Maximum and Minimum 3-Equitable Labeling For Some Graphs

V J Kaneria ${ }^{\text {\#1 }}$, M J Khoda ${ }^{\# 2}$
${ }^{\text {\#1 }}$ Associate Professor, Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat, India
${ }^{\# 2}$ Assistant Professor, V.V.P. Engineering College, Rajkot-360005, Gujarat, India.

Abstract

In the research paper, we have defined maximum and minimum 3-equitable labeling. Also, we have figured out the labeling for path, cycle and star graph.

Keywords - Maximum 3-equitable labeling, Minimum 3-euitable labeling, Path, Cycle, Star graph.

I. INTRODUCTION

Throughout the paper, we consider simple, finite and undirected graph $\mathbf{G}(\mathbf{V}, \mathbf{E})$. The idea of 3-equitable labeling was brought by I. Cahit [1]. The vertex set and edge set of \mathbf{G} are denoted by $\mathbf{V}(\mathbf{G})$ and \mathbf{E} (G) respectively. Kaneria, Meghpara and Khoda proved that Caterpillar $\mathbf{S}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \ldots, \mathbf{x}_{\mathbf{t}}\right)$ is a geometric mean 3-equitable [4]. Here, we have given brief summary of definitions which would be helpful for the present research paper.

For all standard terminology and notations, we follow Harry [3]. For detail survey of graph labeling, we referred Gallian [2].

Definition 1.1 - Let $G=(V, E)$ be a graph, $f: V(G) \rightarrow\{0,1,2\}$ is called ternary vertex labeling of G and $f(v)$ is called the label of the vertex G under f.

For an edge $\mathrm{e}=\mathrm{uv}$ this induced edge labeling function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1,2\}$ is given by $\mathrm{f}^{*}(\mathrm{e})=\operatorname{maximum}\{\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v})\}$. Let $\mathrm{v}_{\mathrm{f}}(0), \mathrm{v}_{\mathrm{f}}(1), \mathrm{v}_{\mathrm{f}}(2)$ be the numbers of vertices of G having labels $0,1,2$ respectively under f and $e_{f}(0), e_{f}(1), e_{f}(2)$ be the numbers of edges of G having labels $0,1,2$ respectively under f^{*}.

Definition 1.2 - The ternary vertex labeling of graph G is called maximum 3-equitable labeling if $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{i})-\mathrm{v}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ and $|e f(i)-\operatorname{ef}(j)| \leq 1, \forall i, j \in\{0,1,2\}$. A graph G is called maximum 3-equitable if it admits maximum 3 -equitable labeling.

Definition 1.3 - Let $G=(V, E)$ be a graph, $f: V(G) \rightarrow\{0,1,2\}$ is called ternary vertex labeling of G and $f(v)$ is called the label of the vertex G under f.

For an edge $\mathrm{e}=\mathrm{uv}$ this induced edge labeling function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1,2\}$ is given by $\mathrm{f}^{*}(\mathrm{e})=\operatorname{minimum}\{\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v})\}$. Let $\mathrm{v}_{\mathrm{f}}(0), \mathrm{v}_{\mathrm{f}}(1), \mathrm{v}_{\mathrm{f}}(2)$ be the numbers of vertices of G having labels $0,1,2$ respectively under f and $e_{f}(0), e_{f}(1), e_{f}(2)$ be the numbers of edges of G having labels $0,1,2$ respectively under f^{*}.

Definition 1.4 - The ternary vertex labeling of graph G is called minimum 3-equitable labeling if $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{i})-\mathrm{v}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, \forall i, j \in\{0,1,2\}$. A graph G is called maximum 3-equitable if it admits maximum 3 -equitable labeling.

II. MAIN RESULTS

Theorem 2.1 - Path $P_{n}, \forall n \geq 2$ is maximum 3-equitable, where $n \in N$.
Proof - Let P_{n} be the path with n vertices. So,n-1 be the number of edges of path P_{n}. Let $\mathrm{V}\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$. Case 1 - Let $n \equiv 0(\bmod 3)$ which means that $n=3 t$ for some $t \in N$. The vertex labeling function $f: V\left(P_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(P_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 ; \text { if } 1 \leq i \leq t-1 \\ 1 ; \text { if } t \leq i \leq 2 t-1 \\ 2 ; \text { if } 2 t \leq i \leq 3 t-1\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Case 2 - Let $n \equiv 1(\bmod 3)$ which means that $n=3 t+1$ for some $t \in N$. The vertex labeling function $f: V\left(P_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t+1 \\ 1 ; \text { if } t+2 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots ., n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(P_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Case 3 - Let $n \equiv 2(\bmod 3)$ which means that $n=3 t+2$ for some $t \in N$. The vertex labeling function $f: V\left(P_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3 -equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t+1 \\ 1 ; \text { if } t+2 \leq i \leq 2 t+2 \\ 2 ; \text { if } 2 t+3 \leq i \leq 3 t+2\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(P_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 \text { if } \quad 1 \leq i \leq t \\ 1 \text {;if } t+1 \leq i \leq 2 t+1, \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots ., n\right.$.
In all these cases, we have $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{i})-\mathrm{v}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ and $\left|\mathrm{e}_{\mathrm{f}}(\mathrm{i})-\mathrm{e}_{\mathrm{f}}(\mathrm{j})\right| \leq 1, \forall \mathrm{i}, \mathrm{j} \in\{0,1,2\}$. Hence, Path P_{n} admits maximum 3-equitable labeling. Therefore, Path $P_{n}, \forall n \geq 2$ is maximum 3-equitable, where $n \in N$.

Theorem 2.2 - Path $P_{n}, \forall n \geq 2$ is minimum 3-equitable, where $n \in N$.
Proof - Let P_{n} be the path with n vertices. So,n-1 be the number of edges of path P_{n}. Let $\mathrm{V}\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$.
Case 1 - Let $n \equiv 0(\bmod 3)$ which means that $n=3 t$ for some $t \in N$. The vertex labeling function $f: V\left(P_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}, \forall i=1,2, \ldots . ., n\right.$.

Hence, induced edge labeling function $f^{*}: E\left(P_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } \quad t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t-1\end{array}, \forall i=1,2, \ldots . . n\right.$.
Case 2 - Let $n \equiv 1(\bmod 3)$ which means that $n=3 t+1$ for some $t \in N$. The vertex labeling function $f: V\left(P_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } \quad t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots . . n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(P_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t, \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}, \forall i=1,2, \ldots, n\right.$.

Case 3 - Let $n \equiv 2(\bmod 3)$ which means that $n=3 t+2$ for some $t \in N$. The vertex labeling function $f: V\left(P_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if if } 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+2\end{array}, \forall i=1,2, \ldots \ldots, n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(P_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1, \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots, n\right.$.
In all these cases, we have $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{i})-\mathrm{v}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ and $\left|\mathrm{e}_{\mathrm{f}}(\mathrm{i})-\mathrm{e}_{\mathrm{f}}(\mathrm{j})\right| \leq 1, \forall \mathrm{i}, \mathrm{j} \in\{0,1,2\}$. Hence, Path P_{n} admits minimum 3-equitable labeling. Therefore, Path $P_{n}, \forall n \geq 2$ is minimum 3-equitable, where $n \in N$.

Theorem 2.3 - The cycle $C_{n}, \forall n \geq 3$ is maximum 3-equitable, for $n \equiv 1(\bmod 3)$ and $n \equiv 2(\bmod 3)$ and $n \in N$.
Proof - Let C_{n} be the cycle with n vertices and n edges. Let the set of vertices be $\mathrm{V}\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$.
Case 1 - Let $n \equiv 1(\bmod 3)$ which means that $n=3 t+1$ for some $t \in N$. The vertex labeling function $f: V\left(C_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t+1 \\ 1 ; \text { if } t+2 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots \ldots, n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(C_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}\right.$ and $f^{*}\left(v_{n}, v_{1}\right)=2, \forall i=1,2, \ldots \ldots, n$.
Case 2 - Let $n \equiv 2(\bmod 3)$ which means that $n=3 t+2$ for some $t \in N$. The vertex labeling function $f: V\left(C_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t+1 \\ 1 ; \text { if } t+2 \leq i \leq 2 t+2 \\ 2 ; \text { if } 2 t+3 \leq i \leq 3 t+2\end{array}, \forall i=1,2, \ldots . . n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(C_{n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}\right.$ and $f^{*}\left(v_{n}, v_{1}\right)=2, \forall i=1,2, \ldots ., n$.

In both the cases, we have $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{i})-\mathrm{v}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ and $\left|\mathrm{e}_{\mathrm{f}}(\mathrm{i})-\mathrm{e}_{\mathrm{f}}(\mathrm{j})\right| \leq 1, \forall \mathrm{i}, \mathrm{j} \in\{0,1,2\}$. Hence, Cycle C_{n} admits maximum 3-equitable labeling. Therefore, Cycle $C_{n}, \forall n \geq 3$ is maximum 3-equitable, for $n \equiv 1(\bmod 3)$ and $n \equiv 2(\bmod 3)$ where $n \in N$.

Theorem 2.4 - The cycle $C_{n}, \forall n \geq 3$ is minimum 3-equitable, for $n \equiv 1(\bmod 3)$ and $n \equiv 2(\bmod 3)$ and $n \in N$.
Proof - Let C_{n} be the cycle with n vertices and n edges. Let the set of vertices be $\mathrm{V}\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$.
Case 1 - Let $n \equiv 1(\bmod 3)$ which means that $n=3 t+1$ for some $t \in N$. The vertex labeling function $f: V\left(C_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } \quad t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots \ldots, n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(C_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}\right.$ and $f^{*}\left(v_{n}, v_{1}\right)=0, \forall i=1,2, \ldots ., n$.
Case 2 - Let $n \equiv 2(\bmod 3)$ which means that $n=3 t+2$ for some $t \in N$. The vertex labeling function $f: V\left(C_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+2\end{array}, \forall i=1,2, \ldots \ldots, n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(C_{n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f^{*}\left(v_{i}, v_{i+1}\right)=\left\{\begin{array}{l}0 \text {; if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}\right.$ and $f^{*}\left(v_{n}, v_{1}\right)=0, \forall i=1,2, \ldots . . n$.
In both the cases, we have $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{i})-\mathrm{v}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ and $\left|\mathrm{e}_{\mathrm{f}}(\mathrm{i})-\mathrm{e}_{\mathrm{f}}(\mathrm{j})\right| \leq 1, \forall \mathrm{i}, \mathrm{j} \in\{0,1,2\}$. Hence, Cycle C_{n} admits minimum 3-equitable labeling. Therefore, Cycle $C_{n}, \forall n \geq 3$ is minimum 3-equitable, for $n \equiv 1(\bmod 3)$ and $n \equiv 2(\bmod 3)$ where $n \in N$.

Theorem 2.5 - The star graph $K_{1, n}, \forall n \geq 2$, is maximum 3-equitable, where $n \in N$.
Proof - Let $K_{1, n}$ be the star graph with the apex vertex u and $\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$ be the n pendent vertices. Cleary $n+1$ and n be the number vertices and edges respectively of star graph $K_{1, n}$.

Case 1 - Let $n \equiv 0(\bmod 3)$ which means that $n=3 t$ for some $t \in N$. The vertex labeling function $f: V\left(K_{1, n}\right) \rightarrow\{0,1,2\}$ for maximum 3 -equitable labeling is defined as follows.

For the apex vertex $u, f(u)=0$ and for the pendent vertices we have,
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(k_{1, n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f^{*}\left(u, v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t \\ 2 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Case 2 - Let $n \equiv 1(\bmod 3)$ which means that $n=3 t+1$ for some $t \in N$. The vertex labeling function $f: V\left(K_{1, n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.

For the apex vertex $u, f(u)=0$ and for the pendent vertices we have,
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(k_{1, n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f^{*}\left(u, v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots . . n\right.$.
Case 3 - Let $n \equiv 2(\bmod 3)$ which means that $n=3 t+2$ for some $t \in N$. The vertex labeling function $f: V\left(K_{1, n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.

For the apex vertex $u, f(u)=0$ and for the pendent vertices we have,
$f\left(v_{i}\right)=\left\{\begin{array}{l}0 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+2\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(k_{1, n}\right) \rightarrow\{0,1,2\}$ for maximum 3-equitable labeling is defined as follows.
$f^{*}\left(u, v_{i}\right)=\left\{\begin{array}{l}0 \text {;if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 2 ; \text { if } 2 t+2 \leq i \leq 3 t+2\end{array}, \forall i=1,2, \ldots \ldots, n\right.$.
In all these cases, we have $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{i})-\mathrm{v}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ and $\left.\mid \mathrm{e}_{\mathrm{f}}(\mathrm{i})-\mathrm{e}_{\mathrm{f}} \mathrm{j}\right) \mid \leq 1, \forall \mathrm{i}, \mathrm{j} \in\{0,1,2\}$. Hence, Star graph $k_{1, n}$ admits maximum 3-equitable labeling. Therefore, Star graph $k_{1, n}, \forall n \geq 2$ is maximum 3-equitable, where $n \in N$.

Theorem 2.6 - The star graph $K_{1, n}, \forall n \geq 2$, is minimum 3-equitable, where $n \in N$.
Proof - Let $K_{1, n}$ be the star graph with the apex vertex u and $\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$ be the n pendent vertices. Cleary $n+1$ and n be the number vertices and edges respectively of star graph $K_{1, n}$.

Case 1 - Let $n \equiv 0(\bmod 3)$ which means that $n=3 t$ for some $t \in N$. The vertex labeling function $f: V\left(K_{1, n}\right) \rightarrow\{0,1,2\}$ for minimum 3 -equitable labeling is defined as follows.

For the apex vertex $u, f(u)=2$ and for the pendent vertices we have,
$f\left(v_{i}\right)=\left\{\begin{array}{l}2 \text {;if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t \\ 0 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(k_{1, n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f^{*}\left(u, v_{i}\right)=\left\{\begin{array}{l}2 \text {;if } \quad 1 \leq i \leq t \\ 1 \text {;if } t+1 \leq i \leq 2 t \\ 0 ; \text { if } 2 t+1 \leq i \leq 3 t\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Case 2 - Let $n \equiv 1(\bmod 3)$ which means that $n=3 t+1$ for some $t \in N$. The vertex labeling function $f: V\left(K_{1, n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.

For the apex vertex $u, f(u)=2$ and for the pendent vertices we have,
$f\left(v_{i}\right)=\left\{\begin{array}{l}2 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 0 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots . ., n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(k_{1, n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f^{*}\left(u, v_{i}\right)=\left\{\begin{array}{l}2 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 0 ; \text { if } 2 t+2 \leq i \leq 3 t+1\end{array}, \forall i=1,2, \ldots \ldots, n\right.$.

Case 3 - Let $n \equiv 2(\bmod 3)$ which means that $n=3 t+2$ for some $t \in N$. The vertex labeling function $f: V\left(K_{1, n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.

For the apex vertex $u, f(u)=2$ and for the pendent vertices we have,
$f\left(v_{i}\right)=\left\{\begin{array}{l}2 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 0 ; \text { if } 2 t+2 \leq i \leq 3 t+2\end{array}, \forall i=1,2, \ldots \ldots, n\right.$.
Hence, induced edge labeling function $f^{*}: E\left(k_{1, n}\right) \rightarrow\{0,1,2\}$ for minimum 3-equitable labeling is defined as follows.
$f^{*}\left(u, v_{i}\right)=\left\{\begin{array}{l}2 ; \text { if } \quad 1 \leq i \leq t \\ 1 ; \text { if } t+1 \leq i \leq 2 t+1 \\ 0 ; \text { if } 2 t+2 \leq i \leq 3 t+2\end{array}, \forall i=1,2, \ldots \ldots, n\right.$.
In all these cases, we have $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{i})-\mathrm{v}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ and $\left|\mathrm{e}_{\mathrm{f}}(\mathrm{i})-\mathrm{e}_{\mathrm{f}}(\mathrm{j})\right| \leq 1, \forall \mathrm{i}, \mathrm{j} \in\{0,1,2\}$. Hence, Star graph $k_{1, n}$ admits minimum 3-equitable labeling. Therefore, Star graph $k_{1, n}, \forall n \geq 2$ is minimum 3-equitable, where $n \in N$.

REFERENCES

[1] I. Cahit, On cordial and 3-equitable labeling of graphs, Until. Math., 37,(1990), pp. 189 - 198.
[2] J A Gallian, A dynamic survey of graph labeling, The electronics J. of combin., 18(2011), \#Ds6.
[3] F Harry, Graph Theory, Addision wisely, New Delhi (1972).
[4] V J Kaneria, Meera Meghpara and Maulik Khoda, Geometric mean 3-equitable labeling of some graphs, Int. J. of Scientific Research and Reviews, 7(1)2018, pp. 245-250.

