}, v_{i+14}\right\}$ to v_{j} and v_{j+1} where $i+7<j=3 k<i+14$ are same. But $d\left(v_{i+21}, v_{j}\right) \neq d\left(v_{i+21}, v_{j+1}\right)$. Hence $\left\{v_{i}, v_{i+7}, v_{i+14}, v_{i+21}\right\}$ resolves all vertices $v_{j}, j>i$. When $i=4$, the codes generated by $\left\{v_{4}, v_{11}, v_{18}, v_{25}\right\}$ to v_{1}, v_{2}, v_{3} are $(1,4,6,8),(1,3,6,8),(1,3,5,8)$ and hence $\left\{v_{4}, v_{11}, v_{18}, v_{25}\right\}$ resolves all vertices of P_{n}^{3}. Therefore to resolve all vertices of P_{n}^{3} we take $n \geq 22$. We observe that $\mathrm{D}=\left\{v_{4}, v_{11}, v_{18}, \ldots, v_{7 k-3}, v_{7 k+4}\right\}$ is a UMD set. Therefore $\gamma_{\mu \beta}\left(P_{n}^{3}\right)=k=\left\lceil\frac{n}{7}\right\rceil$.
When $n=7 k+1,7 k+2,7 k+3$ and $7 k+4, D=\left\{v_{1}, v_{8}, v_{15}, \ldots, v_{7 k-6}, v_{7 k+1}\right\}$ is a UMD set.
When $n=7 k+5,7 k+6$ we have $D=\left\{v_{4}, v_{11}, v_{18}, \ldots, v_{7 k-3}, v_{7 k+4}\right\}$ is a UMD set.
Therefore $\gamma_{\mu \beta}\left(P_{n}^{3}\right)=k+1$. In all these cases $|D|=k+1=\left\lceil\frac{n}{7}\right\rceil$. Thus we obtain that $\gamma_{\mu \beta}\left(P_{n}^{3}\right)=\left\lceil\frac{n}{7}\right\rceil, \forall n \geq 22$. If $n<22$, then we observe that $\gamma_{\mu \beta}\left(P_{n}^{3}\right)=n$. Hence we have

II. CONCLUSION

Theorem 1. $\gamma_{\mu \beta}\left(P_{n}^{3}\right)=\left\{\begin{array}{ll}\left\lceil\frac{n}{7}\right\rceil, & \text { for } n \geq 22 \\ n, & \text { for } n<22\end{array}\right.$.

REFERENCES

[1] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Dominations in Graphs, Marcel Dekker, New York (1998)
[2] Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R.Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105(1-3)(2000) 99-113.
[3] Harary F, Melter R.A., On the Metric dimention of a graph, Ars Combinatoria 2 (1976) 191-195
[4] S. Kuller, B. Raghavachari and A. Rosenfied, Land marks ingraphs, Disc. Appl. Math. 70 (1996) 217-229
[5] C. Poisson and P. Zhang, The metric dimension of unicyclicgraphs, J. Comb. Math Comb. Compu. 40 (2002) 17-32.
[6] P. J. Slater, Domination and location in acyclic graphs, Networks17 (1987) 55-64
[7] P. J. Slater, Locating dominating sets, in Y. Alavi and A. Schwenk,editors, Graph Theory, Combinatorics, and Applications, Proc.Seventh Quad International Conference on the theory and appli-cations of Graphs. John Wiley \& Sons, Inc. (1995) 1073-1079
[8] B. Sooryanarayana and John Sherra, Unique metro domination in graphs,Adv Appl Dis- crete Math.,Vol 14(2), (2014),
[9] H.B.Walikar, Kishori P. Narayankar and Shailaja S. Shirakol, The Number of Minimum Dominating Sets in $P_{n} \times P_{2}$, International J.Math. Combin. Vol. 3 (2010), 17-21.
$[10]$ B. Sooryanarayana and John Sherra, Unique Metro Domination Number of Circulant Graphs,International J.Math. Combin.Vol.1(2019), 53-61

