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Abstract: In this paper, a coupled complex-valued Wilson-Cowan neural network model with

delays is investigated. By means of mathematical analysis method, some sufficient conditions to

guarantee the existence of oscillatory solutions for the model are provided. Computer simulation

is given to demonstrate the correctness of the criterion.
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1 Introduction

It is known that one can solve the XOR problem or the detection of symmetry problem by means

of a complex-valued neural network which cannot be solved with a single real-valued neuron [1,

2]. Recently, various properties of complex-valued neural networks with delays have attracted

great attention of many researchers [3-20]. For example, the delay-dependent sufficient condi-

tions have been derived to guarantee the asymptotical stability of considered uncertain switched

complex-valued neural networks based on suitable Lyapunov-Krasovskii functional [3]. A com-

plex generalized Ito’s formula to study the stability of complex-valued stochastic networks with

Markovian switching on complex domain has been provided, which avoids separating the real and

imaginary parts [4]. By constructing proper Lyapunov-Krasovskii functionals and using inequality

techniques, some delay-dependent sufficient conditions in linear matrix inequality form were pro-

posed to ascertain the global exponential convergence of the neural networks with two classes of

complex-valued activation functions [5]. Criteria on uniqueness and global exponential stability

of equilibrium point have been established for some impulsive complex-valued neural networks

with time delay by using Lyapunov function method [6]. The existence, uniqueness, and glob-
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ally asymptotical stability of the equilibrium point of complex-valued systems have been studied

by separating complex-valued neural networks into real and imaginary parts, and constructing

appropriate Lyapunov functional [7,8]. It is envisaged that the investigations of complex-valued

neural networks not only included the properties of stability analysis but also other dynamical

characteristics such as bifurcation, chaos and periodic solution. Noting that numerous results on

the literature have mainly focused on stability when compared to periodic oscillatory behavior

for any n dimensional systems. Recently, Ji et al. have considered a delayed complex-valued

Wilson-Cowan neural network model as follows [13]:







z′1(t) = −z1(t) + a1f(z1(t)) + a2f(z2(t− τ)),

z′2(t) = −z2(t) + a3f(z1(t− τ)) + a4f(z2(t)).
(1)

where zi(t), ai are complex numbers, f(zi) are complex activation functions. By means of coordi-

nate transformation z = x + iy, ai = aRi + iaIi and f = fR + ifI , system (1) can be transformed

into an equivalent system































x′
1 = −x1 + aR1 fR(x1, y1)− aI1fI(x1, y1) + aR2 fR(x2(tτ), y2(tτ)) − aI2fI(x2(tτ), y2(tτ)),

y′1 = −y1 + aR1 fI(x1, y1) + aI1fR(x1, y1) + aR2 fI(x2(tτ), y2(tτ)) + aI2fR(x2(tτ), y2(tτ)),

x′
2 = −x2 + aR3 fR(x1(tτ), y1(tτ))− aI3fI(x1(tτ), y1(tτ)) + aR4 fR(x2, y2)− aI4fI(x2, y2),

y′2 = −y2 + aR3 fI(x1(tτ), y1(tτ)) + aI3fR(x1(tτ), y1(tτ)) + aR4 fI(x2, y2) + aI4fR(x2, y2).

(2)

where xi(tτ) = xi(t − τ), yi(tτ) = yi(t − τ), i = 1, 2. For system (2), the sufficient conditions for

Hopf bifurcation and its directions are provided through normal form theory and central manifold

theorem. In this paper, we extend model (1) into a coupled complex-valued Wilson-Cowan neural

network model with delays as the following [21]:































z′1 = −z1 − a1f(z2(t− τ1)) + a4f(z1(t− τ2)),

z′2 = −z2 + a2f(z1(t− τ1))− a3f(z4(t− τ2))− a5f(z2(t− τ2)),

z′3 = −z3 − a1f(z4(t− τ1)) + a4f(z3(t− τ2)),

z′4 = −z4 + a2f(z3(t− τ1))− a3f(z2(t− τ1))− a5f(z4(t− τ2)).

(3)
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Let zi(t) = xi(t) + iyi(t), ai = aRi + iaIi , f(zi) = fR(xi) + ifI(yi)(i = 1, 2, 3, 4), by taking the real

and imaginary parts from (3), we have an equivalent system as follows:















































































































































































x′
1(t) = −x1(t)− aR1 fR(x2(t− τ1)) + aI1fI(y2(t− τ1)) + aR4 fR(x1(t− τ2))

−aI4fI(y1(t− τ2)),

y′1(t) = −y1(t)− aI1fR(x2(t− τ1))− aR1 fI(y2(t− τ1)) + aI4fR(x1(t− τ2))

+aR4 fI(y1(t− τ2)),

x′
2(t) = −x2(t) + aR2 fR(x1(t− τ1))− aI2fI(y1(t− τ1))− aR3 fR(x4(t− τ2))

+aI3fI(y4(t− τ2))− aR5 fR(x2(t− τ2)) + aI5fI(y2(t− τ2)),

y′2(t) = −y2(t) + aI2fR(x1(t− τ1)) + aR2 fI(y1(t− τ1))− aI3fR(x4(t− τ2))

−aR3 fI(y4(t− τ2))− aI5fR(x2(t− τ2))− aR5 fI(y2(t− τ2)),

x′
3(t) = −x3(t)− aR1 fR(x4(t− τ1)) + aI1fI(y4(t− τ1)) + aR4 fR(x3(t− τ2))

−aI4fI(y3(t− τ2)),

y′3(t) = −y3(t)− aI1fR(x4(t− τ1))− aR1 fI(y4(t− τ1)) + aI4fR(x3(t− τ2))

+aR4 fI(y3(t− τ2)),

x′
4(t) = −x4(t) + aR2 fR(x3(t− τ1))− aI2fI(y3(t− τ1))− aR3 fR(x2(t− τ1))

+aI3fI(y2(t− τ1))− aR5 fR(x4(t− τ2)) + aI5fI(y4(t− τ2)),

y′4(t) = −y4(t) + aI2fR(x3(t− τ1)) + aR2 fI(y3(t− τ1))− aI3fR(x2(t− τ1))

−aR3 fI(y2(t− τ1))− aI5fR(x4(t− τ2))− aR5 fI(y4(t− τ2)).

(4)

Clearly, system (4) is a real differential equation with two delays. Assume that fR(0) = fI(0) =

0, xfR(x) > 0(x 6= 0), yfI(y) > 0(y 6= 0). Both fR and fI are continuous differentiable bounded

functions. It is clear that xi = 0, yi = 0(i = 1, 2, 3, 4) is an equilibrium point of system (4). The
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linearized system of (4) at the origin leads to















































































































































































x′
1(t) = −x1(t)− aR1 f

′
R(0)x2(t− τ1) + aI1f

′
I(0)y2(t− τ1) + aR4 f

′
R(0)x1(t− τ2)

−aI4f
′
I(0)y1(t− τ2),

y′1(t) = −y1(t)− aI1f
′
R(0)x2(t− τ1)− aR1 f

′
I(0)y2(t− τ1) + aI4f

′
R(0)x1(t− τ2)

+aR4 f
′
I(0)y1(t− τ2),

x′
2(t) = −x2(t) + aR2 f

′
R(0)x1(t− τ1)− aI2f

′
I(0)y1(t− τ1)− aR3 f

′
R(0)x4(t− τ2)

+aI3f
′
I(0)y4(t− τ2)− aR5 f

′
R(0)x2(t− τ2) + aI5f

′
I(0)y2(t− τ2),

y′2(t) = −y2(t) + aI2f
′
R(0)x1(t− τ1) + aR2 f

′
I(0)y1(t− τ1)− aI3f

′
R(0)x4(t− τ2)

−aR3 f
′
I(0)y4(t− τ2)− aI5fR(0)x2(t− τ2)− aR5 fI(0)y2(t− τ2),

x′
3(t) = −x3(t)− aR1 f

′
R(0)x4(t− τ1) + aI1f

′
I(0)y4(t− τ1) + aR4 f

′
R(0)x3(t− τ2)

−aI4f
′
I(0)y3(t− τ2),

y′3(t) = −y3(t)− aI1f
′
R(0)x4(t− τ1)− aR1 f

′
I(0)y4(t− τ1) + aI4f

′
R(0)x3(t− τ2)

+aR4 f
′
I(0)y3(t− τ2),

x′
4(t) = −x4(t) + aR2 f

′
R(0)x3(t− τ1)− aI2f

′
I(0)y3(t− τ1)− aR3 f

′
R(0)x2(t− τ1)

+aI3f
′
I(0)y2(t− τ1)− aR5 f

′
R(0)x4(t− τ2) + aI5f

′
I(0)y4(t− τ2),

y′4(t) = −y4(t) + aI2f
′
R(0)x3(t− τ1) + aR2 f

′
I(0)y3(t− τ1)− aI3f

′
R(0)x2(t− τ1)

−aR3 f
′
I(0)y2(t− τ1)− aI5f

′
R(0)x4(t− τ2)− aR5 f

′
I(0)y4(t− τ2).

(5)

For convenience, set bi = aRi f
′
R(0), ci = aIi f

′
I(0), i = 1, 2, · · · , 4. Then system (5) is equivalent to

the following:































































































































x′
1(t) = −x1(t)− b1x2(t− τ1) + c1y2(t− τ1) + b4x1(t− τ2)− c4y1(t− τ2),

y′1(t) = −y1(t)− c1x2(t− τ1)− b1y2(t− τ1) + c4x1(t− τ2) + b4y1(t− τ2),

x′
2(t) = −x2(t) + b2x1(t− τ1)− c2y1(t− τ1)− b3x4(t− τ2) + c3y4(t− τ2)

−b5x2(t− τ2) + c5y2(t− τ2),

y′2(t) = −y2(t) + c2x1(t− τ1) + b2y1(t− τ1)− c3x4(t− τ2)− b3y4(t− τ2)

−c5x2(t− τ2)− b5y2(t− τ2),

x′
3(t) = −x3(t)− b1x4(t− τ1) + c1y4(t− τ1) + b4x3(t− τ2)− c4y3(t− τ2),

y′3(t) = −y3(t)− c1x4(t− τ1)− b1y4(t− τ1) + c4x3(t− τ2) + b4y3(t− τ2),

x′
4(t) = −x4(t) + b2x3(t− τ1)− c2y3(t− τ1)− b3x2(t− τ1) + c3y2(t− τ1)

−b5x4(t− τ2) + c5y4(t− τ2),

y′4(t) = −y4(t) + c2x3(t− τ1) + b2y3(t− τ1)− c3x2(t− τ1)− b3y2(t− τ1)

−c5x4(t− τ2)− b5y4(t− τ2).

(6)

The matrix form of system (6) is the follows:

U ′(t) = PU(t) +QU(t− τ1) +RU(t− τ2) (7)

where U(t) = (x1(t), y1(t), · · · , x4(t), y4(t))
T , U(t− τi) = (x1(t− τi), y1(t− τi), · · · , x4(t− τi), y4(t−

τi))
T , i = 1, 2. P = (pij)8×8 = diag(−1,−1, · · · ,−1), both Q = (qij)8×8 and R = (rij)8×8 are 8 by

4
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8 matrices.

Based on the generalized Chafee’s criterion [22, 23]: A time delay system which has a unique

unstable equilibrium point, and all solutions of the system are bounded will generate a limit cycle,

namely, a permanent oscillatory solution. In this paper we will discuss the existence of permanent

oscillatory solutions for system (4) by means of the generalized Chafee’s criterion.

2 Preliminaries

In this paper we adopt the following norms of vectors and matrices [24]: For a matrix A = (aij)n×n,

the norm ‖A‖ = max1≤j≤n

∑n

i=1 |aij |, the measure µ(A) is defined by µ(A) = limθ→0+
‖I+θA‖−1

θ
,

which for the chosen norms reduces to µ(A) = max1≤j≤n[ajj +
∑n

i=1,i6=j |aij |].

Definition 1 The trivial solution of system (4) is called unstable if there exists at least one

component which is unstable.

Lemma 1 Assume that the matrix M(= P +Q + R) is a nonsingular matrix and Q +R is not

a positive definite matrix, then system (6)(or (7)) has a unique equilibrium, implying that system

(4) has a unique equilibrium.

Proof Obviously, the zero point is an equilibrium of system (6)(or (7)). If system (6)(or (7)) has

another nonzero equilibrium, say u∗ = [x∗
1, y

∗
1 , · · · , x

∗
4, y

∗
4 ]

T , then we have the following algebraic

equation

Pu∗ +Qu∗ +Ru∗ = (P +Q+R)u∗ = Mu∗ = 0. (8)

According to the basic result of linear algebraic, if M is a singular matrix, equation (8) has only one

solution, namely, the trivial solution, which contradicts u∗ is a nonzero equilibrium. In other words,

system (6)(or (7)) has a unique zero equilibrium. Since xfR(x) > 0(x 6= 0), yfI(y) > 0(y 6= 0) and

Q+R is not a positive definite matrix, implying that system (4) has a unique equilibrium point.

Lemma 2 All solutions of system (4) are bounded.

Proof Noting that fR and fI are bounded continuous functions. Let N1 = | − aR1 fR(x2(t− τ1)) +

aI1fI(y2(t−τ1))+aR4 fR(x1(t−τ2))−aI4fI(y1(t−τ2))|, N2 = |−aI1fR(x2(t−τ1))−aR1 fI(y2(t−τ1))+

aI4fR(x1(t− τ2)) + aR4 fI(y2(t− τ1))|, · · · , N8 = |aI2fR(x3(t− τ1)) + aR2 fI(y3(t− τ1))− aI3fR(x2(t−

τ1))− aR3 fI(y2(t− τ1))− aI5fR(x4(t− τ2))− aR5 fI(y4(t− τ2))|. Then from (4) we have














































































x′
1(t) = −x1(t) +N1,

y′1(t) = −y1(t) +N2,

x′
2(t) = −x2(t) +N3,

y′2(t) = −y2(t) +N4,

x′
3(t) = −x3(t) +N5,

y′3(t) = −y3(t) +N6,

x′
4(t) = −x4(t) +N7,

y′4(t) = −y4(t) +N8.

(9)

5
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This leads that |xi(t)| ≤ N, |yi(t)| ≤ N, (i = 1, 2, N = max{N1, N2, · · · , N8}. In other words, all

solutions are bounded in system (4).

3 Existence of oscillatory solutions

Obviously, the instability of trivial solution of system (6) (or (7)) implies that the trivial solution

of system (4) is unstable. Therefore, in the following we only consider the instability of trivial

solution of system (6) (or (7)).

Theorem 1 Assume that system (6) (or (7)) has a unique equilibrium point for selected param-

eters. If the following condition holds

‖ Q+R ‖ eτ > eτ . (10)

where τ = min{τ1, τ2}. Then the unique equilibrium point of system (6) (or (7)) is unstable,

implying that system (4) generates a limit cycle, namely, a permanent oscillatory solution.

Proof We shall prove that the unique equilibrium point of system (6) (or (7)) which is exactly

the zero point is unstable. Consider an auxiliary system of system (7) as follows:

U ′(t) = PU(t) + (Q+R)U(t− τ) (11)

where τ = min{τ1, τ2}. Based on the theory of functional differential equation, if the trivial solution

of system (11) is unstable, then the trivial solution of system (7) is unstable [25]. From (11) we

get







d|xi(t)|
dt

= −|xi(t)|+ ‖ Q+R ‖ |xi(t− τ)|,

d|yi(t)|
dt

= −|yi(t)|+ ‖ Q+R ‖ |yi(t− τ)| (i = 1, · · · , 4).
(12)

If the unique equilibrium point of system (11) is stable, then the characteristic equation associated

with (12) given by

λ = −1+ ‖ Q +R ‖ e−λτ (13)

will have a real negative root say λ0, and we have from (13)

|λ0|+ 1 ≥‖ Q+R ‖ e|λ0|τ . (14)

Using the formula ex/x ≥ e for x ≥ 0 one can get

1 ≥
‖ Q+R ‖ e|λ0|τ

1 + |λ0|
=

‖ Q +R ‖ τe−τe(1+|λ0|)τ

(1 + |λ0|)τ
≥ (‖ Q +R ‖ eτ)e−τ (15)

The last inequality contradicts the equation (10). Hence, our claim regarding the instability of the

equilibrium point of system (11) is valid, implying that the trivial solution of system (7) is unstable.

This means that there exists at least one xi(t) or yi(t), i ∈ {1, · · · , 4} is unstable. According to the

definition 1, the instability of the component xi(t) or yi(t) implies that the trivial solution of (4)

6
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is unstable. Since all solutions of system (4) are bounded, the instability of the unique equilibrium

point together with the boundedness of the solutions lead system (4) to generate a limit cycle,

namely, a permanent oscillatory solution.

Theorem 2 Assume that system (4) has a unique equilibrium point for selected parameters.

Let α1, α2, · · · , α8 represent the eigenvalues of matrix Q + R. Assume that there is at least one

eigenvalue, say αj which has a positive real part Re(αj) > 1, satisfying that

Re(αj) cos(ωτ) − Im(αj) sin(ωτ) > 1. (16)

where ω is a parameter. Then the unique equilibrium point of system (6) (or(7)) is unstable, which

implies that system (4) generates a limit cycle.

Proof Consider system (11), the characteristic equation of system (11) is the follows:

det(λIij + pij − (qij + rij)e
−λτ ) = 0 (17)

where Iij is an identity matrix. Since the eigenvalues of matrix Q+R are α1, α2, · · · , α8, so equation

(17) changes to the following
8
∏

i=1

(λ+ 1− αie
−λτ ) = 0 (18)

We are led to an investigation of the nature of the roots of the equation:

λ+ 1 = αie
−λτ , i = 1, 2, · · · , 8. (19)

Without loss of generality, assume that α1 is a complex number which has a positive real part

Re(α1) > 1, then we have

λ+ 1 = α1e
−λτ . (20)

Assume that λ = σ + iω, α1 = α11 + iα12, where σ = Re(λ), ω = Im(λ), α11 = Re(α1), α12 =

Im(α1). From (19) we get

σ + iω + 1 = (α11 + iα12)e
−(σ+iω)τ . (21)

Separating the real and imaginary parts, we have

σ + 1 = α11e
−στ cos(ωτ)− α12e

−στ sin(ωτ). (22)

We show that equation (22) has a positive real root. Let

f(σ) = σ + 1− α11e
−στ cos(ωτ) + α12e

−στ sin(ωτ). (23)

Thus f(σ) is a continuous function of σ. Based on condition (16) we have f(0) = 1−α11 cos(ωτ)+

α12 sin(ωτ) = 1 − (α11 cos(ωτ) − α12 sin(ωτ)) < 0. Obviously, there exists a suitably large σ̃(> 0)

such that f(σ̃) = σ̃ + 1 − α11e
−σ̃τ cos(ωτ) + α12e

−σ̃τ sin(ωτ) > 0 since limσ→+∞ e−στ = 0. By

means of the Intermediate Value Theorem of continuous function, there exists a σ̄ ∈ (0, σ̃) such

that f(σ̄) = σ̄ + 1 − α11e
−σ̄τ cos(ωτ) + α12e

−σ̄τ sin(ωτ) = 0. This means that the characteristic
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value λ has a positive real part. Therefore, the trivial solution of system (11) is unstable, implying

that the trivial solution of system (6) (or (7)) is unstable. Based on the generalized Chafee’s

criterion, there exists a limit cycle of system (4), namely, a permanent oscillatory solution.

4 Simulation Results

This simulation is based on system (4). We first select the activation function as f(zi) = tanh(xi)+

i tanh(yi)(zi = xi + iyi), time delays τ1 = 0.8, τ2 = 0.5, the other parameter values as aR1 =

1.5, aI1 = 0.85, aR2 = 1.25, aI2 = 1.8, aR3 = 0.5, aI3 = 1.8, aR4 = 0.2, aI4 = 1.95, aR5 = 1.2, aI5 = 1.45,

the eigenvalues of matrix Q + R are 0.8361 ± 0.2507i, −0.5146 ± 1.8516i, −0.9854 ± 3.1516i,

−1.3361± 2.5507i. Thus, Q + R is not a positive definite matrix. We have ‖ Q + R ‖= 5.9, and

‖ Q + R ‖ eτ = 5.9 ∗ e ∗ 0.5 = 8.0189 > 1.6487 = e0.5. Based on theorem 1, system (4) has

an oscillatory solution (see Fig.1). In order to see the effect of time delay, we change delays as

τ1 = 1.5, τ2 = 1.2, the other parameters are kept as the above, then ‖ Q+R ‖ eτ = 5.9 ∗ e ∗ 1.2 =

19.2454 > 3.3201 = e1.2. The restrictive conditions of the Theorem 1 are still satisfied. However,

the oscillatory frequency and amplitude both are changed (see Fig.2). Then we select the activation

function as f(zi) = arctan(xi) + i arctan(yi)(zi = xi + iyi), time delays are τ1 = 0.8, τ2 = 0.5, the

other parameter values are the same as in figure 1, we see that the dynamic behavior is almost the

same as in figure 1. This means that the activation functions such as tanh(z) and arctan(z) affect

the oscillatory frequency and amplitude slightly (see Fig.3). Then we keep activation function as

arctan(z) and select parameters as aR1 = 1.85, aI1 = 1.15, aR2 = 0.85, aI2 = 1.05, aR3 = 1.2, aI3 =

1.28, aR4 = 1.24, aI4 = 1.35, aR5 = 0.85, aI5 = 1.75, time delays as τ1 = 0.85, τ2 = 0.75. In this case,

τ = min{τ1, τ2} = 0.75, the eigenvalues of matrix Q + R are: 1.6129± 0.8500i, 0.7092± 1.0827i,

−1.5193 ± 2.7627i, −0.0229 ± 1.7301i. We see that the eigenvalue 1.6129 + 0.8500i satisfies the

condition: 1.6129 cos(0.1 × 0.75) − 0.8500 sin(0.1 × 0.75)) = 1.5447 > 1, where we select the

parameter ω = 0.1. Based on Theorem 2, system (4) has an oscillatory solution (see Fig.4).

5 Conclusion

In this paper, we have discussed the existence of permanent oscillatory solutions in a coupled

complex-valued Wilson-Cowan neural network model with delays. Some simple criteria to guar-

antee the existence of oscillatory solutions have been proposed. By taking the real and imaginary

parts from the coupled complex-valued Wilson-Cowan neural network model we obtained a set of

real differential equations. This allowed to only focus on the instability of a unique equilibrium

point for such a system. Some specific numerical simulations have been provided to demonstrate

the result.
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Fig.1  Oscillation of the solutions, delays: (0.8, 0.5),
activation function: tanh(x

i
)+i tanh(y
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Fig.2 Oscillation of the solutions, delays: (1.5, 1.2),
activation function: tanh (x
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)+i tanh(y
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Fig.3 Oscillation of the solutions, delays: (0.8, 0.5),
activation function: arctan(x

i
)+i arctan(y

i
).
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Fig.4 Oscillation of the solutions, delays: (0.85, 0.75),
activation function: arctan(x

i
)+i arctan(y

i
).
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