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Abstract - This paper studies the basic properties of some elementary fractional functions such as fractional
exponential function, fractional trigonometric functions, and fractional hyperbolic functions. The Mittag-Leffler
function plays an important role in this article, and the results obtained in this article are the generalizations of
the ones of the classical functions, and are useful to solve the fractional differential problems.
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I. INTRODUCTION

Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of any arbitrary
real or complex order. It arises from a question proposed by L’Hospital and Leibniz in 1695, the history of
fractional derivatives were planted over 300 years ago. Since that time the fractional calculus has drawn the
attention of many great mathematicians of their times, such as N. H. Abel, M. Caputo, L. Euler, J. Fourier, A.K.
Grunwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren, P. S. Laplace, G. W. Leibniz, A. V. Letnikov,
J. Liouville, B. Riemann, M. Riesz, and H. Weyl. With the great efforts of researchers there have been rapid
developments on the theory of fractional calculus and its applications. During this last decades, the fractional
calculus have been applied in widespread fields of science and engineering [1-5]. In this paper, we study some
basic properties of several fractional functions, for example, fractional exponential function, fractional
trigonometric functions and fractional hyperbolic functions which are concerned with the Mittag-Leffler function,
and our results are the generalizations of the ones of the traditional elementary functions.

1. BASIC PROPERTIES

In the following, we introduce some fractional functions and their fundamental properties.
Notation 2.1: If « is a real number, then the greatest integer less than or equal to « is denoted by |a] .
Definition 2.2 ([6]): The Mittag-Leffler function is defined by

k
Ea(2) = Xio F(kZa+1)’ (1)

where « isareal number, a > 0, and z is a complex variable.
Definition 2.3 ([7]): Let 0 < a < 1, A2 beacomplex number,and x be areal variable. Then E,(1x%) iscalled
a-order fractional exponential function, and the a-order fractional cosine and sine function are defined as follows:

, (2

kq2k, 2ka
ay _ voo (F1DA%"x
coso(Ax*) = Xi=o I'(2ka+1)

and

. _1)kp2k+1,@k+Da
sin, (Ax%) = Z?=0”—x

Remark 2.4: If a =1, 1 =1, then cos;(x) = cosx, and sin,(x) = sinx.

@)

r((2k+1)a+1)

Notation 2.5: Let z = a + ib be a complex number, where i =+/—1, and a, b are real numbers. a is the real
part of z, and denoted by Re(z); b is the imaginary part of z, denoted by Im(z).
Proposition 2.6 (fractional Euler’s formula)[8]: Let 0 < a < 1, then
E,(ix®) = cos,(x®) + ising (x%). 4)

Remark 2.7: If @ = 1, we obtain Euler’s formula e = cosx + isinx .
Proposition 2.8 (fractional DeMoivre’s formula)[8]: Let 0 < a < 1, and n be a positive integer, then

[cosy,(x*) + ising, (x*)|™ = cos,(nx®) + isin,(nx%). (5)
Remark 2.9: The case a = 1 is the classical DeMoivre’s formula (cosx + isinx)™ = cosnx + isinnx.

Proposition 2.10: If 0 < a < 1, and n is a positive integer, then
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-k _ ,
cos,(nx®) = %, /gl —(2:)!((11_)2’()! [cos, (x¥)]" 2 [sing, (x*)]?*

and

(n— 1)/ (-1 k
sing(nx%) = Zl ZJm[cos,,[(x“)]"‘z""‘l[s;ina(x"‘)]z"+1 )

Proof  cos,(nx®*) = Re[[cos,(x%) + isin,(x*)]"]  (by Eq. (5))

= Re [Sig oy, [c0sa ()] ¥ ising (x)]*]

(-1 ~ )
B Zk /gJ (2:)!((n—)2k)! [cose (xD)]™ 2k [Slna(xa)]ZR

Similarly,
sing(nx®) = Im[[cos, (x%*) + ising(x*)]"]

= Im S s [eosa Gl [ising (x|

(= 1)/2J n!(—l)k
(2k+1)!(n—2k—1)!

5l

Proposition 2.11: Let 0 < @ < 1, then

[Cosa(x“)]"_Zk_l[Sina(x“)]Zk"'l.

cosq((x +¥)%) = €05 (x7) - coso (y®) = sing (x%) - sing(y®),

and

sing ((x +y)%) = sing(x*) - cosa(¥y*) + cosa (x%) - sing (y*).

Proof From [9], we have
E,(A(x +y)) = E,(Ax*) - E,(Ay*) ,
for any complex number A.
Let 1 =i, then
cosq((x + y)*) = Re[E, (i(x + y)T)]
= Re[Eq(ix%) - Eq(iy)]
= Re[(cosa(x"‘) + isina(x“)) . (Cosa(y“) + isina(y"‘))]
= c0S,(x%) - cos,(y*) — sin, (x%) - sin, (y%).
And,
sing((x + y)%) = Im[E,(i(x + y)¥)]
= Im[(cosa(x“) + isina(x“)) . (cosa(y“) + isina(y“))]
= 5ing (x%) - cos,(y*) + cosy(x%) - sing (y%).
Next, we define the other fractional trigonometric function.
Definition 2.12: Let 0 < a < 1,and A be a complex number, then

sing (Ax%)

coSqg(Ax %)

tan,(Ax%) =

is called a-order fractional tangent function.

ay _ €0Sq(Ax®)
cot,(Ax%) = prmgry
is the a-order fractional cotangent function.

1

sec,(Ax%) = PGP

is the a-order fractional secant function.
csc,(Ax®) =

1t
sing(Ax%)
is the a-order fractional cosecant function.

(6)

(7

g.e.d.

(8)

©)

(10)

(11)

(12)

(13)

(14)
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Proposition 2.13: Let 0 < @ < 1, then

sing,(—x%) = —sin, (x%), (15)
€05, (—x%) = cosy(x%), (16)
[sing (x®)]% + [cos,(x¥)]? = 1, an
1+ [tan,(x¥)]? = [sec, (x*)]?, (18)
1+ [cot, (x®)]? = [cscy (x9)]?, (19)
[cos, (x®)]? = o) (20)

[sing (x)]? = =22 (21)
tana((x + y)a) _ tang(x%)+tang(y%) (22)

1-tang(x®)-tang(y%®)
Proof By Eq. (2) and Eq. (3), we can easily obtain Eq. (15) and Eq. (16). By [7], we have
E,(Ax®) - Eq(ux®) = Eo (A + wx®), (23)

for any complex numbers A, u. Thus,

Sy a2 o a2
[sing (:)]? + [cos, (x®)]? = [Py [AE el

_ Ea(in“)+Ea(—i2x“)—2+Ea(i2x“)+Ea(—i2x"‘)+2
4 4

=1.
On the other hand,

P ay12 ay12
L+ [tang (ro))? = BRTE R = [seca (P

2 _ Ising(x®]?+[cosq(x)1?
N [sing (x®)]2

1+ [cot,(x*)]

= [esca (xM)]? .
Moreover, by Eq. (9),
054 (2x%) = [cos,(xM)]? — [sin,(x*)]*  (by Eq. (6))
= [cos, (x9)]? = (1 — [cos,(x*)]?)  (by Eq. (17))
=2 [cos,(x®)]? — 1.

And hence,
[cosq (x%)]? = 1o,
Similarly,
€05, (2x%) = [c0s,(x®)]? — [sing (x%)]?
= (1 = [sing (x®)]?) — [sin, (x*)]?
=1-2"[sin,(x®)]?
Therefore,
[sing(x®)]? = —1‘6"5;1(2"“)
In addition,
o sing((c+ )9
X CEmD)
_ sing(x%)-cosq(y%)+cosq(x%)-sing(y%) (by Eqs. (8), (9))

c05g(x %) cosq(y*)—sing (x%)-sing(y*)

_ tang(x®)+tang(v%) g.e.d

1-tang(x%)-tang(y %)

In the following, we study the properties of fractional hyperbolic functions.
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Definition 2.14: If 0 < a <1, and A is a complex number, then

o o Azkxzka
cosh,(Ax%) = YX¥-, rGkarD (24)
is called a-order fractional hyperbolic cosine function.
. @ v A2k+1,(2k+Da
sinhg,(Ax%) = Zk:om (25)
is called a-order fractional hyperbolic sine function.
Proposition 2.15: Assume that 0 < @ < 1, then
cosh,(Ax*) = w, (26)
sinhy (Ax%) = w 27)
Eq(Ax®)+Eq(-2x%) _ 1 (v Akxk® o (mDkakxka
Proof 2 T2 (Ek:ﬂ ['(ka+1) + Xk ['(ka+1) )
_ o Azkxzka
= Zk=o T(2ka+1)
= cosh,(1x%).
Eq(Ax®)—Eq(-2x%) _ 1 (v AKxk® oo (cpkakyka
2 T2 (Zk:ﬂ ['(ka+1) Xizo ['(ka+1) )
oo A2k+1,(2k+1D)a
= Xk=o [((2k+1)a+1)
= sinhg,(Ax%). g.e.d.
Corollary 2.16: E,(x%) = cosh,(x%) + sinh,(x%). (28)
E,(—x%) = coshy,(x%) — sinh,(x%). (29)
Definition 2.17: Suppose that 0 < a < 1, and A is a complex humber,
ay _ Sinhg(Ax%)
tanh,(1x%) = cosho(x®) (30)
is called a-order fractional hyperbolic tangent function.
__ coshg(Ax%)
coth,(Ax%) = e (31)
is a-order fractional hyperbolic cotangent function.
1
secha(/lx“) = W (32)
is a-order fractional hyperbolic secant function.
1
CSCha (Ax“) = W (33)
is a-order fractional hyperbolic cosecant function.
Proposition 2.18: Let 0 < a < 1,
cosha ((x + ¥)%*) = cosha(x%) - cosh, (y*) + sinh, (x%) - sinh,(y9), (34)
and
sinh, ((x + y)%®) = sinh (x*) - coshy (y*) + coshy(x%) - sinh, (y%). (35)
Proof Since
Eq(A(x + y)%) = E,(Ax%) - E,(Ay%) ,
for any complex number A.
Let 2 =1, then
E,((x +y)%) = E,(x%) - E,(y%). (36)
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If A =—1,wehave
Eq(=(x +¥)*) = Eo(=x%) - E,(=y). (37)
Thus,
cosh,((x + y)%)

= [Eo((x + Y)9) + Eo(=(x + )] (by Eq. (26))
= 2 [E(x®) - Ee(y®) + Eo(—x%) - Eo(=y™)]  (by Egs. (36), (37))
= %[(cosha(x“) + sinhg (x%)) - (cosha(y%) + sinhy (¥%)) + (coshy (x%) — sinhy (x*)) - (coshy (y*) — sinhg (y9))]
(by Egs. (28), (29))
= coshg(x%) - cosh,(y%) + sinhy,(x%) - sinh,(y%).
Similarly,
sinhy ((x + y)%)
= ~[Ea((x + )% = Eo(=(x + )] (by Eq. (27))
= ~[Ea(x®)  Eg(y®) = Ea(—x) - Eo(—y®)]

= % [(cosha (x%) + sinh, (x“)) . (cosha(y“) + sinha(y“)) - (cosha(x“) — sinh, (x“)) : (cosha (y*) — sinh, (y“))]

= sinhy(x%) - cosh,(y%) + coshy(x%) - sinh,(y%). g.e.d.

Proposition 2.19: Let 0 < a < 1, then

sinhy,(—x%) = —sinh,(x%), (38)
coshy,(—x%) = cosh,(x%), (39)
[cosh, (x*)]? — [sinh, (x*)]? = 1, (40)

1 — [tanh,(x*)]? = [sech,(x*)]?, (41)
[coth, (x%)]? — 1 = [csch, (x%)]?, (42)
[coshy (x©)]? = e, (43)
[sinh, (x®)]? = —COSh“(sza)_l, (44)
tanha((x + y)a) _ tanhg(x%)+tanhe(y%) (45)

1+tanhg(x%)-tanhe(y%)

Proof Egs. (38), (39) are easily obtained by Egs. (24), (25) respectively. On the other hand,

a _,ay12 AV_E (—rx@)]2
[coshq (x)]? = [sinhg (x®)]? = [T [t

_ Eq(2xM)+Eq(—2x%)+2  Eq(2x®)+Eq(—2x%)-2
- 4 4

=1.
And,

inhg(Ax®)12
1 —[tanh,(x*)]? = 1 — [—Z'ﬁhi(ai%

_ [cosha(x®)]?=[sinhg(xH)]?
B [coshg(x®)]2

1
" [coshq(x®)]?

= [sech,(x®)]? .
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Moreover,

[cosha(x“)
~ Lsinh a(x®)

[coth, (x*)]* -

_ [coshg(x®)?—[sinhg (x®)]?
N [sinhg(x®)]2

_ 1
T [sinhg(x)]?

= [cschy, (x¥)]? .
And,

[Ea(x“)+Ea( x®]?

[cosh, (x®)]? = .

_ Eq(2x%)+Eq(—2x%)+2
4

__2coshg(2x%)+2
- 4
__coshg(2x%)+1
- 2
AV_p (]2
[sinh,(x%)]? = [7'5“(" ) ZE”‘( x7)
_ Eq(2x®)+Eq(-2x%)-2
4

= Zcosha(2xH-2
- 4
= Cosha(@xH1
- 2
sinhg((x+y)%)
tanhe((x + ) = 202 o

__ sinhg(x%) coshg(y¥)+coshq(x®)-sinhg(y®) (by Eqs (34) (35))

- coshg(x%)-coshg(y*)+sinhg(x%)-sinhg(y %)

__ tanhg(x®)+tanha(y®) ed
T 1+tanhg(x%)-tanhe(y%) ves

In the following, we find the relationship between fractional trigonometric functions and fractional hyperbolic

functions.
Proposition 2.20: Let 0 < @ < 1, then

€0, (ix*) = cosh,(x%), (46)
sing (ix%) = isinh,(x%), (47)
tan, (ix*) = itanh,(x%), (48)
cot,(ix%*) = —icoth,(x%), (49)
secy(ix*) = sech,(x%), (50)
cscg(ix*) = —icsch, (x%). (51)
Proof cosy(ix®) = Z,‘go% (by Eq. (2))
= cosh,(x%).
sing (ix®) =i+ Xy 0% (by Eg. (3))
= isinh,(x%).
tan,(ix%*) = Z:Zgi:
_ isinhg(x%)
coshg(x%)
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= itanh,(x%).
) 1
cot,(ix%) = e

_ 1

- itanhg(x%)

= —icoth,(x%).
1

sec,(ix*) = D

_ 1
- coshg(x%)
= sech,(x%).

1

csca(ix“) = m

_ 1
- isinhg(x%)

= —icschg, (x%). g.e,d,

111. CONCLUSIONS

The fractional functions studied in this paper are closely related to Mittag-Leffler function and are the
generalizations of classical elementary functions such as exponential function, trigonometric functions, and
hyperbolic functions. The fundamental properties of these fractional functions are the same as the ones of these
classical functions. In the future, we will study the fractional differential problems of these fractional functions.
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