Some Operations On Anti Fuzzy Graph

Dr.M. Prabhavathi ${ }^{1}$, R. Uma Maheswari ${ }^{2}$,K. Vinodhini ${ }^{3}$
${ }^{1}$ Department of mathematics E.G.S.P.Arts and Science College, Nagapattinam-611002.
${ }^{2}$ Department of mathematics E.G.S.P.Arts and Science College, Nagapattinam-611002.
${ }^{3}$ Department of mathematics E.G.S.P.Arts and Science College, Nagapattinam-611002.

Abstract

Graphs are simple model of relation. It is a convenient way of representing information involving relationship between objects. In this chapter, we discussed the concept some operations such as null anti-fuzzy graph and the relationship between complete anti fuzzy graph and strong anti-fuzzy graphs are discussed. Suitable example is illustrated to demonstrate the null identity fuzzy graph.

Keywords: - Anti-fuzzy graph, strong anti-fuzzy graph, complete anti-fuzzy graph, null anti fuzzy graph.

I. INTRODUCTION

Zadeh [12] introduced fuzzy sets in 1965 to represent/manipulate data and information possessing non-statistical uncertainties. It was, particularly,designed to mathematically represent uncertainty and vagueness and to provide formalized tools for dealing with the imprecision intrinsic to manyproblems. But it was Rosenfeld [10] who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. Rosenfeld has obtained the fuzzy analogues of several basic graph-theoretic concepts like bridges, paths,cycles, trees and connectedness and established some of their properties. There are several operations on $G 1$ and $G 2$ which result in agraph G whose set of points. These include the Cartesian product, the composition and the tensor product. Other operations of this form are developed in Harary and Wilcox [3] and they investigated some invariant properties of them. Operations on (crisp) graphs such as conjunction, disjunction, rejection and symmetric difference were extended to fuzzy graphs and a methodology is proposed to find the resulting fuzzy graphs of the same operations using adjacency matrices of $G 1$ and $G 2$ [7]. Bhutani [1] introduced the notion of weak isomorphism and isomorphism between fuzzy graphs. Nagoorgani and Malarvizhi [8] discussed the order, size and degree of the vertices of the isomorphic fuzzy graphs. Nagoorgani and Latha [6] introduced neighbourly irregular fuzzy graphs and highly irregular fuzzy graphs and a comparative study between them had been analysed. In this chapter, we discussed the concept some operations such as null - identity anti fuzzy graph and the relationship between complete anti-fuzzy graph and strong anti-fuzzy graphs are discussed. We derived some theorem and example on them.

II. PRELIMINARIES

DEFINITION: 2.1

Let G be a simple fuzzy graph M of G is called anti fuzzy graph such that $M(x, y) \leq$ $S(x) S((y), \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{G}$ An anti-fuzzy graph $A f G=(S, M)$ over the set V is called strong anti-fuzzy graph if $M(x, y) \leq S(x) S((y), \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{G}$

DEFINITION: 2.2

An anti-fuzzy graph $G_{A}=(\sigma, \mu)$ is a strong anti-fuzzy graph if $\mu(u, v)=$ $\sigma(u) \vee \sigma(v), \forall(u, v) \in \mu^{*}$, and is a complete anti fuzzy graph if $\mu(u, v)=\sigma(u) v \sigma(v), \forall(u, v) \in \sigma^{*}$. Two nodes u and v are said to be neighbours if $\mu(u, v)>0$.

DEFINITION: 2.3

Let G be simple graph, the anti-fuzzy graph
$A F I \in A F,(V, E)$ is called identity anti-fuzzy graph such that denoted by I- if $\operatorname{AFI}(e)=1, \forall e \in E$.

DEFINITION: 2.4

An IFG $G:(V, E)$ is said to be a strong IFG if
$\mu_{2}\left(v_{i}, v_{j}\right)=\min \left(\mu_{1}\left(v_{i}\right), \mu_{1}\left(v_{j}\right)\right)$ and $v_{2}\left(v_{i}, v_{j}\right)=\max \left(v_{1}\left(v_{i}\right), v_{1}\left(v_{j}\right)\right), \forall\left(v_{i}, v_{j}\right) \in E$.

III. OPERATIONS OF ANTI FUZZY GRAPH

DEFINITION 3.1

Consider an anti join $G_{A}^{*}=G_{A 1}^{*}+G_{A 2}^{*}=\left(v_{1} \cup v_{2}, E_{1} \cup E_{2} \cup E^{\prime}\right)$ of anti fuzzy graphs where E^{\prime} is the set of all edges joining the vertices of V_{1} and V_{2} where we assume that $V_{1} \cap V_{2}=\emptyset$. Then the anti join of anti fuzzy graphs $G_{A 1}$ and $G_{A 2}$ is an anti fuzzy graph $G_{A}=G_{A 1}+G_{A 2}:\left(\sigma_{1}+\sigma_{2}, \mu_{1}+\mu_{2}\right)$ is defined by

$$
\begin{aligned}
& \sigma_{1}+\sigma_{2}(u)=\sigma_{1} \cup \sigma_{2}(u) \text { if } u \in V_{1} \cup V_{2} \\
& \mu_{1}+\mu_{2}(u, v)=\mu_{1} \cup \mu_{2}(u, v) \text { if }(u, v) \in E_{1} \cup E_{2} \\
& \mu_{1}+\mu_{2}(u, v)=\max \left\{\sigma_{1}(u), \sigma_{2}(v)\right\} \text { if }(u, v) \in E^{\prime}
\end{aligned}
$$

DEFINITION: 3.2

Let G be a simple graph let AfH $=\left(S_{i}, M_{i}\right)$ and $A f G=(S, M)$ is two anti-fuzzy graph over set v then $A f H$ is called anti fuzzy sub-graph of anti-fuzzy graph such that

$$
S_{i}(x) \leq S(x) M_{i}(x, y) \leq M(x, y) \forall(x, y) \in A f G
$$

Now we define null-identity anti fuzzy graph.

EXAMPLE: 3.1

Let $=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$ and $E=\left[e_{1}, e_{2}, e_{3}, e_{4}\right]$. Here anti fuzzy graph $A f G$ such that

$$
M(x, y)=\left\{\begin{array}{c}
0 \text { if } v_{i} \text { is not end of } e_{i} \\
1 \text { if } v_{i} \text { is end of } e_{i}
\end{array}\right.
$$

$$
\begin{gathered}
V\left(x_{i}, x_{j}=1, \forall\left(x_{i}, x_{j}\right) \in V\right) \text { while } V\left(x_{i}, x_{j}\right)=i, \\
i=2,3,4,5, \forall\left(x_{i}, x_{j}\right) \notin \mathrm{V}
\end{gathered}
$$

In the following graph G_{1} and G_{2}

Of the graph G_{1} we apply Anti fuzzy graph

$$
\begin{aligned}
& \qquad \begin{array}{l}
M\left(v_{1}, v_{2}\right)=1 \text { and } S\left(v_{1}\right) S\left(v_{2}\right)=1 \\
\text { Then } M\left(v_{1}, v_{2}\right) \leq S\left(v_{1}\right) S\left(v_{2}\right) \\
M\left(v_{1}, v_{2}\right)=2 \\
S\left(v_{1}\right)=1, S\left(v_{3}\right)=3 \\
\text { Then } M\left(v_{1}, v_{3}\right) \leq S\left(v_{1}\right) S\left(v_{3}\right) \\
\text { If } M\left(v_{3}, v_{4}\right)=3 \\
S\left(v_{3}\right)=3, S\left(v_{4}\right)=4 \\
M\left(v_{3}, v_{4}\right) \leq S\left(v_{3}\right) S\left(v_{4}\right) \\
\text { If } M\left(v_{2}, v_{4}\right)=4 \\
S\left(v_{2}\right)=1, S\left(v_{4}\right)=4 \\
\text { Then } M\left(v_{2}, v_{4}\right) \leq S\left(v_{2}\right) S\left(v_{4}\right)
\end{array}
\end{aligned}
$$

Of the graph G_{2} we apply Anti fuzzy graph

$$
M\left(v_{1}, v_{2}\right)=2 \text { and } S\left(v_{1}\right)=2, S\left(v_{2}\right)=3
$$

$$
\text { such that } S\left(v_{1}\right) S\left(v_{2}\right)=6
$$

Then $M\left(v_{1}, v_{2}\right) \leq S\left(v_{1}\right) S\left(v_{2}\right)$

$$
\text { If } M\left(v_{1}, v_{3}\right)=4
$$

$$
S\left(v_{1}\right)=2, S\left(v_{3}\right)=4
$$

Then $M\left(v_{1}, v_{3}\right) \leq S\left(v_{1}\right) S\left(v_{3}\right)$
If $M\left(v_{3}, v_{4}\right)=5$
$S\left(v_{3}\right)=4, S\left(v_{4}\right)=5$
Then $M\left(v_{3}, v_{4}\right) \leq S\left(v_{3}\right) S\left(v_{4}\right)$
If $M\left(v_{2}, v_{4}\right)=3$
$S\left(v_{2}\right)=3, S\left(v_{4}\right)=5$
Then $M\left(v_{2}, v_{4}\right) \leq S\left(v_{2}\right) S\left(v_{4}\right)$

THEOREM: 3.1

If $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ are complete anti fuzzy graphs, then $\mathrm{G}_{1} \oplus G_{2}$ is a strong anti-fuzzy graph.

PROOF:

Let $G_{1} \oplus G_{2}=\mathrm{G}=(\sigma, \mu)$ where $\sigma=\sigma_{1} \oplus \sigma_{2}$ and $\mu=\mu_{1} \oplus \mu_{2}$ and

$$
G:(V, X) \text { where } V=V_{1} \times V_{2} \text { and }
$$

$$
\begin{array}{r}
X=\left\{\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right) /\left(u_{1} \in v_{1},\left(v_{1}, v_{2}\right) \in X_{2}\right\} \cup\left\{\left(\left(u_{1}, v_{1}\right)\left(u_{2}, v_{1}\right)\right)\right.\right.\right. \\
\left.\quad / v_{1} \in v_{2},\left(u_{1}, u_{2}\right) \in X_{1}\right\} \\
\cup\left\{\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right), u_{1}, u_{2} \in V_{1}, u_{1} \neq u_{2}, v_{1}, v_{2} \in V_{1}, v_{1} \neq v_{2}\right.
\end{array}
$$

Either $\left\{\left(u_{1}, u_{2}\right) \in X_{1} \operatorname{or}\left(v_{1}, v_{2}\right) \in X_{2}\right\}$

CASE (i):

$$
\text { Let } \mathrm{e}=\left(\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right), \forall u_{1} \in V_{1},\left(v_{1}, v_{2}\right) \in X_{2}
$$

Then,

$$
\begin{aligned}
&\left(\mu_{1} \oplus \mu_{2}\right)\left(\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right)=\min \left\{\sigma_{1}\left(u_{1}\right), \mu_{2}\left(v_{1}, v_{2}\right)\right\} \\
&=\sigma_{1}\left(u_{1}\right) \vee\left[\sigma_{2}\left(v_{1}\right) \vee \sigma_{2}\left(v_{2}\right)\right.
\end{aligned}
$$

Since G_{2} is a complete anti fuzzy graph.

$$
\begin{aligned}
& =\left[\sigma_{1}\left(u_{1}\right) \vee \sigma_{2}\left(v_{1}\right)\right] \vee\left[\sigma_{1}\left(u_{1}\right) \vee \sigma_{2}\left(v_{2}\right)\right] \\
& \quad=\left(\sigma_{1} \oplus \sigma_{2}\right)\left(u_{1}, v_{1}\right) \vee\left(\sigma_{1} \oplus \sigma_{2}\right)\left(u_{1}, v_{2}\right)
\end{aligned}
$$

CASE (ii):

$$
\text { Let } \mathrm{e}=\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right)\right), \forall v_{1} \in V_{2},\left(u_{1}, u_{2}\right) \in X_{1}
$$

Then,

$$
\begin{aligned}
\left(\mu_{1} \oplus \mu_{2}\right)\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right)\right) & =\min \left\{\sigma_{2}\left(v_{1}\right), \mu_{1}\left(u_{1}, u_{2}\right)\right\} \\
& =\sigma_{2}\left(v_{1}\right) \vee\left[\sigma_{1}\left(u_{1}\right) \vee \sigma_{1}\left(u_{2}\right)\right.
\end{aligned}
$$

Since G_{1} is a complete anti fuzzy graph.

$$
\begin{aligned}
& =\left[\sigma_{1}\left(u_{1}\right) \vee \sigma_{2}\left(v_{1}\right)\right] \vee\left[\sigma_{1}\left(u_{2}\right) \vee \sigma_{2}\left(v_{1}\right)\right] \\
& \quad=\left(\sigma_{1} \oplus \sigma_{2}\right)\left(u_{1}, v_{1}\right) \vee\left(\sigma_{1} \oplus \sigma_{2}\right)\left(u_{2}, v_{1}\right)
\end{aligned}
$$

CASE (iii):

Let $\mathrm{e}=\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right), \forall u_{1}, u_{2} \in V_{1},\left(v_{1}, v_{2}\right) \in V_{2}$
a) Suppose $\left(u_{1}, u_{2}\right) \notin X_{1} \operatorname{and}\left(v_{1}, v_{2}\right) \in X_{2}$

Then,

$$
\begin{aligned}
\left(\mu_{1} \oplus \mu_{2}\right)\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\min & \left\{\sigma_{1}\left(u_{1}\right), \sigma_{1}\left(u_{2}\right) \mu_{2}\left(v_{1}, v_{2}\right)\right\} \\
= & \sigma_{1}\left(u_{1}\right) \vee \sigma_{1}\left(u_{2}\right) \vee\left\{\sigma_{2}\left(v_{1}\right), \sigma_{2}\left(v_{2}\right)\right.
\end{aligned}
$$

Since G_{2} is a complete anti fuzzy graph.

$$
\begin{aligned}
& =\left[\sigma_{1}\left(u_{1}\right) \vee \sigma_{2}\left(v_{1}\right)\right] \vee\left[\sigma_{1}\left(u_{2}\right) \vee \sigma_{2}\left(v_{2}\right)\right] \\
& \quad=\left(\sigma_{1} \oplus \sigma_{2}\right)\left(u_{1}, v_{1}\right) \vee\left(\sigma_{1} \oplus \sigma_{2}\right)\left(u_{2}, v_{2}\right)
\end{aligned}
$$

b) Suppose $\left(u_{1}, u_{2}\right) \in X_{1} \operatorname{and}\left(v_{1}, v_{2}\right) \notin X_{2}$

Then,

$$
\begin{aligned}
\left(\mu_{1} \oplus \mu_{2}\right)\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right) & =\min \left\{\sigma_{2}\left(v_{1}\right), \sigma_{2}\left(v_{2}\right), \mu_{1}\left(u_{1}, u_{2}\right)\right\} \\
= & \sigma_{2}\left(v_{1}\right) \vee \sigma_{2}\left(v_{2}\right) \vee\left\{\sigma_{1}\left(u_{1}\right), \sigma_{1}\left(u_{2}\right)\right.
\end{aligned}
$$

Since G_{1} is a complete anti fuzzy graph.

$$
\begin{aligned}
=\left[\sigma_{1}\left(u_{1}\right) \vee \sigma_{2}\right. & \left.\left(v_{1}\right)\right] \vee\left[\sigma_{1}\left(u_{2}\right) \vee \sigma_{2}\left(v_{2}\right)\right] \\
& =\left(\sigma_{1} \bigoplus \sigma_{2}\right)\left(u_{1}, v_{1}\right) \vee\left(\sigma_{1} \oplus \sigma_{2}\right)\left(u_{2}, v_{2}\right)
\end{aligned}
$$

Thus in all cases, it is true that $\mathrm{G}_{1} \bigoplus G_{2}$ is a strong anti-fuzzy graph.

REFERENE

[1] K. R. Bhutani, On automorphism of fuzzy graphs, Pattern Recognition Letter 9 (1989), 159-162.
[2] Frank Harary, Graph Theory, Indian Student Edition, Narosa/Addison Wesley, 1988.
[3] Frank Harary and Gordon W. Wilcox, Boolean operations on graphs, Scand. 20 (1967), 41-51.
[4] A. Nagoorgani and V. T. Chandrasekaran, A First Look at Fuzzy Graph Theory, Allied Publishers, 2010.
[5] A. Nagoorgani and S. R. Latha, On irregular fuzzy graphs, Appl. J.Math. Sci. 6(11) (2012), 517-523.
[6] A. Nagoorgani and S. R. Latha, Isomorphism on irregular fuzzy graphs, Inter. J.Math. Sci. Engg. Appls. (IJMSEA) 6(III) (2012), 193-208.
[7] A. Nagoorgani and S. R. Latha, Some operations on fuzzy graph, Proceedings of the International Conference on Mathematical Methods and Computation, Feb. 2014.
[8] A. Nagoorgani and J. Malarvizhi, Isomorphism on fuzzy graphs, Inter. J. Comput. Math. Sci. 2 (2008), 200-206.
[9] A. Nagoorgani and K. Radha, On regular fuzzy graphs, J. Phys. Sci. 12 (2010), 33-40.
[10] A. Rosenfeld, Fuzzy graphs, Fuzzy Sets and their Applications to Cognitive and Decision Process, L. A. Zadeh, K. S. Fu, K.Tanaka and M. Shimura, eds., Academic Press, New York, 1975, pp. 75-95.
[11] M. S. Sunitha and A. Vijayakumar, Complement of fuzzy graph, Indian J. Pure Appl. Math. 33(9) (2002), 1451-1464.
[12] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

