On the Global Asymptotic Stability of a Fourth-Order Rational Difference Equation

Vu Van Khuong and Vu Nguyen Thanh
University of Transport and Communications
Ha Noi City, Viet Nam

Abstract

In this work, we investigate the global stability of the following fourth- order rational difference equation $$
\begin{equation*} x_{n+1}=\frac{x_{n-1}^{b} x_{n-2}^{b} x_{n-3}+x_{n-1}^{b}+x_{n-3}+x_{n-2}^{b}+a}{x_{n-1}^{b} x_{n-2}^{b}+x_{n-1}^{b} x_{n-3}+x_{n-2}^{b} x_{n-3}+1+a}, \tag{1} \end{equation*}
$$

where $a, b \in[0, \infty)$ and the initial values $x_{-3}, x_{-2}, x_{-1}, x_{0} \in(0, \infty)$.
Mathematics Subject Classification: 39A10.
Keywords: Rational diffence equation, global stability.

1 Introduction

Recently there been a great interest in studying the qualitative properties of rational difference equations for the systematical studies of rational and nonrational difference equations, one can refer to the monographs $[1,2]$ and the papers $[3-10]$ and references therein.

Rational difference equations can be look very simple, but in fact their global behaviors are mostly very complicated. Li and Zhu [1] are obtained a sufficient condition to quarente the global asymptotic stability of the following recursive sequence.

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-1}^{b}+x_{n-2}^{b}+a}{x_{n-1}^{b}+x_{n} x_{n-2}^{b}+a}, n=0,1,2,3 \ldots \tag{2}
\end{equation*}
$$

$\mathrm{Li}[2]$ use a new method to investigate the qualitative properties of the following rational differ

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-1} x_{n-3}+x_{n}+x_{n-1}+x_{n-3}+a}{x_{n} x_{n-1}+x_{n-1} x_{n-3}+x_{n} x_{n-3}+1+a} \tag{3}
\end{equation*}
$$

By the method of Li.V.V.Khuong[21,22,23] investigated the global behavior of the following fourth-order rational difference equation.

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-1}^{b} x_{n-3}+x_{n}+x_{n-1}^{b}+x_{n-3}+a}{x_{n} x_{n-1}^{b}+x_{n-1}^{b} x_{n-3}+x_{n} x_{n-3}+1+a}, n=0,1,2, \ldots \tag{4}
\end{equation*}
$$

To be motivated by the above studies, in this paper, we consider the following nonlinear differece equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-1}^{b} x_{n-2}^{b} x_{n-3}+x_{n-1}^{b}+x_{n-2}^{b}+x_{n-3}+a}{x_{n-1}^{b} x_{n-2}^{b}+x_{n-2}^{b} x_{n-3}+x_{n-1}^{b} x_{n-3}+1+a}, n=0,1,2,3 \ldots \tag{5}
\end{equation*}
$$

Where $a, b \in[0, \infty)$ and the inital values $x_{-3}, x_{-2}, x_{-1}, x_{0} \in(0, \infty)$
We review some results which will be useful in our investigation.
Definition 1.1. Let $I \subset R$ and $f: I^{k+1} \rightarrow I$ be a continously differentiable, then for every set of intital conditions $x_{-k}, x_{-k+1}, \ldots, x_{-3}, x_{-2}, x_{-1}, x_{0} \in I$ then the difference equation.

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), n=0,1,2,3, \ldots \tag{6}
\end{equation*}
$$

Has an unique solution $\left\{x_{n}\right\}_{n=-k}^{\infty}$ A point $\bar{x} \in I$ is called an equilibrium point of equation (6) if
$\bar{x}=f(\bar{x}, \bar{x}, \ldots, \bar{x})$
Definition 1.2. let \bar{x} be the equilibrium point of the Eq. (6)
(i) The equilibrium point \bar{x} of Eq.(6) is locally stable if for every $\varepsilon>0$ there exists $\delta>0$ such that for all
$x_{-k}, x_{-k+1}, \ldots, x_{0} \in I$, with

$$
\left|x_{-k}-\bar{x}\right|+\left|x_{-k+1}-\bar{x}\right|+\ldots+\left|x_{0}-\bar{x}\right|<\delta
$$

We have

$$
\begin{equation*}
\left|x_{n}-\bar{x}\right|<\varepsilon \tag{7}
\end{equation*}
$$

for all $n \geqslant-k$ (ii) The equilibrium point \bar{x} of Eq.(6) is called a global attractor if for every $x_{-k}, x_{-k+1}, \ldots, x_{0} \in I$, we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x_{n}=\bar{x} \tag{8}
\end{equation*}
$$

(iii) The equilibrium point $\bar{x} \in E q$.(6) is called a global asymptotically stable of it is locally stable and a global attractor.

Qualitative properties for a fourth - order

Definition 1.3. A positive semicycle of a solution $\left\{x_{n}\right\}_{n=-k}^{\infty}$ consists of a "string" of terms $\left\{x_{l}, x_{l+1}, \ldots, x_{m}\right\}$, all greater than or equal to the equilibrium \bar{x}, with $l \geqslant-3$ and $m \leqslant \infty$ and such that.

Either $l=-3$, or $l>-3$ and $x_{l-1}<\bar{x}$.
and either $m=\infty$, or $m<\infty$ and $x_{m+1}<\bar{x}$.

A negative semycycle of a solution $\left\{x_{n}\right\}$ consists of a "string" of terms $\left\{x_{l}, x_{l+1}, x_{l+2}, \ldots, x_{m}\right\}$ all less than to \bar{x}, with $l \geqslant-3$ and $m \leqslant \infty$ and such that. Either $l=-3$ or $l>-3$ and $x_{l-1} \geqslant \bar{x}$
and either $m=\infty$ or $m<\infty$ and $x_{m+1} \geqslant \bar{x}$ The lengh of a semicycle is the number of the total terms contained in it.

2 Several Lemmas

It is easy to see that the positive equilibrium point \bar{x} of $\mathrm{Eq}(1)$ satisfies

$$
\begin{equation*}
\bar{x}=\frac{\bar{x}^{1+2 b}+\bar{x}+2 \bar{x}^{b}+a}{2 \bar{x}^{1+b}+\bar{x}^{2 b}+1+a} \tag{9}
\end{equation*}
$$

From which one can see that $\operatorname{Eq}(9)$ has an unique positve equilibrium $\bar{x}=1$
Lemma 2.1. A positive solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1) is eventually equal to 1 if and only if

$$
\begin{equation*}
\left(x_{-2}-1\right)\left(x_{-3}-1\right)\left(x_{-1}-1\right)=0 \tag{10}
\end{equation*}
$$

Proof. Assume the (10) holds. Then according to Eq.(1), it is easy to see that $x_{n}=1$ for $n \geqslant 2$.
Conversely, assume that

$$
\begin{equation*}
\left(x_{-2}-1\right)\left(x_{-3}-1\right)\left(x_{-1}-1\right)\left(x_{1}-1\right) \neq 0 \tag{11}
\end{equation*}
$$

Then one can show that $x_{n} \neq 1$ for any $n \geqslant 2$
Assume the contrary that for some $N \geqslant 2$
$x_{n}=1$ and that $x_{n} \neq 1$ for $-3 \leqslant n \leqslant N-1$
It is easy to see that

$$
1=x_{N}=\frac{x_{N-2}^{b} x_{N-3}^{b} x_{N-4}+x_{N-2}^{b}+x_{N-3}^{b}+x_{N-4}+a}{x_{N-2}^{b} x_{N-3}^{b}+x_{N-3}^{b} x_{N-4}+x_{N-2}^{b} x_{N-4}+1+a}
$$

Which implies $\left(x_{N-4}-1\right)\left(x_{N-3}^{b}-1\right)\left(x_{N-2}^{b}-1\right)=0$. Obviously, this contradicts (10).

Remark 2.1 If the initial anditons do not satisfy (10), then, the for any solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1), $x_{n} \neq 1$ for $n \geqslant-3$.
Here, the solution is a nontrivial one.
Definition 1.4 A solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(6) is said to be eventually trivial if x_{n} eventually equal to $\bar{x}=1$; otherwise the solution is said to ve nontrivial.

Lemma 2.2. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be an nontrivial positive solution of Eq.(1). Then the following conclusions are true for $n \geqslant 0$.
a) $\left(x_{n+1}-1\right)\left(x_{n-1}^{b}-1\right)\left(x_{n-2}^{b}-1\right)\left(x_{n-3}-1\right)>0$
b) $\left(x_{n+1}-x_{n-1}^{b}\right)\left(x_{n-1}^{b}-1\right)<0$
c) $\left(x_{n+1}-x_{x-2}^{b}\right)\left(x_{n-2}^{b}-1\right)<0$
d) $\left(x_{n+1}-x_{n-3}\right)\left(x_{n-3}-1\right)<0$

Proof, It follows in light of Eq.(1) that
$x_{n+1}-1=\frac{\left(x_{n-1}^{b}-1\right)\left(x_{n-2}^{b}-1\right)\left(x_{n-3}-1\right)}{x_{n-1}^{b} x_{n-2}^{b}+x_{n-2}^{b} x_{n-3}+x_{n-1}^{b} x_{n-3}+1+a}, n=0,1,2,3, \ldots$
and
$x_{n+1}-x_{n-2}^{b}=\frac{\left(1-x_{n-2}^{b}\left[x_{n-1}^{b}\left(1+x_{n-2}^{b}\right)+x_{n-3}\left(1+x_{n-2}^{b}\right)\right]+a\right.}{x_{n-1}^{b} x_{n-2}^{b}+x_{n-2}^{b} x_{n-3}+x_{n-1}^{b} x_{n-3}+1+a}, n=1,2,3, \ldots$
and
$x_{n+1}-x_{n-1}^{b}=\frac{\left(1-x_{n-1}^{b}\right)\left[x_{n-2}^{b}\left(1+x_{n-1}^{b}\right)+x_{n-3}\left(1+x_{n-1}^{b}\right)+a\right]}{x_{n-1}^{b} x_{n-2}^{b}+x_{n-2}^{b} x_{n-3}+x_{n-1}^{b} x_{x-3}+1+a}, n=0,1,2,3, \ldots$
and
$x_{n+1}-x_{n-3}=\frac{\left(1+x_{n-3}\right)\left[x_{n-1}^{b}\left(1+x_{n-3}\right)+x_{n-2}^{b}\left(1+x_{n-3}\right)+a\right]}{x_{n-1}^{b} x_{n-2}^{b}+x_{n-2}^{b} x_{n-3}+x_{n-1}^{b} x_{n-3}+1+a}, n=0,1,2,3 \ldots$

3 Main results

First we analyse the structure of the semicycles of nontrivial solution of Eq.(1). Here. we confine us to consider the situation of the strietly oscillatory of Eq.(1). From [6,7], we have the following theorem.

Theorem 3.1. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a strietly oscillatory of Eq.(1). Then the "rule for the trajectory structure" of nontrivial solution of Eq.(1) is or $\ldots, 3^{-}, 1^{+}, 1^{-}, 2^{+}, 3^{-}, 1^{+}, 1^{-}, 2^{+}, \ldots$ or $\ldots, 3^{+}, 1^{-}, 1^{+}, 2^{-}, 3^{+}, 1^{-}, 1^{+}, 2^{-}, \ldots$

Theorem 3.2. Assume $a, b \in[0, \infty)$. Then the positive equilibrium of Eq.(1). is globally asymptotically stable and globally attractor.
Proof: The linearized equation of Eq.(1). about the positive equilibrium point $\bar{x}=1$ is.
$y_{n+1}=0 y_{n}+0 y_{n+1}+0 y_{n-3}, n=0,1,2,3, \ldots$

Qualitative properties for a fourth - order
by virtue of ([2], remark 1.2.7) \bar{x} is locally asymptotically stable.
It remains to verify the every positive solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1) converges to \bar{x} as $n \rightarrow \infty$. Namely, we want to prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=\bar{x}=1 \tag{12}
\end{equation*}
$$

If the intial values of the solution satisfy (10), then Lemma 2.1 says the solution is eventually equal to 1 and, of course (11) holds. Therefore, we assume in the following that the initial values of the solution do not satisfy (10). Then, Remark 2.1 we know, for any solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1), $x_{n} \neq 1$ for $n \geqslant-3$

If the solution is nonoscillatory about the positive equilibrium point $\bar{x}=1$ of Eq.(1)., then we know from Lemma 2.2 (a) that the solution is actually an eventually positive one. According to Lemma 22(b), we see that $\left\{x_{2 n}\right\}$, $\left\{x_{2 n-1}\right\}$, are eventually decreasing and bounded from below by 1. So, the lemits $\lim _{n \rightarrow \infty} x_{2 n}=L, \lim _{n \rightarrow \infty} x_{2 n-1}=M$ exist and are finite. Note
$x_{2 n+1}=\frac{x_{2 n-1}^{b} x_{2 n-2}^{b} x_{2 n-3}+x_{2 n-1}^{b}+x_{2 n-2}^{b}+x_{2 n-3}+a}{x_{2 n-1}^{b} x_{2 n-2}^{b}+x_{2 n-3} x_{2 n-2}^{b}+x_{2 n-1}^{b} x_{2 n-3}+1+a}, n=1,2,3, \ldots$
$x_{2 n+2}=\frac{x_{2 n}^{b} x_{2 n-1}^{b} x_{2 n-2}+x_{n}^{b}+x_{2 n-1}^{b}+x_{2 n-2}+a}{x_{2 n}^{b} x_{2 n-1}^{b}+x_{2 n-2} x_{2 n-1}^{b}+x_{2 n}^{b} x_{2 n-2}+1+a}, ~ n=0,1,2,3, \ldots$
Take the limits on both sides of the above equations, we obtain.
$M=\frac{M^{1+b} L^{b}+M+L^{b}+M^{b}+a}{M L^{b}+L^{b} M^{b}+M^{1+b}+1+a}$
$L=\frac{M^{b} L^{b+1}+L+M^{b}+L^{b}+a}{L M^{b}+L^{b} M^{b}+L^{1+b}+1+a}$
We have $M=L=1$, which shows (12) is true. Thus, it suffices to prove that (12) hold for the solution to be the trictly oscillatory.

Assume now $\left\{x_{n}\right\}_{n=-3}^{\infty}$ to be strictly oscillatory solution about the positive equilibrium point $\bar{x}=1$ of Eq.(1).
By virtue of Theorem (3.1), one understands that the lengths of positive and nagative semicycles which occur successively is
or $\ldots, 3^{-}, 1^{+}, 1^{-}, 2^{+}, 3^{-}, 1^{+}, 1^{-}, 2^{+}, \ldots$
or $\ldots, 3^{+}, 1^{-}, 1^{+}, 2^{-}, 3^{+}, 1^{-}, 1^{+}, 2^{-}, \ldots$
First, we investigate the case where the rule for the lengths of positive and negative semicycles which occur successively is $\ldots, 3^{-}, 1^{+}, 1^{-}, 2^{+}, 3^{-}, 1^{+}, 1^{-}, 2^{+}, \ldots$ The rule for the nagative and positive semicycles to occur succesively can be periodically expressed as follows
$\left\{x_{p+7 n}, x_{p+7 n+1}, x_{p+7 n+2}\right\}^{-},\left\{x_{p+7 n+3}\right\}^{+},\left\{x_{p+7 n+4}\right\}^{-},\left\{x_{p+7 n+5}, x_{p+7 n+6}\right\}^{+}, n=0,1,2,3, \ldots$
We have easily the followings inequalities

$$
\frac{1}{x_{p+7(n-1)+3}}<x_{p+7 n}<x_{p+7 n+2}<x_{p+7 n+4}<x_{p+7 n+8}<\frac{1}{x_{p+7(n+1)+3}}<1
$$

We can see that $\frac{1}{x_{p+7(n+1)+3}}$ is increasing with upper bound 1. So, the limits

$$
\lim _{n \rightarrow \infty} x_{p+7 n}=\lim _{n \rightarrow \infty} x_{p+7 n+2}=\lim _{n \rightarrow \infty} x_{p+7 n+4}=\lim _{n \rightarrow \infty} x_{p+7 n+8}=\lim _{n \rightarrow \infty} \frac{1}{x_{p+7(n+1)+3}}=L
$$

exist and finite.
Nothing that

$$
x_{p+7 n+4}=\frac{x_{p+7 n+2}^{b} x_{p+7 n+1}^{b} x_{p+7 n}+x_{p+7 n+2}^{b}+x_{p+7 n+1}^{b} x_{p+7 n}+a}{x_{p+7 n+2}^{b} x_{p+7 n+1}^{b}+x_{p+7 n+1}^{b} x_{p+7 n}+x_{p+7 n+2}^{b} x_{p+7 n}+1+a}
$$

Taking the limits on both sides of this equality, we obtain

$$
L=\frac{L^{1+2 b}+2 L^{b}+L+a}{2 L^{1+b}+L^{2 b}+1+a}=>L=1
$$

Next, we also have

$$
1<x_{p+7 n+5}<x_{p+7 n+3}<x_{p+7(n-1)+6}<\frac{1}{x_{p+7(n-1)+2}}
$$

Taking the limits on both sides of this equality, we have

$$
\lim _{n \rightarrow \infty} x_{p+7 n+5}=\lim _{n \rightarrow \infty} x_{p+7 n+3}=\lim _{n \rightarrow \infty} x_{p+7 n+6}=1
$$

Up to now, un the first case we have shown .
$\lim _{n \rightarrow \infty} x_{p+7 n+k}=1, k=\overline{0,6}$
So, we have (9). In the second case, one can prove by the semilar way, it is omited. The proof is complete reference.

4 ACKNOWLEDGEMENTS

we would like to extend our thanks to the Rector of University of Transport and Communications for his supportation and encouragement to his paper.

References

[1] R.P.Agarwal, Difference Equations and InequalitiesSecond Ed. Dekker, New York, 1992, 2000.

Qualitative properties for a fourth - order
[2] V.L.. Kocic, G. Ladas, Global behavior of nonliner difference equations of higher order with applications, Kluwer Academic, Dordrecht, 1993.
[3] M. R. S. Kulenovic, G. Ladas, L. F. Martins. I. W. Rodrignes, The dynamics of $x_{n+1}=\frac{\alpha+\beta x}{A+B x_{n}+C x_{n-1}}$: Facts and conjectures, Comput. Math. Appl. 45(2003), 1087-1099.
[4] G. Ladas, Open problems and conjectures, J. Difference Equa. Appl. 2(1996), 449-452.
[5] X. Li, D. Zhu, Global asymptotic stability in a rational equationJ. Difference. Equa. Appl. 9 (2003), 833-839.
[6] X. Li, D. Zhu, Global asymptotic stability for two recursive difference equations, Appl. Math. Comput. 150 (2004), 481-492.
[7] X. Li, D. Zhu, Global asymptotic stability of a nonlinear recursive sequence,Appl. Math. Appl. 17 (2004), 833-838.
[8] X. Li, D. Zhu, Global asymptotic stability for a nonlinear delay difference equation, Appl. Math. J. Chinese Univ. Ser. B 17 (2002), 183-188.
[9] X. Li, Qualitative properties for a fourth-order rational difference equation, Appl. Anal. Appl. 311 (2005), 103-111.
[10] X. Li and R. P. Agarwal, The rule of trajectory structure and global asymptotic stability for a fourth-order rational difference equation,J.Korean Math. Soc. 44 (2007), 787-797.
[11] X. Li, D. Zhu, Global asymptotic stability in a rational equation, J. Difference. Equal. Appl. 9 (2003) 833-839.
[12] X. Li, D. Zhu, Global asymptotic stability for two recursive difference equation, Appl. Math. Comput. 150 (2004), 481-492.
[13] X. Li, D. Zhu, Global asymptotic stability of a nonlinear recursive sequence,Appl. Math. Appl, 17 (2004), 833-838.
[14] X. Li, D. Zhu, Two rational recursive sequence, Comput. Math. Appl. 47 (2004), 1487-1494.
[15] X. Li, D. Zhu, Global asymptotic stability for a nonlinear delay difference equation.Appl. Math. J. Chinese Univ. Ser. B 17 (2002), 183-188.
[16] X. Li, D. Zhu, et al, A conjectures by G. Ladas, Appl. Math. J. Chinese Univ. Ser. B 13 (1998), 39-44.
[17] X. Li, Boundedness and persistence and global asymptotic stability for a kind of delay difference equations with higher order,Appl. Math. Mech. (English) 23 (2003), 1331-1338.
[18] X. Li, G. Xiao, et al, Periodicity and strict oscillation for generalized Lyness equations,Appl. Math. Mech. (English) 21 (2000), 455-460.
[19] X. Li, Qualitative properties for a fourth-order rational difference equations,J. Math. Anal. Appl. 311 (2005),103-111.
[20] X. Li, The rule of trajectory and global asymptotic stability for a fourthorder rational difference equation, J. Korean Math. Soc. 44 (2007), 787797.
[21] Vu Van Khuong and Mai Nam Phong on the global asymptotic stability of the difference equation $x_{n+1}=\frac{x_{n-1} x_{n-3}+x_{n-1}^{2}+a}{x_{n-1}^{2} x_{n-3}+x_{n-1}+a}$ CIAA. 14 (2010) No4, 597-606.
[22] Vu Van Khuong on the global asymptotically stable of the systems of two difference equations,JGRMA ISSN 2320-5822-Vol1. No4, (2013), April 2013.
[23] Vu Van Khuong, qualitative properties for a fourth-order rational difference equation(II),Int. J. Math. Anal, Vol4, 2010, No13, 617-629.

Received: Month xx, 20xx

