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Abstract

In this work, we investigate the global stability of the following
fourth- order rational difference equation

x%fleh?xn_g + xf’%l + Tp—3+ 3:272 +a

Intl = 3 3 b b ’
Lp—1Tn—2 + Lp—1Tn-3 + Lp—2Tn—3 +1+4a

(1)

where a,b€[0,00) and the initial values x_3,x_9,z_1, 29€(0, 00).
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1 Introduction

Recently there been a great interest in studying the qualitative properties
of rational difference equations for the systematical studies of rational and
nonrational difference equations, one can refer to the monographs [1,2] and
the papers [3 — 10] and references therein.

Rational difference equations can be look very simple, but in fact their
global behaviors are mostly very complicated. Li and Zhu [1] are obtained a
sufficient condition to quarente the global asymptotic stability of the following
recursive sequence.

a2t +a2b_,+a
Y
o1+ Tny_p +a

Tyl = n=20,1,23.. (2)

Li[2] use a new method to investigate the qualitative properties of the following
rational differ

TpTp—1Ln—3 + Tp + Ty + Tpn—3 +a
TnTp-1+ Tn1Tp3 + TnTpn3+1+a

(3)

Tnt1 =
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By the method of Li.V.V.Khuong[21,22,23] investigated the global behavior of
the following fourth-order rational difference equation.

xnxl;hlxn_g + z, + a:l,’hl +x,3+a

)
Tpal 42t w3+ Tare 3+ 1+a

Tpyl = n=0,1,2,.. (4)

To be motivated by the above studies, in this paper, we consider the following
nonlinear differece equation

b b b b
S Ty 1%y oXp-3+ T, 1 +T, o+ 2Tp3+a
ntl = Th b b b
Ty 1Ty o+ Ty _oTp3+ T, 1Tpg+1+a

n=0,1,23. (5

Where a,b€|0,00) and the inital values z_3,z_9,z_1, 20€(0, 00)
We review some results which will be useful in our investigation.

Definition 1.1. Let ICR and f : I*¥'—I be a continously differentiable,
then for every set of intital conditions r_j, x_jy1,...,0_3,T_9,x_1,T0EL then
the difference equation.

Tni1 :f(xn7xn—17-"axn—k)7n:07172a37"' (6)
Has an unique solution {x,}5° _, A point TEI is called an equilibrium point of
equation (6) if

7= f(%,%,..,T)

Definition 1.2. let T be the equilibrium point of the Eq. (6)
(i) The equilibrium point T of Fq.(6) is locally stable if for every e > 0 there
exists 0 > 0 such that for all

Ty T ity - ToEL , with

ek —Z|+ |21 —T| + ...+ |0 —T| <0

We have
|z, — 7| <e (7)

for alln>=—k (ii) The equilibrium point T of Eq.(6) is called a global attractor
if for every x_p, x_gi1, ..., xo€Il, we have

mh_)rgO Ty, =71 (8)

(#ii) The equilibrium point T € Eq.(6) is called a global asymptotically stable
of it is locally stable and a global attractor.
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Definition 1.3. A positive semicycle of a solution {x,}5° , consists of a
“string” of terms {x;, X111, ..., Tm }, all greater than or equal to the equilibrium
T, with | > —3 and m < oo and such that.

Fither | = =3, orl > —3 and x;_1 < 7.
and either m = oo, or m < o0 and T4 < T.

A negative semycycle of a solution {x,} consists of a "string” of terms
{1, 2141, Ty0y oy T} all less than to T, with | > —3 and m<oo and such that.
Either l = -3 orl > —3 and x;_1 2T

and either m = oo or m < oo and T, = T The lengh of a semicycle is
the number of the total terms contained in it.

2 Several Lemmas

It is easy to see that the positive equilibrium point T of Eq(1) satisfies

= "5 | =2 (9)
271+ 7 4+ 1+a

From which one can see that Eq(9) has an unique positve equilibrium 7 = 1

Lemma 2.1. A positive solution {z,}3> 5 of Eq.(1) is eventually equal to
1 if and only if

(xo—1)(x_s—1)(z_1 —1)=0 (10)

Proof. Assume the (10) holds. Then according to Eq.(1), it is easy to see that
r, =1 forn > 2.
Conversely, assume that

(r2 = D)(rs —(z1 =)z = 1) #0 (11)

Then one can show that x,, # 1 for any n > 2
Assume the contrary that for some N > 2

x, =1 and that x, # 1 for -3 <n <N -1
It is easy to see that

b b b b
TN_9TN_3TN—4+ Ty g+ Ty 3+ TN-gta

b b b b
TN 9T 3 T TN 3TN-4 T Ty pTN-a+1+a

1:$N:

Which implies (zy_4—1)(28_5—1)(z%_5—1) = 0. Obviously, this contradicts

(10).
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Remark 2.1 If the initial anditons do not satisfy (10), then, the for any solu-
tion {x,}5° 4 of Eq.(1), x, # 1 forn > —3.

Here, the solution is a nontrivial one.

Definition 1.4 A solution {x,}5° 5 of Eq.(6) is said to be eventually trivial if
x, eventually equal to T = 1; otherwise the solution is said to ve nontrivial.

Lemma 2.2. Let {x,}32 5 be an nontrivial positive solution of Eq.(1).
Then the following conclusions are true for n > 0.
&) (s — 1)(zy — D(a_y — 1)z — 1) > 0
B) (s — )2y — 1) < 0
¢) (Tn1 — x5 _g)(ah 5 —1) <0
d) ($n+1 - l’n,3>($n,3 - 1) <0
Proof, It follows in light of Eq.(1) that
b b 1) (e
Cnoa” Mo Vsl i 1.2.3,...

x%_2+m%_2xn_3+x%_la:n_3+1+a ’

T — 1=
ntl m%—1

and b b b b

_ =gy _y)lay_ (4] _o)ten—s(l4a;_s)]+a

b
Tntl = Tpg = b xb o+l smp_s+ab zp_stlta

n—1

, n=1,2,3,...

x

and ( b )[ b ( b ) ( b ) }
_ b _ 1—x) )z, _o(1+z, )+an_3(l+z, _;)+a .
Tp41 — Ty = 20 ab _4ab_wn_stal _ias_stlta , n=0,1,2,5,...

and ( )b, ( )b, o )+a]
o 1+zn—3)lz,) 1 (1+zn—3)+z) _o(1+xHn—-3)+a —0.1
Tpl = Tn—3 = — 50— n=0,1,2,5...

3 Main results

First we analyse the structure of the semicycles of nontrivial solution of
Eq.(1). Here. we confine us to consider the situation of the strietly oscillatory
of Eq.(1). From [6,7], we have the following theorem.

Theorem 3.1. Let {z,}5° 4 be a strietly oscillatory of Eq.(1). Then the
“rule for the trajectory structure” of nontrivial solution of Fq.(1) is
or .., 37, 1%,17,2F. 37 1+, 17, 2%, ...
or .., 3t 17,1%,27 37 17, 1+,2-, ...

Theorem 3.2. Assume a,be[0,00). Then the positive equilibrium of Eq.(1).
15 globally asymptotically stable and globally attractor.
Proof: The linearized equation of Eq.(1). about the positive equilibrium point
T =1 1s.
Yn+1 = 0y + 0ypa1 + Oyp—3, n=0,1,2,3,...
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by virtue of ([2], remark 1.2.7) T is locally asymptotically stable.
It remains to verify the every positive solution {x,}> 4 of Eq.(1) converges
toT as n — oo. Namely, we want to prove

lim 2z, =7 =1 (12)
n—oo
If the intial values of the solution satisfy (10), then Lemma 2.1 says the solu-
tion is eventually equal to 1 and, of course (11) holds. Therefore, we assume
in the following that the initial values of the solution do not satisfy (10). Then,
Remark 2.1 we know, for any solution {x,}>° 4 of Eq.(1), x, # 1 forn > —3

If the solution is nonoscillatory about the positive equilibrium point T = 1
of Eq.(1)., then we know from Lemma 2.2 (a) that the solution is actually
an eventually positive one. According to Lemma 22(b), we see that {xa,},
{x2n_1}, are eventually decreasing and bounded from below by 1. So, the lemits
lim z9, = L, nhiEO ZTop_1 = M exist and are finite. Note

n—00
@b, 128, _sxon_s+al, +ab,_o+zon_3+a

x2n+1 — b2n 1 b2n 2 b2n 1 b2n 2 , n:],2737...
T3y _1T9p_otT2n—3T3, o+T3, ;Tan-3+14a
xgnxgnflen_Q—‘rxgn-i_xgnfl+x2”_2+a

Top4+2 = s 7120,1,2,3,...

2§, 28, +won oxh,  +ab, zon 2+lta
Take the limits on both sides of the above equations, we obtain.

M = MUEPLAMA L+ M +a
T MLPHLOMP+ M1t 41+4a

I — ML 4 L4+ MY+ LY +a
T LMY+ Lb MO+ LItb 41 4q
We have M=L=1, which shows (12) is true. Thus, it suffices to prove that

(12) hold for the solution to be the trictly oscillatory.

Assume now {x, }5° _4 to be strictly oscillatory solution about the positive equi-
librium point T =1 of Eq.(1).

By virtue of Theorem (3.1), one understands that the lengths of positive and
nagative semicycles which occur successively is

or..,3 7,17 17,27 37 17 17,2% ..

or..,3v, 17,1, 27,3 17,17,27, ...

First, we investigate the case where the rule for the lengths of positive and
negative semicycles which occur successively is...,37,17,17,2% 37,17, 17,2%, ..
The rule for the nagative and positive semicycles to occur succesively can be
periodically expressed as follows

{xp+7nv$p+7n+lvxp+7n+2}_; {xp+7n+3}+7 {xp+7n+4}_7 {xp+7n+5a $p+7n+6}+; n:0;1;273;~--

We have easily the followings inequalities

ISSN: 2231-5373 http://www.ijmttjournal.org Page 48



vts-1
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 66 Issue 4 - April 2020


vts-1
Text Box
ISSN: 2231-5373                                    http://www.ijmttjournal.org                                  Page 48



International Journal of Mathematics Trends and Technology (IJMTT) - Volume 66 Issue 4 - April 2020

6 Vu Van Khuong and Vu Nguyen Thanh
1 1
— < Tp4+7n < Tp+7n+2 < Tptrinta < Tp+7n+8 < — <1
Lp+7(n—1)+3 Lp+7(n+1)+3
We can see that ——— is increasing with upper bound 1. So, the limits

Tp4+7(n+1)+3
. : . : . 1
lim xpy7, = lim 2pi7p40 = lim 2pi7p44 = lim 2547748 = lim =L
exist and finite.
Nothing that

b b b b
Tyt tnt2Tprmnt1Tp+n T Tpirnio T Tpprngp1Tp+n + @

T =
p+Tn+4 b b b b
Lprtn+2L p+7Tn+1 + Lp+n+1Lp+Tn + Lptin+2Tp+n +1+a

Taking the limits on both sides of this equality, we obtain

— L'2491b414a _ -
L= 201412041 +4q =>L=1

Next, we also have
1

I <Zprmnts < Tprmnis < Tpprn-1)46 < ————————
Tp4+7(n—1)+2

Taking the limits on both sides of this equality, we have
im zpi7p45 = M @pi7p43 = 1Im 247,46 = 1
n—oo n—oo n—oo

Up to now, un the first case we have shown .

hm xp+7n+k - 1 B k - 07_6

n—oo

So, we have (9). In the second case, one can prove by the semilar way, it is
omited. The proof is complete reference.
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