Minkowski-4 Mean Labeling of Graphs

M.Kaaviya Shree ${ }^{* 1}$, K.Sharmilaa ${ }^{* 2}$
II M.Sc Mathematics ${ }^{\#}$, Assistant Professor ${ }^{*}$, Department of Mathematics $(P G)^{\# *}$, PSGR Krishnammal College for Women ${ }^{\# *}$, Coimbatore-641004, Tamilnadu, India.

$$
\begin{aligned}
& \text { Abstract - Let } G=(V, E) \text { be an undirected graph with } p \text { vertices and } q \text { edges. Define a function } \\
& f: V(G) \rightarrow\{1,2,3, \ldots, q+1\} \text { is called Minkowski-4 Mean Labeling of a graph } G \text { if we could able to } \\
& \text { label the vertices } x \in V \text { with distinct elements from } 1,2, \ldots, q+1 \text { such that it induces an edge labeling } \\
& f^{*}: E(G) \rightarrow\{1,2,3, \ldots, q+1\} \text { defined as, } \\
& \qquad \boldsymbol{f}^{*}(\boldsymbol{e}=\boldsymbol{u v})=\left\lfloor\left(\frac{f(\boldsymbol{u})^{4}+\boldsymbol{f}(\boldsymbol{v})^{4}}{2}\right)^{\frac{1}{4}}\right\rfloor
\end{aligned}
$$

is distinct for all edges $e=u v \in E$. (i,e.) It indicates that the distinct vertex labeling induces a distinct edge labeling on the graph. The graph which admits Minkowski-4 Mean Labeling is called a Minkowski-4 Mean Graph. In this paper, we have investigated the Minkowski-4 Mean Labeling of some standard graphs like Path, Comb, Caterpillar, $P_{n} \odot K_{1,2}$, etc.

Keywords-Minkowski-4 Mean Labeling, Minkowski-4 Mean Graph, Path, Comb, Caterpillar, $P_{n} \odot K_{1,2}$.

I. Introduction

The graph G we used here are simple, finite and undirected graphs. $V(G)$ and $E(G)$ denotes the vertex set and edge set of a graph G. For graph theoretic terminology, we refer to Harary.F [3], Douglas B. West [1] and Gallian.J.A [2]. The concept of Mean Labeling of graphs was introduced by Somasundaram.S and Ponraj.R [4] in 2003. Sandhya.S.S, Somasundaram.S and Anusa.S [6] introduced the concept of Root Square Mean Labeling of graphs in 2014. On the same lines we define and study Minkowski-4 Mean Labeling of graphs.

II. BASIC DEFINITIONS

The following definitions are needed for the present study.

A. Definition

A walk in which all the vertices are distinct is called a Path. A Path is denoted by P_{n}. The Path P_{n} has n vertices and $n-1$ edges.

B. Definition

The graph attained by joining a single pendent edge to each vertex of a Path is called Comb. It has $2 n$ vertices and $2 n-1$ edges.

C. Definition

A tree which yields a Path when its pendant vertices are removed is called a Caterpillar. It has $3 n$ vertices and $3 n-1$ edges.

D. Definition

The $\boldsymbol{P}_{\boldsymbol{n}} \odot \boldsymbol{K}_{\mathbf{1 , 2}}$ is a graph attained by attaching the complete bipartite graph $\boldsymbol{K}_{\mathbf{1 , 2}}$ to each vertex of the path P_{n}. It has $3 n$ vertices and $3 n-1$ edges.

III.MAIN RESULTS

Theorem: 1

For every n, Path P_{n} is a Minkowski-4 Mean graph .
Proof:
Let P_{n} be a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ of length n. The gragh G has n vertices and $n-1$ edges.

Define a function $f: V(G) \rightarrow\{1,2,3, \ldots, q+1\}$ by

$$
f\left(u_{i}\right)=i \quad, 1 \leq i \leq n
$$

Then the induced edge labels are,

$$
f^{*}\left(u_{i} u_{i+1}\right)=i \quad, 1 \leq i \leq n-1
$$

Then the edge labels are distinct.
Therefore, P_{n} is a Minkowski-4 Mean graph.

Figure 1: P_{8}

Theorem: 2

For every $n, \operatorname{Comb} P_{n} \odot K_{1}$ is a Minkowski-4 Mean graph .

Proof:

Let $P_{n} \odot \mathrm{~K}_{1}$ be a comb attained from a path $P_{n}=u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining a vertex u_{i} to a pendent vertex $v_{i}(1 \leq i \leq n)$. The gragh G has $2 n$ vertices and $2 n-1$ edges.
Define a function $f: V(G) \rightarrow\{1,2,3, \ldots, q+1\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{cl}
2 i & , \text { when } i=1 \\
2 i-1 & , 2 \leq i \leq n
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{cl}
i & , \text { when } i=1 \\
2 i & , 2 \leq i \leq n
\end{array}\right.
\end{aligned}
$$

Then the induced edge labels are,

$$
\begin{array}{ll}
f^{*}\left(u_{i} u_{i+1}\right)=2 i & , 1 \leq i \leq n-1 \\
f^{*}\left(u_{i} v_{i}\right)=2 i-1 & , 1 \leq i \leq n
\end{array}
$$

Then the edge labels are distinct.
Therefore, $P_{n} \odot \mathrm{~K}_{1}$ is a Minkowski-4 Mean graph.

Figure 2: $P_{5} \odot \mathrm{~K}_{1}$

Theorem: 3
Let G be a graph attained by attaching a pendant edges to both sides of each vertex of a path P_{n}. Then G is
a Minkowski-4 Mean graph .

Proof:

Consider a graph G which is attained by attaching a pendant edges to both sides of each vertex of a path P_{n}. Let P_{n} be a path $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. Let u_{i} and w_{i} be the pendant vertices adjacent to $v_{i}(1 \leq i \leq n)$. The gragh G has $3 n$ vertices and $3 n-1$ edges.
Define a function $f: V(G) \rightarrow\{1,2,3, \ldots, q+1\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}3 i-2 & , \text { if } i \text { is odd } \\
3 i-1 & , \text { if } i \text { is even }\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}3 i-1 & , \text { if } i \text { is odd } \\
3 i-2 & , \text { if } i \text { is even }\end{cases} \\
& f\left(w_{i}\right)=\{3 i
\end{aligned}
$$

Then the induced edge labels are,

$$
\begin{array}{ll}
f^{*}\left(v_{i} v_{i+1}\right)=3 i & , 1 \leq i \leq n-1 \\
f^{*}\left(v_{i} u_{i}\right)=3 i-2 & , 1 \leq i \leq n \\
f^{*}\left(v_{i} w_{i}\right)=3 i-1 & , 1 \leq i \leq n
\end{array}
$$

Then the edge labels are distinct.
Therefore, G is a Minkowski-4 Mean graph.

Figure 3: Caterpillar

Theorem: 4

For every $n, P_{n} \odot K_{1,2}$ is a Minkowski -4 Mean graph .

Proof:

Let G be a graph attained by attaching each vertex of P_{n} to the central vertex of the complete bipartite graph $K_{1,2}$. Let P_{n} be a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and v_{i}, w_{i} be the vertices of $K_{1,2}$, which are attached to the vertex u_{i} of P_{n}. The gragh G has $3 n$ vertices and $3 n-1$ edges.
Define a function $f: V(G) \rightarrow\{1,2,3, \ldots, q+1\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}i & , \text { when } i=1 \\
i+2 & , \text { when } i=2 \\
3 i-1 & , 3 \leq i \leq n\end{cases} \\
& f\left(u_{i}\right)= \begin{cases}2 i & , \text { when } i=1 \\
i+3 & , \text { when } i=2 \\
3 i-2 & , 3 \leq i \leq n\end{cases} \\
& f\left(w_{i}\right)=\{3 i
\end{aligned}
$$

Then the induced edge labels are,

$$
\begin{array}{ll}
f^{*}\left(u_{i} u_{i+1}\right)=3 i & , 1 \leq i \leq n-1 \\
f^{*}\left(u_{i} v_{i}\right)=3 i-2 & , 1 \leq i \leq n \\
f^{*}\left(u_{i} w_{i}\right)=3 i-1 & , 1 \leq i \leq n
\end{array}
$$

Then the edge labels are distinct.
Therefore, $P_{n} \odot \mathrm{~K}_{1,2}$ is a Minkowski-4 Mean graph.

Figure 4: $P_{4} \odot \mathrm{~K}_{1,2}$

Theorem: 5

Let G be a graph attained by attaching K_{1} at each pendant vertex of a comb. Then G admits a Minkowski-4
Mean graph.
Proof:
Let G be a graph attained by attaching K_{1} at each pendant vertex of a comb. The gragh G has $3 n$ vertices and $3 n-1$ edges.
Define a function $f: V(G) \rightarrow\{1,2,3, \ldots, q+1\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}i & , \text { when } i=1 \\
i+2 & , \text { when } i=2 \\
3 i-1 & , 3 \leq i \leq n\end{cases} \\
& f\left(u_{i}\right)= \begin{cases}2 i & , \text { when } i=1 \\
i+3 & , \text { when } i=2 \\
3 i-2 & , 3 \leq i \leq n\end{cases} \\
& f\left(w_{i}\right)=\{3 i
\end{aligned}
$$

Then the induced edge labels are,

$$
\begin{array}{ll}
f^{*}\left(u_{i} u_{i+1}\right)=3 i & , 1 \leq i \leq n-1 \\
f^{*}\left(u_{i} v_{i}\right)=3 i-1 & , 1 \leq i \leq n
\end{array}
$$

$$
f^{*}\left(v_{i} w_{i}\right)=3 i-2 \quad, 1 \leq i \leq n
$$

Then the edge labels are distinct.
Therefore, G is a Minkowski-4 Mean graph.

Figure 5: G

IV.CONCLUSIONS

In this paper, we have introduced the notion of Minkowski-4 Mean Labeling and studied for some standard graphs. Illustrative examples are provided to support our investigation.

REFERENCES

[1] Douglas B.West, Introduction to Graph Theory, Second Edition, PHI Learning Private Limited (2009).
[2] Gallian.J.A, A Dynamic Survey of Graph Labeling, The Electronic Journal of combinatorics(2013).
[3] Harary.F, Graph Theory, Narosa publishing House, New Delhi.
[4] Ponraj.R and Somasundaram.S, "Mean Labeling of graphs," in National Academy of Science Letters, vol.26, pp.210-213, 2003.
[5] Sandhya.S.S, Somasundaram.S and Anusa.S, "Root Square Mean Labeling of Graphs," International Journal of Contemporary Mathematical Sciences, Vol.9, 2014,no. 667-676.
[6] Sandhya.S.S, Somasundaram.S and Anusa.S, "Some More Results on Root Square Mean Labeling of Graphs," Journal of Mathematics Research, Vol.7, No.1;2015.
[7] Sandhya.S.S, Somasundaram.S and Anusa.S, "Root Square Mean Labeling of Some New Disconnected Graphs,"International Journal of Mathematics Trends and Technology, volume 15, number 2,2014.page no:85-92.

