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Abstract  — A dominating set D of G which is also a resolving set of G is called a metro dominating set. A metro 

dominating set D of a graph G(V,E) is a unique metro dominating set (in short an UMD-set) if |N(v)∩D|=1 for 

each vertex 𝑣 ∈ 𝑉 − 𝐷 and the minimum cardinality of an UMD-set of G is the unique metro domination number 

of G denoted by 𝛾𝜇𝛽(𝐺).  In this paper, we determine unique metro domination number of 𝑃𝑛
3
graphs. 
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I. INTRODUCTION 

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between 

two vertices 𝑢 and 𝑣 in a graph 𝐺 is called the distance between 𝑢 and 𝑣 and is denoted by 𝑑(𝑢, 𝑣). For a vertex 

𝑣 of a graph, 𝑁(𝑣) denote the set of all vertices adjacent to 𝑣 and is called open neighborhood of 𝑣. Similarly, the 

closed neighborhood of 𝑣 is defined as 𝑁[𝑣] =  𝑁(𝑣) ∩ {𝑣}. Let 𝐺(𝑉, 𝐸) be a graph. For each ordered subset 

𝑆 ={𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑘} of 𝑉, each vertex 𝑣 ∈ 𝑉 can be associated with a vector of distances denoted by 

Γ(𝑣 𝑆) = (𝑑(𝑣1, 𝑣)⁄ , 𝑑(𝑣2, 𝑣), … 𝑑(𝑣𝑘, 𝑣)). The set 𝑆 is said to be a resolving set of G, if  Γ(𝑣/𝑆) ≠ Γ(𝑢 𝑆),   ⁄ for 

every 𝑢, 𝑣 ∈ 𝑉 − 𝑆. A resolving set of minimum cardinality is a 𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑎𝑠𝑖𝑠 and cardinality of a metric basis is 

the 𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 of G. The k-tuple, Γ(𝑣 𝑆) ⁄ associated to the vertex 𝑣 ∈ 𝑉 with respect to a metric basis S, 

is referred as a code generated by S for that vertex 𝑣. If Γ(𝑣 𝑆⁄ ) = (𝑐1, 𝑐2, . . . , 𝑐𝑘), then 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑘 are called 

components of the code of 𝑣 generated by 𝑆 and in particular 𝑐𝑖, 1 ≤ 𝑖 ≤  𝑘,  is called 𝑖𝑡ℎ-component of the code 

of  𝑣 generated by 𝑆. 
A dominating set 𝐷 of a graph 𝐺(𝑉, 𝐸) is the subset of 𝑉 having the property that for each vertex 𝑣 ∈  𝑉 − 𝐷, 

there exists a vertex 𝑢 ∈  𝐷 such that 𝑢𝑣 is in 𝐸. A dominating set 𝐷 of 𝐺 which is also a resolving set of 𝐺 is 

called a 𝑚𝑒𝑡𝑟𝑜 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡. A metro dominating set 𝐷 of a graph 𝐺(𝑉, 𝐸) is a 

𝑢𝑛𝑖𝑞𝑢𝑒 𝑚𝑒𝑡𝑟𝑜 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 (in short an  𝑈𝑀𝐷 − 𝑠𝑒𝑡) if  ∣  𝑁(𝑣) ∩  𝐷 ∣ =1 for each vertex 𝑣 ∈  𝑉 − 𝐷 and 

the minimum of cardinalities of UMD-sets of G is the  𝑢𝑛𝑖𝑞𝑢𝑒 𝑚𝑒𝑡𝑟𝑜 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 of 𝐺 denoted by  

𝛾𝜇𝛽(𝐺).  

Consider 𝑃𝑛 , 𝑛 ≥ 4. Join 𝑣𝑖 to 𝑣𝑖+2 and 𝑣𝑖+3  for 1 ≤  𝑖 ≤  𝑛 − 3. The resulting graph is denoted by 𝑃𝑛
3. 

 

Lemma 1:  For any positive integer 𝑛, 𝛾𝜇𝛽(𝑃𝑛
3) ≥ ⌈

𝑛

7
⌉. 

Proof: A vertex 𝑣𝑖 dominates seven vertices 𝑣𝑖, 𝑣𝑖−1, 𝑣𝑖−2, 𝑣𝑖−3, 𝑣𝑖+1, 𝑣𝑖+2, 𝑣𝑖+3. Therefore, if D is a minimal 

dominating set then ∣ 𝐷 ∣ ≥  
𝑛

7
. Hence we have 𝛾(𝑃𝑛

3)≥ ⌈ 
𝑛

7
 ⌉. 

End vertex 𝑣1 of 𝑃𝑛
3 can dominate only 4 vertices 𝑣1, 𝑣2, 𝑣3 and 𝑣4. As we have to minimize ∣ 𝐷 ∣, we include 𝑣4 

in 𝐷 , which dominates 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6 and 𝑣7. 

 

Lemma 2:  For 𝑛 = 7𝑘, 𝛾(𝑃𝑛
3) = ⌈

𝑛

7
⌉. 

Proof: When 𝑘 = 1, 𝑣4 dominates all vertices of 𝑃7
3 = 1. Hence 𝛾(𝑃𝑛

3) = 1. 
Let 𝑛 = 7𝑘. Then 𝐷 = {𝑣4, 𝑣11, 𝑣18, … , 𝑣7𝑘−3 } and ∣ 𝐷 ∣= 𝑘. When 𝑛 = 7(𝑘 + 1), take 𝐷′ = 𝐷 ∪ {𝑣7𝑘+4}. 
Observe that ∣ 𝐷′ ∣= 𝑘 + 1 and 𝐷′dominates all vertices.  

From Lemma1, we have 𝛾(𝑃7(𝑘+1)
3 ) ≥ ⌈ 

7(𝑘+1)

7
⌉ = 𝑘 + 1, and  ∣  𝐷′ ∣ = 𝑘 + 1. Therefore we conclude that 

𝛾(𝑃7(𝑘+1)
3 ) = 𝑘 + 1. Thus by induction  𝛾(𝑃𝑛

3) = 𝑘 = ⌈
𝑛

7
⌉. 

 

Lemma 3:  If 𝑛 = 7𝑘, then  𝛾𝜇𝛽(𝑃𝑛
3) = 𝑘 = ⌈

𝑛

7
⌉. 

Proof: In 𝑃𝑛
3, consider any 𝑣𝑗 and 𝑣𝑗+7  , 𝑗 ≥ 4 in D. Vertex 𝑣𝑗 dominates 𝑣𝑗−3, 𝑣𝑗−2, 𝑣𝑗−1, 𝑣𝑗+1, 𝑣𝑗+2, 𝑣𝑗+3. Vertex 

𝑣𝑗+7  dominates 𝑣𝑗+4, 𝑣𝑗+5, 𝑣𝑗+6, 𝑣𝑗+8, 𝑣𝑗+9 and 𝑣𝑗+10. These vertices are uniquely dominated by 𝑣𝑗 and 𝑣𝑗+7. The 

vertices 𝑣1, 𝑣2 and 𝑣3 are uniquely dominated by 𝑣4. The vertex 𝑣7𝑘, 𝑣7𝑘−1 and 𝑣7𝑘−2 are uniquely dominated 

by 𝑣7𝑘−3.  
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If 𝑗 >  𝑖 +  14, then 𝑑(𝑣𝑖, 𝑣𝑗) = ⌈
𝑗−𝑖

3
⌉ , 𝑑(𝑣𝑖+7, 𝑣𝑗) = ⌈

𝑗−𝑖−7

3
⌉ and 𝑑(𝑣𝑖+14, 𝑣𝑗) = ⌈

𝑗−𝑖−14

3
⌉. Hence if 𝑗 = 3𝑘 and 

𝑗 > 𝑖 + 14 then 𝑑(𝑣𝑖, 𝑣𝑗−1) = 𝑑(𝑣𝑖, 𝑣𝑗) = 𝑑(𝑣𝑖 , 𝑣𝑗+1), whereas 𝑑(𝑣𝑖+7, 𝑣𝑗) = 𝑑(𝑣𝑖+7 , 𝑣𝑗+1)=𝑑(𝑣𝑖+7, 𝑣𝑗+2) and 

𝑑(𝑣𝑖+14, 𝑣𝑗+1) = 𝑑(𝑣𝑖+14, 𝑣𝑗+2) = 𝑑(𝑣𝑖+7, 𝑣𝑗+3). Hence codes generated by 𝑣𝑖, 𝑣𝑖+7, 𝑣𝑖+14 to 𝑣𝑗,   𝑗 > 𝑖 + 14 are 

all distinct and therefore {𝑣𝑖, 𝑣𝑖+7, 𝑣𝑖+14 } resolves them. Now take 𝑗 = 3𝑘,   𝑖 < 𝑗 < 𝑖 + 7.   

Observe that 𝑑(𝑣𝑖, 𝑣𝑗−1) = 𝑑(𝑣𝑖, 𝑣𝑗) = 𝑑(𝑣𝑖, 𝑣𝑗+1),   𝑑(𝑣𝑖+7 , 𝑣𝑗−1) = 𝑑(𝑣𝑖+7, 𝑣𝑗) = 𝑑(𝑣𝑖+7, 𝑣𝑗+1) and                     

 𝑑(𝑣𝑖+14, 𝑣𝑗) = 𝑑(𝑣𝑖+14, 𝑣𝑗+1) = 𝑑(𝑣𝑖+14, 𝑣𝑗+2). Hence codes generated by {𝑣𝑖 , 𝑣𝑖+7, 𝑣𝑖+14} to 𝑣𝑗 and 𝑣𝑗+1 is the 

same. Observe that if 𝑟 < 𝑖 + 21 then 𝑑(𝑣𝑖+21, 𝑣𝑟) = ⌈
𝑖+21−𝑟

3
⌉. Hence 𝑑(𝑣𝑖+21, 𝑣𝑗) ≠ 𝑑(𝑣𝑖+21, 𝑣𝑗+1). Therefore 

{𝑣𝑖 , 𝑣𝑖+7 , 𝑣𝑖+14, 𝑣𝑖+21} resolves 𝑣𝑗, 𝑖 < 𝑗 < 𝑖 + 7. Similarly we observe that codes generated by {𝑣𝑖, 𝑣𝑖+7, 𝑣𝑖+14} 

to 𝑣𝑗 and 𝑣𝑗+1 where 𝑖 + 7 < 𝑗 = 3𝑘 < 𝑖 + 14 are same. But 𝑑(𝑣𝑖+21, 𝑣𝑗) ≠ 𝑑(𝑣𝑖+21, 𝑣𝑗+ 1). Hence 

{𝑣𝑖 , 𝑣𝑖+7 , 𝑣𝑖+14, 𝑣𝑖+21} resolves all vertices 𝑣𝑗, 𝑗 > 𝑖. When 𝑖 = 4, the codes generated by {𝑣4, 𝑣11, 𝑣18, 𝑣25} to 

𝑣1, 𝑣2, 𝑣3 are (1,4,6,8),(1,3,6,8),(1,3,5,8) and hence {𝑣4, 𝑣11, 𝑣18, 𝑣25}    resolves all vertices of 𝑃𝑛
3. Therefore to 

resolve all vertices of 𝑃𝑛
3 we take 𝑛 ≥ 22. We observe that D={𝑣4, 𝑣11, 𝑣18, … , 𝑣7𝑘−3, 𝑣7𝑘+4} is a UMD set. 

Therefore 𝛾𝜇𝛽(𝑃𝑛
3) = 𝑘 = ⌈

𝑛

7
⌉. 

When 𝑛 = 7𝑘 + 1, 7𝑘 + 2, 7𝑘 + 3 and 7𝑘 + 4,  𝐷 = {𝑣1, 𝑣8, 𝑣15, … , 𝑣7𝑘−6, 𝑣7𝑘+1} is a UMD set.  

When 𝑛 = 7𝑘 + 5, 7𝑘 + 6 we have 𝐷 = {𝑣4, 𝑣11, 𝑣18, … , 𝑣7𝑘−3 , 𝑣7𝑘+4} is a UMD set.  

Therefore 𝛾𝜇𝛽(𝑃𝑛
3) = 𝑘 + 1. In all these cases ∣ 𝐷 ∣= 𝑘 + 1 = ⌈

𝑛

7
⌉. Thus we obtain that 𝛾𝜇𝛽(𝑃𝑛

3) = ⌈
𝑛

7
⌉ , ∀𝑛 ≥ 22. 

If 𝑛 < 22, then we observe that 𝛾𝜇𝛽(𝑃𝑛
3) = 𝑛. Hence we have  

II. CONCLUSION 

 

Theorem 1. 𝛾𝜇𝛽(𝑃𝑛
3) = {

 ⌈
𝑛

7
⌉ ,      𝑓𝑜𝑟 𝑛 ≥ 22

 𝑛 ,        𝑓𝑜𝑟 𝑛 < 22
. 
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