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Abstract  —  Let 𝐺 = (𝑉, 𝐸) be an undirected graph with 𝑝 vertices and 𝑞 edges. Define a function 
 𝑓: 𝑉(𝐺) → {1,2,3, … , 𝑞 + 1} is called Minkowski-4 Mean Labeling of a graph G if we could able to  
label the vertices 𝑥 ∈ 𝑉 with distinct elements from 1,2, … , 𝑞 + 1 such that it induces an edge labeling 
 𝑓∗: 𝐸(𝐺) → {1,2,3, … , 𝑞 + 1}  defined as, 

    𝒇∗(𝒆 = 𝒖𝒗) =
𝒇(𝒖)𝟒 𝒇(𝒗)𝟒

𝟐

𝟏

𝟒
 ,  

 
is distinct for all edges 𝑒 = 𝑢𝑣 ∈ 𝐸. (i,e.) It indicates that the distinct vertex labeling induces a distinct edge 
labeling on the graph. The graph which admits Minkowski-4 Mean Labeling is called a Minkowski-4 Mean 
Graph. In this paper, we have investigated the Minkowski-4 Mean Labeling of some standard graphs like Path, 
Comb, Caterpillar, 𝑃 ⊙ 𝐾 ,  , etc. 
 
Keywords— Minkowski-4 Mean Labeling, Minkowski-4 Mean Graph, Path, Comb, Caterpillar, 𝑃 ⊙ 𝐾 ,  . 

I. INTRODUCTION  

The graph 𝐺 we used here are simple, finite and undirected graphs. 𝑉(𝐺) and 𝐸(𝐺) denotes the vertex set and 
edge set of a graph 𝐺. For graph theoretic terminology, we refer to Harary.F [3], Douglas B. West [1] and 
Gallian.J.A [2]. The concept of Mean Labeling of graphs was introduced by Somasundaram.S and Ponraj.R [4] 
in 2003. Sandhya.S.S, Somasundaram.S and Anusa.S [6] introduced the concept of Root Square Mean Labeling 
of graphs in 2014. On the same lines we define and study Minkowski-4 Mean Labeling of graphs. 

II. BASIC DEFINITIONS 

The following definitions are needed for the present study. 

A. Definition 

A walk in which all the vertices are distinct is called a Path. A Path is denoted by 𝑃  . The Path 𝑃  has 
𝑛 vertices and 𝑛 − 1 edges. 

B. Definition 

The graph attained by joining a single pendent edge to each vertex of a Path is called Comb. It has 2𝑛 
vertices and 2𝑛 − 1 edges. 

C. Definition 

A tree which yields a Path when its pendant vertices are removed is called a Caterpillar. It has 3n 
 vertices and 3n − 1 edges. 

D. Definition 

The 𝑷𝒏 ⊙ 𝑲𝟏,𝟐 is a graph attained by attaching the complete bipartite graph 𝑲𝟏,𝟐 to each vertex of the path 𝑃  . 
It has 3𝑛 vertices and 3𝑛 − 1 edges. 

III. MAIN RESULTS 

Theorem: 1 

For every 𝑛, Path  𝑃  is a 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 − 4 𝑀𝑒𝑎𝑛 𝑔𝑟𝑎𝑝ℎ . 

Proof: 
Let 𝑃  be a path 𝑢 , 𝑢 , 𝑢 , … , 𝑢  of length 𝑛. The gragh 𝐺 has 𝑛 vertices and 𝑛 − 1 edges. 
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Define a function 𝑓: 𝑉(𝐺) → {1,2,3, … ,
 

Then the induced edge labels are, 
 

𝑓∗(
 
Then the edge labels are distinct. 
Therefore, 𝑃  is a Minkowski-4 Mean graph.
 

 

Theorem: 2 

For every 𝑛, Comb 𝑃 ⊙  𝐾  is a 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖

Proof: 
Let 𝑃 ⊙ K1 be a comb attained from a path 
𝑣 (1 ≤ 𝑖 ≤ 𝑛) .The gragh 𝐺 has 2𝑛 vertices and 
Define a function 𝑓: 𝑉(𝐺) → {1,2,3, … ,
 

      𝑓(𝑢 )

 

𝑓(𝑣 ) =

 
Then the induced edge labels are, 
 

        𝑓∗(𝑢
 

𝑓∗(𝑢
 
Then the edge labels are distinct. 
Therefore, 𝑃 ⊙ K1 is a Minkowski-4 Mean graph.
 

 

Theorem: 3 

Let 𝐺 be a graph attained by attaching a pendant edges to both sides of each vertex of a path 

a 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 − 4 𝑀𝑒𝑎𝑛 𝑔𝑟𝑎𝑝ℎ . 
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, 𝑞 + 1} by 

𝑓(𝑢 ) = 𝑖                   ,1 ≤ 𝑖 ≤ 𝑛 

(𝑢 𝑢 ) = 𝑖                   ,1 ≤ 𝑖 ≤ 𝑛 − 1 

4 Mean graph. 

 
Figure 1: 𝑃  

𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 − 4 𝑀𝑒𝑎𝑛 𝑔𝑟𝑎𝑝ℎ . 

be a comb attained from a path 𝑃 = 𝑢 , 𝑢 , 𝑢 , … , 𝑢   by joining a vertex 𝑢  to a pendent vertex 
vertices and 2𝑛 − 1 edges. 

, 𝑞 + 1} by 

( ) =
        2𝑖                    , 𝑤ℎ𝑒𝑛 𝑖 = 1

2𝑖 − 1                ,2 ≤ 𝑖 ≤ 𝑛
                   

( ) =
        𝑖                  , 𝑤ℎ𝑒𝑛 𝑖 = 1

   2𝑖                 ,2 ≤ 𝑖 ≤ 𝑛
                   

(𝑢 𝑢 ) = 2𝑖                            ,1 ≤ 𝑖 ≤ 𝑛 − 1 

(𝑢 𝑣 ) = 2𝑖 − 1                        ,1 ≤ 𝑖 ≤ 𝑛 

4 Mean graph. 

 
Figure 2: 𝑃 ⊙ K1 

be a graph attained by attaching a pendant edges to both sides of each vertex of a path 𝑃 . Then 

March 2020 

to a pendent vertex 

. Then 𝐺 is  
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Proof: 
Consider a graph 𝐺 which is attained by attaching a pendant edges to both sides of each
𝑃  be a path 𝑣 , 𝑣 , 𝑣 , … , 𝑣 . Let 𝑢  and 
3𝑛 vertices and 3𝑛 − 1 edges. 
Define a function 𝑓: 𝑉(𝐺) → {1,2,3, … ,
 

      𝑓(𝑢 )

 

    𝑓(𝑣 )

 
𝑓(𝑤 ) =

 
Then the induced edge labels are, 
 

        𝑓∗(𝑣
 

𝑓∗(𝑣
 

𝑓∗(𝑣
 
 
Then the edge labels are distinct. 
Therefore, 𝐺 is a Minkowski-4 Mean graph.
 

 

Theorem: 4 

For every 𝑛, 𝑃 ⊙ 𝐾 ,  is a 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖

Proof: 
Let 𝐺 be a graph attained by attaching each vertex of 
𝐾 , . Let 𝑃  be a path 𝑢 , 𝑢 , 𝑢 , … , 𝑢   
𝑃 .The gragh 𝐺 has 3𝑛 vertices and 3𝑛
Define a function 𝑓: 𝑉(𝐺) → {1,2,3, … ,
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which is attained by attaching a pendant edges to both sides of each vertex of a path 
and 𝑤  be the pendant vertices adjacent to 𝑣 (1 ≤ 𝑖 ≤ 𝑛). The gragh 

, 𝑞 + 1} by 

( ) =
3𝑖 − 2                   , 𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑
3𝑖 − 1                   , 𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

                   

( ) =
3𝑖 − 1                   , 𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑
3𝑖 − 2                   , 𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

                   

( ) = {3𝑖                            ,1 ≤ 𝑖 ≤ 𝑛                   

(𝑣 𝑣 ) = 3𝑖                            ,1 ≤ 𝑖 ≤ 𝑛 − 1 

(𝑣 𝑢 ) = 3𝑖 − 2                        ,1 ≤ 𝑖 ≤ 𝑛 

(𝑣 𝑤 ) = 3𝑖 − 1                        ,1 ≤ 𝑖 ≤ 𝑛 

4 Mean graph. 

 
Figure 3: Caterpillar 

𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 − 4 𝑀𝑒𝑎𝑛 𝑔𝑟𝑎𝑝ℎ . 

be a graph attained by attaching each vertex of 𝑃  to the central vertex of the complete bipartite graph 
  and 𝑣  , 𝑤  be the vertices of 𝐾 ,  , which are attached to the vertex 
− 1 edges. 
, 𝑞 + 1} by 

March 2020 

vertex of a path Pn. Let  
) The gragh 𝐺 has 

to the central vertex of the complete bipartite graph 
, which are attached to the vertex 𝑢   of 
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      𝑓(𝑢 ) =

 

      𝑓(𝑢 ) =

 
𝑓(𝑤 ) =

 
 
Then the induced edge labels are, 
 

        𝑓∗(𝑢
 

𝑓∗(𝑢
 

𝑓∗(𝑢
 
 
Then the edge labels are distinct. 
Therefore, 𝑃 ⊙ K1,2 is a Minkowski-
 

 
  Figure 4: 

 

Theorem: 5 

Let 𝐺 be a graph attained by attaching 𝐾

Mean  graph. 

Proof: 
Let 𝐺 be a graph attained by attaching 
3𝑛 − 1 edges. 
Define a function 𝑓: 𝑉(𝐺) → {1,2,3, … ,
 

      𝑓(𝑢 ) =

 

      𝑓(𝑢 ) =

 
𝑓(𝑤 ) =

 
 
Then the induced edge labels are, 
 

        𝑓∗(𝑢
 

𝑓∗(𝑢
 

Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 3- March

( ) =
      𝑖                          , 𝑤ℎ𝑒𝑛 𝑖 = 1
    𝑖 + 2                     , 𝑤ℎ𝑒𝑛 𝑖 = 2

3𝑖 − 1                   ,3 ≤ 𝑖 ≤ 𝑛

                   

) =
     2 𝑖                          , 𝑤ℎ𝑒𝑛 𝑖 = 1
    𝑖 + 3                      , 𝑤ℎ𝑒𝑛 𝑖 = 2

3𝑖 − 2                   ,3 ≤ 𝑖 ≤ 𝑛

                   

) = {3𝑖                                ,1 ≤ 𝑖 ≤ 𝑛                   

(𝑢 𝑢 ) = 3𝑖                            ,1 ≤ 𝑖 ≤ 𝑛 − 1 

(𝑢 𝑣 ) = 3𝑖 − 2                        ,1 ≤ 𝑖 ≤ 𝑛 

(𝑢 𝑤 ) = 3𝑖 − 1                        ,1 ≤ 𝑖 ≤ 𝑛 

-4 Mean graph. 

 
Figure 4: 𝑃 ⊙ K1,2 

𝐾  at each pendant vertex of a comb. Then 𝐺 admits a Minkowski

be a graph attained by attaching 𝐾  at each pendant vertex of a comb. The gragh 𝐺 has 3

, 𝑞 + 1} by 

( ) =
      𝑖                          , 𝑤ℎ𝑒𝑛 𝑖 = 1
    𝑖 + 2                     , 𝑤ℎ𝑒𝑛 𝑖 = 2

3𝑖 − 1                   ,3 ≤ 𝑖 ≤ 𝑛

                   

) =
     2 𝑖                          , 𝑤ℎ𝑒𝑛 𝑖 = 1
    𝑖 + 3                      , 𝑤ℎ𝑒𝑛 𝑖 = 2

3𝑖 − 2                   ,3 ≤ 𝑖 ≤ 𝑛

                   

) = {3𝑖                                ,1 ≤ 𝑖 ≤ 𝑛                   

(𝑢 𝑢 ) = 3𝑖                            ,1 ≤ 𝑖 ≤ 𝑛 − 1 

(𝑢 𝑣 ) = 3𝑖 − 1                        ,1 ≤ 𝑖 ≤ 𝑛 

March 2020 

admits a Minkowski-4 

has 3𝑛 vertices and 
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𝑓∗(𝑣
 
Then the edge labels are distinct. 
Therefore, 𝐺 is a Minkowski-4 Mean graph.

  
 

 

In this paper, we have introduced the notion of Minkowski
graphs. Illustrative examples are provided to support our investigation.
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(𝑣 𝑤 ) = 3𝑖 − 2                        ,1 ≤ 𝑖 ≤ 𝑛 

4 Mean graph. 

  Figure 5: 𝐺 

IV. CONCLUSIONS 

In this paper, we have introduced the notion of Minkowski-4 Mean Labeling and studied for some standard 
Illustrative examples are provided to support our investigation. 
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