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Abstract: Complex networks have, in recent years, brought many innovative impacts to large-scale systems. 

However, great challenges also come forth due to distinct complex situations and imperative requirements in 

human life now a days. This paper attempts to present an overview of recent progress of synchronization of 

complex dynamical networks and its applications. We focus on Finite-time and Fixed-time synchronization of 

complex dynamical networks with nonidentical discontinuous nodes, time delay, Class of Output-Coupling via 

continuous control and Markovian jump complex networks. Then, were view several applications of 

synchronization in complex networks, especially in neuroscience and power grids. The present limitations are 

summarized and future trends are explored and tentatively highlighted. 
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I. INTRODUCTION 

Complex networks have been extensively studied in various fields in recent decades, including biology, 

chemistry, physics, and mathematics. A complex dynamic network is typically a broad collection of 

interconnected nodes, in which each node is a nonlinear dynamic system. For example, if there are several 

interconnected nodes in the neural network, It can also be thought of as complex networks. Many large-scale 

systems can be modelled by complex dynamic networks (CDNs) with the nodes in the system representing 

individuals and the edges representing the unique relation between them. Many of these networks display 

complexity in network nodes and coupled units 'overall topological and dynamic properties. Most natural and 

technological processes can be modelled as complex networks, which are very common in biological and 

physical structures such as genetic networks, metabolic pathways, social networks, delivery networks for 

electrical resources, and the World Wide Web (WWW), etc. 

In complex networks one of the most important and fascinating phenomena is synchronization of all 

dynamic nodes. Synchronisation has been widely studied as the mutual action of complex networks. The 

synchronization phenomena are growing and significant in real-world networks, for example Internet 

synchronization, Transmission of digital or analog signals in communication networks and biological neural 

network synchronisation. Synchronization is unique in nature and can play an extremely important role in many 

science fields including genetics, climatic science, sociology and ecology. Consequently, study of 

synchronization of complex networks is essential in both theory and practice. 

To analyze a complex network's synchronous behaviours, first, some useful modelling techniques need 

to be explored. Algebraic graph theory is commonly accepted as one of the most convenient approaches and was 

widely used to provide a universal analysis model for node-to-node interactions within a network. In particular, 

an undirected or a directed graph may define the communication topology of a complex network, where a vertex 

signifies an individual node within a network and an edge denotes a communication connection between nodes. 

Therefore, an individual system's intrinsic dynamics reflect its evolutionary law and strongly influence the 

dynamic processes of the entire network. It should also be taken into account in the modelling process. The 

developed model for a complex dynamic network will therefore concern both the nonlinear dynamic properties 

of nodes and the exchange of information between nodes. 
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In recent years, researchers have paid growing attention to the synchronization issue of complex 

dynamic networks in order to get a deep understanding of the synchronization process and to make good use of 

the synchronization behaviour. Due to its applications in safe communication and design of signal generators, 

the synchronization problems in coupled dynamic networks have been extensively investigated in the last few 

years. Over the past two decades, synchronization of complex networks with identical dynamical topology has 

been broadly studied in different fields of engineering and sciences with many useful applications in biological 

systems, secure communication, image processing and so on. For this purpose, several useful methods for the 

synchronization of complex networks without control [1–4] have been implemented. However, sometimes we 

cannot achieve the synchronization of network without adding any controller to the dynamics of individual node. 

Thus, to synchronize the complex networks by designing a suitable controller is seen to be a most significant 

topic in both theory and application. As a consequence, many useful methods were developed to achieve 

stability of chaos and synchronization of chaos, such as robust control, adaptive control, pinning control, 

impulsive control, event-triggered control, finite-time and fixed-time control, sliding mode control, Fuzzy Logic 

control and intermittent control. 

Time delay is often the main cause of instability in the system and poor performance. Time delay is 

common in practical CDNs, such as the flow of steam and fluid in pipes, and the propagation of electrical 

signals along long lines. Nowadays the CDNs with time delays have gained more interest, influenced by the 

impact of time delays. 

It is important to note that most of the current works on synchronization problems of complex dynamic 

networks were asymptotic synchronization [5-11], or exponential synchronization [12-13], which indicated that 

synchronization could only be realized in infinite time. The authors of [5], having found pinning power, studied 

the synchronization problem of general complex networks. The synchronization with impulses and time-varying 

delays of an array of linearly coupled memristor-based recurrent neural networks was investigated in [6]. 

Pinning control strategy was used in [9] to study the synchronization problems of linearly coupled complex 

networks in the clusters. In [12], the complex-valued dynamic networks 'exponential synchronization problems 

with time-varying delays and stochastic disruptions through time-delayed impulsive control and coupled 

stochastic memristor-based NNs with coupling, time-varying and impulsive delays in [13]. In practice, however, 

we still anticipate the synchronization to be accomplished as soon as possible, suggesting that synchronization 

can be realized by the system within a defined time span. This can be accomplished by the use of the finite-time 

synchronization strategy proposed in [14] that has been demonstrated with many remarkable advantages 

including improved robustness, higher precision and faster convergence rate, etc. The authors of [15], studied 

the results on cluster finite-time synchronization of coupled CNs via adaptive control were presented. The 

authors of [16] and [17] considered the finite-time synchronization of complex dynamical networks by 

periodically intermittent control. In [18], by employing pinning control the finite-time cluster synchronization 

problem for CNs were discussed. Nonetheless, in the above tests, the settlement time of finite-time 

synchronization depends heavily on the initial conditions of all subsystems, but in certain cases the initial state 

information or experience is uncertain or not available in advance. Therefore, if the initial conditions are very 

large, the settling time must be high enough. In fact, these restrictions can somewhat limit its broad application. 

Here, we are trying to present a survey of recent major findings in finite-time and fixed-time 

synchronization of complex networks. Although it seems difficult to cover all the contributions, we are 

committed to explaining clear lines of research and helping to categorize problems and methodologies. The 

survey is structured according to the following. We mentioned the basic meanings and properties relating to 

SCDNs in section 2.Sections 3.1 – 3.5 provide an overview of the final and fixed time synchronization of 

complex networks with non-identical discontinuous nodes, synchronization of complex dynamic networks with 

time delay, synchronization of coupling networks through discontinuous controllers and finite-time 

synchronization of Markovi Section 4 focuses on the synchronization applications in complex networks, ranging 

from cancer therapy and power grids to neuroscience. The paper ends with a summary of the latest hot topics 

and possible directions of study in Section 5. 

Notation: All the notements used in this paper are fairly ordinary. All along the 

book, andn n nR R 
represent the n-dimensional Euclidean space and the space of nn matrices, respectively. 

Superscript “T” is applied to express the transpose of a vector or a matrix. In is an nn identity matrix, while 0nn 

is an nn zero matrix and 0n is an n-dimensional column vector with all entries equal to 0. |·| refers to the 

absolute value of a real number,   represents the Euclidean norm in 
nR , ⊗ stands for the Kronecker product, 

and diag (x1,..., xn) serves as a diagonal matrix whose diagonal entries are x1,..., xn successively. Denote min xi 

and max xi as the minimum and maximum value of variable xi for all i, and let λmin (A) and λmax (A) be the 

minimal and maximal Eigenvalue of matrix A, respectively. 
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II. PRELIMINARIES 

In this section we remember some concepts and synchronization properties of complex dynamic networks, 

which will be used throughout the paper. 

Definition 1: The complex network  'ix t Is said to be in alignment on  'z t  within a finite time if, by adding 

a suitable designed controller  iu t to system  'ix t , If there is a time of settlement T > 0 depending on the 

initial value  0x , such that 

   
1

lim 0 and 0, ,
t t

c t c t t T i


    
 

where      ic t x t z t  is the solution of error dynamical system.
 

Definition 2: The complex network  'ix t  is said to be synchronized onto  'z t  within a fixed time if, by 

adding a suitable designed controller  iu t to system  'ix t , if there exists a settling time T > 0 which is 

independent on the initial value, such that 

  0, ,c t t T    

where      ic t x t z t  is the solution of error dynamical system. 

Definition 3: The Filippov set-valued map of  f x at 
nx R is defined as follows: 

  
 

  
0 0

, \ ,

N

f x co f x

 

 

 

  
   

where  co E is the closure of the convex hull of the set E,    , : ,x y y x      and μ(Ω) is the Lebesgue 

measure of set Ω. 

Definition 4: The set valued map : n nF R R is said to satisfy the basic conditions in the domain 
nW R , if 

for any x ∈ W , F (x) is nonempty, bounded, closed, and convex, and F is upper semicontinuous in W. 

Remark 1: The differential equation of dynamical system     ' t f t  has at least one Filippov solution 

on ,nR if the basic conditions in Definition 4 are satisfied.
 

Definition 5: A function    : 0, , 0,nT R T    , is a solution (in the sense of Filippov) of the 

discontinuous system     ' t f t   on [0, T ) if: 

(i)  t  is absolutely continuous on [0, T ); 

(ii) There exists a measurable function         : 0, , such thatnt T R t f t     for almost all (a.a.)                

t ∈ [0, T ) and    ' t t   for a.a. t ∈ [0, T ). 

Definition 6: On the probability space   0
, , ,t t
F F P


 , let , 0tr t   is a right-continuous Markov chain 

taking values in a finite state space  1,2,...,S w  with a generator  ij
w w




  given by: 

 
 

 

, if
:

1 , if

ij

t t t

ii

t o t i j
P r j r i

t o t i j


  

  


  
   

  

 

where 0t   and 
 

0
lim 0.
t

o t

t





 
  

 
 Here, 0ij   is the transition rate from i to j if 

i j while

1,

.
w

ii ij

j j i

 
 

    

Definition 7: A weighted graph is a triple G = {V, E, A}, where V = {1, 2. . . N} is a vertex set, E = {(i, j)} ⊆    

V × V is an edge set, and A = [aij] N×N is a weighted adjacency matrix for it. 

Remark 2: In Definition 7, each entry aij of adjacency matrix A is equal to the weight on an edge between two 

vertices. For a weighted digraph, if there is an edge from vertex i to vertex j, then aji > 0 for (i, j) ∈ E; otherwise 

aji= 0 for ij.  

Definition 8: (Laplacian matrix). Given a graph G, its Laplacian matrix L = [lij] N×N is defined as below: 
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1,

,

,

ij ij

N

ii ik

k k i

l a i j

l a i
 

  



 



 

Remark 3: From Definition 8, it is clear that lij ≤ 0 for ij, and 

1

0 for

N

ij

j

l i



  . 

Definition 9: (Connectivity). 

(i) A digraph is strongly connected if there is a directed path between any two vertices.  

(ii) A digraph is quasi-strongly connected if at least one root exists. 

Definition 10: (M-matrix). A square matrix Z = [zij] is an M-matrix if zij ≤ 0 for ij and ;ii ij

j i

z z


 precisely, 

matrix Z concedes a decomposition Z = sI − A, where A is nonnegative and its spectral radius ρ (A) ≤ s whenever 

s ≥ maxzii. 

Remark 4: From Definition 10, one can observe that the Laplacian matrix of a graph is an M-matrix. Another 

interesting finding is that the Laplacian matrix is irreducible if and only if the corresponding digraph is strongly 

connected. If a digraph is strongly connected, then its Laplacian matrix has a simple zero eigenvalue and a 

positive left eigenvector associated with the zero eigenvalue. It should be noted that the above statement is a 

sufficient condition, rather than a necessary condition. Moreover, the zero eigenvalue of the Laplacian matrix is 

simple if and only if the associated graph has a directed spanning tree (or quasi-strongly connected). 

Assumption 1: Areal-valued function f : R  R
 
is called Lipschitz continuous if there exists a positive real 

constant K such that,    1 2 1 2f x f x K x x   for all real x1 and x2  R. 

Assumption 2: Assume that there exists a positive definite diagonal matrix   1 2, ,..., nP diag p p p  and a 

diagonal matrix  1 2, ,..., nQ diag    such that  *f  satisfies the following inequality: 

             ,
T T

y x P f y f x Q y x y x y x         

for some 0, , and 0.nx y R t    
 

Assumption 3: Two constant matrices do exist    and ,ij ij
n n n n

  
 

   in which 0, 0ij ij  
                

such that                   , , , ,i i ij j j ij j jf t x t x t f t y t y t x t y t x t y t               

Assumption 4: Let 0 1 and 0    there exists a continuous function g:[0, ) → [0, ) with g(0) > 0, for 

any 0 ,u t  such that       
t

u

g t g u g s ds


     holds. 

Lemma 1: If 
N NA R  is a real symmetrical matrix, and then 

    min max , forany .T T T nA x x x Ax A x x x R   
 

Lemma 2: Suppose a positive-definite function  U t which is continuous and satisfies the following inequality: 

   ' , 0pU t U t t     

where 0, 0 1.p     Then for any given 0t ,    00, ,U t t T x   where   
 

 

1

0

0

1

pU
T x

p






. 

Lemma 3: Assume that a continuous, definite-positive function  U t  satisfies the following inequality: 

     ' ,p qU t U t U t     

where 0, 0, 0 1, 1.p q       Then,   0,U t t T   with 
   

1 1

1 1
T

q p 
 

 
. 

Lemma 4: If 1 2, ,..., 0, 0 1, 1,n t        then 

1

1 1 1 1

and

t
n n n n

t
i i i i

i i i i

n



    

   

   
    

   
   
    . 
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Lemma 5: Suppose that a continuous, positive-definite function  V t  satisfies the following inequality: 

     0 0' , , 0,pV t V t t t V t      

where 0, 0 1p    are two constants. Then, for any given 0t ,  V t  satisfies the following differential 

inequality:  

      1 1
0 0 0 11 ,p pV t V t p t t t t t        and   10, ,V t t t   with

 

 

1
0

1 0
1

pV t
t t

p



 


. 

Lemma 6: Let 1 2, ,..., n
nx x x   are any vectors 0 2q  is a real number satisfying:  

   
/2

22 2

1 2 1 2... ...
q

qq q

n nx x x x x x        

Lemma 7: For 1 2, ,..., n
nx x x   the following inequality holds:  

  
22 2

1 2 1 2... ...n nx x x x x x        

Lemma 8: When and 1a b c   are all positive numbers, then the following inequality holds:  

    
c ca b   

III. MAIN SURVEY 

This part is divided into five such parts including the finite-time and fixed time synchronization of 

Complex Networks with nonidentical discontinuous nodes, Synchronization for a Class of Output-Coupling 

Networks via Continuous control, Synchronization Control of complex dynamical networks with time delay, 

Synchronization of coupled networks via discontinuous controllers and Finite-time synchronization of 

Markovian jump complex networks. 

A. Synchronization of Complex Networks with nonidentical discontinuous nodes 

Finite-time synchronization implies optimum convergence time, and has greater robustness and 

rejection properties of disturbance. Xinsong Yang et al studied the problem of finite-time synchronization for 

linearly coupled complex networks with discontinuous non-identical nodes in the paper entitled "Finite-time 

synchronization of complex networks with non-identical discontinuous nodes." New simple conditions are 

suggested for the general chaotic discontinuous systems. A collection of new controllers are constructed in such 

a way that in finite-time the errors between the uncertain Filippov solutions caused by node states 

discontinuities approach to zero. The results obtained refer to both direct and undirected networks, and the 

coupled nodes and isolated nodes can be discontinuous and continuous, and even partial nodes are discontinuous. 

Consider a complex N-non-identical node model with diffusively linear couplings in which each node 

is a dynamic n-dimensional structure, i.e.

 

  

        
1

' ,

N

i i i i i ij j

j

x t C x t f x t a x t i N



              (1)  

where   n
ix t R  represents the state vector of the i

th
 dynamical node, the dynamics of the uncoupled i

th
 node 

is   ' ,i i i i ix C x f x  in which   ,i n n
i jr

n n
C c R 


  the nonlinear vector function   n

i if x R , the 

constant matrix  ij
N N

A a


 describes the linear network coupling configuration that satisfies 

0, for andija i j 
1,

,
N

ii ij

j j i

a a i N
 

   and  ij
n n




  is inner-coupling matrix between nodes. The 

author designed suitable controllers  iR t So that complex network states (1) synchronize in a finite time with 

the state of the following process, 

         'z t D z t g z t        (2) 

where     , .n n n
jr

n n
D d R g z t R


    

The controlled complex network (1) is  

http://www.ijmttjournal.org/
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          
1

' ,

N

i i i i i ij j i

j

x t C x t f x t a x t R t i N



           (3) 

where         sgn ,i i i i iR t e t k e t i N             (4)  

Because although the sign function in (4) meets the basic requirements, the Filippov solutions of (2) and (3) are 

available and can be described as     

     'z t D z t t             (5) 

         
1

' ,
N

i i i i ij j i

j

x t C x t t a x t R t i N


             (6) 

where          , i i it g z t t f x t    

Let      ie t x t z t   

Subtracting (5) from (6) produces the following error dynamical system:

            
1

' ,
N

i i i i i ij j i

j

e t C e t F t W t a e t R t i N


            (7) 

or            
1

' ,
N

i i i i ij j i

j

e t De t G t E t a e t R t i N


            (8) 

Under Description 1, finite-time convergence of the dynamic network (3) into (2) is analogous to the problem of 

finite-time stabilization of the dynamic error systems (7) or (8) at origin. The following theorems were presented 

to give the homogeneous trajectory (2) the finite-time synchronization for complex networks (3) by developing 

the Lyapunov function      
1

1
.

2

N
T
i i

i

V t e t e t


   

Theorem 1: Suppose that the control parameters andi i  in the set of controllers (4) satisfy the following 

conditions: 

,i i iM M i N               (9)  

sC R A             (10) 

where  1 2

1

max , 1,2,..., , , ,..., ,
n

i
ij ji jr jr r N

r

M M M c d H j n C diag C C C


  
      

  
  

    min
1 2, ,..., , , , , , ,ij ij iiN ij ii

N N
R diag A a a a i j a a


   


       min

 
is the minimum 

Eigenvalue of  1 2, , ,..., .s
Ndiag      The complex network (3) must then be synchronized on (2) in a 

finite time  
1

2
1

2
0 ,t V

k
 where        

1

0 0 0 , 0
N

T
i i i

i

V e e e


 is the initial condition of 

     .i ie t x t z t   

Corollary 1: Suppose that the control parameters andi i  in the set of controllers (4) satisfy the following 

conditions: 

,i             (11)  

1 2 3,i                (12) 

where      1 2max , , max , 1,2,..., , max , 1,2,..., ,i i i iM M i N C i n i n         

 3 max ,sA    the other parameters are defined in Theorem 1. Then the complex network (3) is synchronized 

onto (2) in a finite time 1t  defined in Theorem 1. 

Theorem 2: Assume the control parameters andi i 
 
in the set of controllers (4) satisfy the following 

conditions: 
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,ii K M i N             (13)  

  ,s
ND I A             (14) 

where

1

max , 1,2,..., ,

n
i

i ij j jr jr ir

r

K K K c d L j n N



  
      

  
 the other criteria are laid down in Theorem 1. 

The complex network (3) must then be synchronized on (2) in a finite time 1t , for which the one above is the 

same. 

Corollary 2: Suppose that the control parameters andi i  in the set of controllers (4) satisfy the following 

conditions: 

,i K M              (15)  

3,i D                (16) 

where   3max , ,i iK K M i N    The other parameters are defined in Corollary 1, in Theorem 1. Then, in 

a finite time defined in Theorem 1, the complex network (3) is synchronized to (2) 

If all of the system nodes (3) are similar to the isolate system (2), 

i.e.,    , ,i i i iC D f x g x i N   the error mechanisms (7) and (8) then turn out to be as follows: 

          
1

' ,
N

ii i ij j i

j

e t De t G t a e t R t i N


            (17) 

By contrasting the program (17) with (8), the following corollary can be easily obtained by taking 0iK   in 

Theorem 2. 

Corollary 3: Assume    , ,i i i iC D f x g x i N   . Assume that the control parameters in the controllers set 

(4) meet the following conditions: 

,i M i N             (18)  

  ,s
ND I A              (19) 

Where in Theorem 1, the other parameters are defined, then, in a finite 1t  time, the complex network (3) with 

identical nodes is synchronized to (2) where 1t  is the same as above. 

Theorems 1 and 2 are formulated in terms of LMIs, while the algebraic inequalities are used to describe 

Corollaries 1 and 2. While results with algebraic inequalities are more conservative than those with LMIs, 

computing using algebraic inequalities is simpler than using LMIs particularly for complex networks, as 

complex networks typically have a large number of nodes. The error mechanisms (7) and (8) derive specific 

synchronization parameters respectively. All the synchronization requirements in Theorems 1, 2, and Corollaries 

1, 2 are valid for regulation of finite-time synchronization of complex networks with non-identical 

discontinuous nodes. Although operators should choose less restrictive parameters for synchronization 

according to the realistic situation in actual applications. 

B. Synchronization for a Class of Output-Coupling Networks via Continuous control 

Most studies have concentrated on state-coupling complex networks in recent years, while output-

coupling complex networks attract comparatively less consideration, let alone research on fixed-time and finite-

time synchronization issues. 

As we all know, coupling power between the nodes of complex networks plays a very significant role 

in the issue of complex network synchronization. In general, reinforcing the coupling effect to understand the 

synchronization for CNs is a simple and prime concept. In this condition, however, the coupling force is also 

required to be as strong as possible.  

It is therefore necessary and desirable to find a suitable coupling strength which is appropriate. Use of 

adaptive technique [21] is a simple and successful way of achieving this goal. The authors of [22] studied the 

problem of synchronization with delays of coupled connected NN. The authors investigated in [23] that a single 

controller used pinning control for complex networks, but the coupling strength was expected to be very high, 
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which was very rigorous. The problem of adaptive coupling power for fixed-time synchronization of complex 

networks with output nodes is less discussed in [24]. 

Zhiwei Li discussed the above problem in detail in his paper entitled "Fixed-Time and Finite-Time 

Synchronization for a Class of Output-Coupling Complex Networks by Continuous Control." He was 

investigating the problem of finite-time and fixed-time synchronization with output feedback nodes for a class 

of general output-coupling CNs by using the Lyapunov stability principle, LMI and adaptive methodology, 

many ample conditions ensuring fixed-time and finite-time synchronization are extracted.  

Find output coupling complex networks with output nodes as observes: 

          

   
1

' ,

,

N

i i i ij j i

j

i i

x t Ax t f y t c g y t u t

y t Cx t i N




    




 



     

(20) 

where   n
ix t R Is the function state variables of the i

th
 dynamical node,   m

iy t R   the output parameter is 

the i
th

 dynamical node, : n nf R R
 
is a continual function that regulates the dynamics of i

th
 isolated nodes,             

c > 0 is a coupling strength, ij
N N

G g


    is complex network weight configuration matrix,
n mR   is the 

internal coupling matrix and 
m nC R   is the output matrix,   n

iu t R Is system-designed controller (20). 

For , 0iji j g  If there is a node relation and only if i to the node j, and the diagonals are known 

as

1,

N

ii ij

j j i

g g
 

    

The complex network initial value (1) is   00 , ,i ix x i N  the method (20) can therefore be used to define the 

complex networks, guided and undirected weighted. 

If output matrix C is matrix of identity nI , (1) then degrade to 

          
1

'
N

i i i ij i i

j

x t Ax t f x t c g x t u t


           (21) 

This has been examined in detail by [25-27]. Hence, system (20) is wider than system (21). 

The author developed appropriate controllers  iu t in such a way that complex network states (20) synchronize 

in a finite time and fixed time into the state of the following target system; 

      
   

'* * * ,

* * .

x t Ax t f y t

y t C x t

  




        (22) 

The following dynamical error systems are obtained by subtracting (22) from (20): 

 
          

     
1

' ,

* ,

N

i i i ij j i

j

i i

e t Ae t F t c g t u t

t y t y t i N

 






    




  


     (23) 

where 

              * , * ,i i i ie t x t x t F t f y t f y t     

 ie t  and  i t are the i
th

 node 'status error and output error, respectively. We definitely have 

       * .i i it C x t C x t Ce t          (24) 
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a) Finite-Time Synchronization 

The author developed suitable controllers  iu t  to synchronize complex networks (20) with finite time output-

coupling into (22) such as: 

     ,i i iu t e t e t i N

         (25) 

 where  0 , andi i N     Are odd positive entries satisfying <  should be known, and 0  is a 

tunable constant. 

 

The following theorem is given by constructing the Lyapunov function      
1

1

2

N
T
i i

i

V t e t e t


  to give the 

finite-time synchronization for complex networks (22) to the homogenous trajectory (21).  

Theorem 3:Suppose that 1 holds that. If any positive constants exist i N   such that 

  max * 0,s
NA I G     where     *

max , , *T
i ijN N N

C C diag G g  


        with 

*
ii iig c g  and  * ,ij ijg c g i j   where  max , ,

s
C C      then, the controlled network (20) 

Is synchronized in a finite time on (22) under the controller (25): 
 

 

2

0

2

2 0
,

2

V
T

 



 





  








 where 

     
1

1
0 0 0 .

2

N
T
i i

i

V e e


   

Particularly if the output matrix C is a matrix of identity with correct dimensions, then we will have the results 

below. 

Corollary 4: Assume the holding of Assumption 1 and the output matrix .NC I If positive constant exists 

i N   such that   max * 0,s
NA I G     where  i N

diag    and  *

* ijG g  with 
*

iiiig c g  

and  
*

,ijijg c g i j   where  max , .
s

      Then complex network (20) must achieve finite-

time synchronization under the controller (25). 

Corollary 5: Suppose that Assumptions 1 and 2 holds, the inner coupling matrix ,NI    output matrix 

Nc I and coupling strength c = 1. For the weight configuration matrix G of the complex networks, if there 

exist a constant 0   such that   max 0,s
NA I G      then complex network (20) can achieve finite-

time synchronization under the controller (25). 

b) Fixed-Time Synchronization 

The author has developed suitable controllers  iu t to synchronize complex output-coupling networks (1) into 

(3) within a specified time-limited settlement period as follows: 

       
k

l
i i i i iu t e t e t e t


          (26) 

 where , , ,k l   all positive odd entries satisfy >   and .k l  
The following theorem is provided to give the synchronization of fixed time for complex networks (22) to the 

homogeneous trajectory (21) by building the Lyapunov function      
1

1
.

2

N
T
i i

i

V t e t e t


   
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Theorem 4: Suppose Assumption 1 holds that. If any positive constants exist i N   such that 

  max * 0,s
NA I G     where   *

max , , *T
i ijN N N

C C diag G g  


        
 with 

*
ii iig c g  

and  * .ij ijg c g i j  Then, under the controller (26), the controlled network (20) is synchronized on (22) in 

a fixed time:

     2 22

2 2

2 2

l k l k
l l

l
T

l k Nn

 





   

 
 

 

. 

From Theorem 4 results it can be found that the settling time is independent of the initial state value xi (0)   and  

x0 (0). In addition, the settling time can be determined by the node dimension n, the design parameters and 

group order N. 

c) Adaptive Adjustment of the Coupling Strength 

Using adaptive technique, the adaptive coupling intensity problem for fixed-time synchronisation of complex 

networks with output nodes is investigated. The regulated complex network with output nodes is followed by 

the adaptive coupling rule to: 

            

   

   

1

1

' ,

, ,

' .

N

i i i ij i i

j

i i

N
T
i i

i

x t Ax t f y t c t g y t u t

y t Cx t i N

c t e Ce t






    




 

  






      (27) 

where  is a small positive constant. 

The following theorem is presented to give the homogenous trajectory a fixed-time synchronization for 

adaptively controlled complex networks by creating the Lyapunov function  

        
2

1

1 1
.

2 2

N
T
i i

i

V t e t e t c t c




    

Theorem 5: By the assumption of Assumption 1 holds, the adaptively controlled complex networks can achieve 

fixed-time synchronization with a desirable coupling strength and a positive definite matrix is ubiquitous. 

C. Finite-time Synchronization Control of complex dynamical networks with time delay 

“In recent years, several requirements have been provided for synchronization of complex dynamic 

networks with or without delays in time via impulsive control or intermittent control. Much of the research 

focussed on asymptotic or exponential network synchronization by impulsive control and sporadic control. In 

fact, however, we could always expect the networks to achieve synchronization as quickly as possible, 

particularly in engineering fields. Application of finite-time synchronization control techniques is an effective 

approach for achieving faster convergence rate in time-delay complex networks. Finite-time synchronization 

implies the Convergence-time optimality. And so far, there are few published papers that consider the finite-

time synchronization of complex networks with time delays. It is therefore important to research the finite-time 

synchronization of time-delay complex networks, based on actual demands”. 

In the paper "Finite-time synchronization control of complex dynamic networks with time delay," Jun 

Mei et al addressed finite-time synchronization between two complex networks with non-delayed and delayed 

coupling through the use of impulsive control and periodically intermittent control through the use of finite-time 

stability theorem. Additionally, the finite-time synchronization requirements of systems are defined by applying 

Lyapunov theorem and inequality techniques in terms of linear matrix inequality, which are very simple to 

verify. 

 

Consider a time delay complex dynamical network consisting of N nodes, in which each node is an n-

dimensional dynamical system, i.e., 
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        
1 1

' ,

N N

i i ij j ij j

j j

x t f x t c a x t c b x t i N
 

                           (28)  

where   n
ix t R represents the vector State of the i

th
 dynamical node, : n nf R R stands for the activity 

function of i
th

 node, the constant c > 0 is a coupling strength,  ≥0 is the coupling delay.  ij
n n




  is inner-

coupling matrix between nodes and , N N
ij ijA a B b R    Are the coupling matrices representing the 

coupling power and the underlying topology for the non-delayed configuration and one delayed at time t 

respectively. If the nodes bind to each other i to j (ji), then 0, 0;ij ija b   otherwise,  0, 0ij ija b j i    

and the diagonal elements of matrices A, B are defined as 

1, 1,

, ,

N N

ii ij ii ij

j j i j j i

a a b b i N

   

      .  

a) Synchronization of complex networks with time delay via impulsive control with finite-time 

To evaluate finite-time impulsive synchronization with time delay process of general complex dynamic 

networks as follows: 

The above complex dynamic network (28) can be rewritten in the following form of impulsive differential 

equation, without loss of generality: 

          
1 1

' ,
N N

i i ij j ij j i

j j

y t f y t c a y t c b y t u t i N
 

            (29) 

where   n
iy t  denotes the response state vector of the i

th
 dynamical node and the controllers  iu t are 

designed as follows: 

   
 

 
     

 

1/2

max

2
min

,

0, 0,

t

T i
i i i i i i i

t i

i i

P e
u t e t k sign e k q e s Pe s ds i

P e

u t e









   
               


 

   (30) 

Where 0i   are constants to be determined, k > 0 is a tunable constant and real number. Denote 

 max P  min P as the maximum (minimum) eigenvalue of the positive definite diagonal matrix P. And we 

choose the impulsive control gain Bik which is a n n constant matrix and the impulsive distances 

1 1 ( )k k kt t k l       such that the states of drive dynamical networks (28) synchronize with the state of 

response dynamical networks (29), that is,  lim 0.i
t T

e t


  

Let        , 1i ie t y t x t i N    be synchronization errors and the following error dynamical system is 

obtained: 

             

 
1 1

' , ,

, , .

N N

i i i ij j ij j i k

j j

i ik i k

e t f y t f x t c a e t c b e t u t t t

e t B e t t k l


 


        



   

 
   (31) 

Theorem 6: Compare the system of errors (31) with impulsive controllers (30) and presume holds of 

Assumption 1. Suppose the positive constants are 1 2, ,..., n    satisfying: 
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 

 
 

1

2

min

1 1

2 2
0, ,

1

2

0 inf ,

1, max , ,

j N j j

k k k

k

k ik

I Q c A c B

j N

Q

t t

P
I B k l

P

  




 





 
    

  
  
  

  

    
 

Where      1 2 1 2 1 2, ,..., , , ,..., 0, , ,..., 0,n n ndiag diag Q diag q q q          

 1 2 1, ,..., , minn i N idiag          and NI Is a suitable identity matrix. Then the error systems (31) are 

coordinated under the controllers (30) in a finite time 
 1/2

1

2 0
,

2

V
T

k
 and 1

1 , ,
1

m

T
m l

m
   


 

where          
0

1

1
0 0 0 ,

2

N
T T
i i i i i

i

V e Pe q e s Pe s ds

 

 
  
 
 

   the initial condition is  0ie . 

The theorem above was implemented by constructing the following LKF 

         
1

1
.

2

tN
T T
i i i i i

i t

V t e t Pe t q e s Pe s ds

 

 
  
 
 

   

Corollary 7: Consider the impulsive controller error systems (30), and conclude the Assumption 1 holds. 

Suppose that positive constants 1 2, ,..., n    satisfying:  

   2

min

0,

1, max , ,

N

k
k ik

I c A

P
I B k l

P

 


 



  

    
 

where        1 2 1 2 1 2, , ,..., 0, , ,..., , , ,...,ij n n n
N N

A a diag diag diag        


        and adequate 

identity matrix
 
is

 NI . Next, the error systems (31) are coordinated under the controllers (30) in a finite time 

 1/2

2

2 0
,

2

V
T

k
 and 2

1 , ,
1

m

T
m l

m
   


 

where        
1

1
0 0 0 , 0

2

N
T
i i i

i

V e Pe e



  is the initial condition of  .ie t  

b) Synchronization of complex networks with time delay via intermittent control with finite-time 

The intermittent controllers  iu t of general complex dynamical networks with time delay to model is defined 

as 

   
 

 
     

 

1/2

max

2
min

, , (32)

0, 0,

t

T i
i i i i i i i

it

i i

P e
u t e t k sign e k q e s Pe s ds lT t lT

P e

u t e




 




   
         

   
   

 



 Where 0i   are constants called control gain, T > 0 is the control period,  > 0 is called the control width 

(control duration) and k> 0 is a tunable constant and real number. 

Let        , 1i ie t y t x t i N     be synchronization errors and / T   be the ratio of the control width 

 to the control period T called control rate. According to the control law (32), they obtained the following error 

dynamical system: 
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             

           

 

1 1

1 1

' ,

,

' ,

1 ,

N N

i i i ij j ij j i

j j

N N

i i i ij j ij j

j j

e t f y t f x t c a e t c b e t u t

lT t lT T i

e t f y t f x t c a e t c b e t

lT T t l T i N









 

 


       




   



      

     

 

 
     (33) 

Theorem 7: Suppose Assumption 1 does hold. When a positive definite matrix exists  

 1 2, ,..., 0ndiag     
 
and a diagonal matrix P > 0 So the conditions are as 

follows:

 max

1 1

2 2
0, ,

1

2

1 1

2 2
0, ,

1

2

j N j j

j N N j j

I Q c A c B

j

Q

I I Q c A c B
P

j

Q

  


  



 
   

  
  
  

 
   

   
 

  
 

 

Where      1 2 1 2 1 2, ,..., , , ,..., 0, , ,..., 0,n n ndiag diag Q diag q q q           

 1 2 1, ,..., , minn i N idiag          and and NI  is an appropriate identity matrix. The error systems (33) 

are then synchronized within the controllers in a finite time 
 1/2

3

2 0
,

2

V
T

k
  

where            
0

1

1
0 0 0 , 0

2

N
T T
i i i i i i

i

V e Pe q e s Pe s ds e

 

 
  
 
 

  is the initial condition of  .ie t
 

The theorem above was implemented by constructing the following LKF 

         
1

1
.

2

tN
T T
i i i i i

i t

V t e t Pe t q e s Pe s ds

 

 
  
 
 

 
 

Corollary 8: Suppose B = 0 holds, and Assumption 1. When a positive definite matrix exists 

 1 2, ,..., 0ndiag        and a diagonal matrix P > 0 so the conditions are as 

follows:

 max

1
0, ,

2

1
0, ,

2

j N j

j N N j

I Q c A j N

I I Q c A j N
P

 


 



    

      

Where      1 2 1 2 1 2, ,..., , , ,..., 0, , ,..., 0,n n ndiag diag Q diag q q q          

 1 2, ,..., ,ndiag       is a positive constant satisfies Assumption 1 and NI  is an appropriate identity 

matrix. Then, under the controllers the error systems (33), are synchronized under the periodically intermittent 

controllers in a finite time 
 1/2

4

2 0
,

2

V
T

k
 where        

1

1
0 0 0 , 0

2

N
T
i i i

i

V e Pe e


  is the initial condition 

of  .ie t
 

The following theorem is formulated by considering the following periodic laws for updating 
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 

 

'

2

'

, , (34)

0, 0 or 1 ,

T
Ti i i i

i i i i i

i i

i i

r e Pe k
r e Pe sign r lT t lT

r

r r lT t l T


 





  
        

   


     

where i> 0 is arbitrary, and by considering the following  LKF  

         2

1

1 1

2

tN
T T
i i i i i i

ii t

V t e t Pe t r q e s Pe s ds




 

 
   
 
 

 

 

Theorem 8: Suppose Assumption 1 does hold. When a positive definite matrix exists  

 1 2, ,..., 0ndiag        and a positive diagonal matrix P > 0 which holds the following conditions: 

 max

1 1

2 2
0, ,

1

2

1 1

2 2
0, ,

1

2

j N j j

j N N j j

I Q c A c B

j N

Q

I I Q c A c B
P

j N

Q

  


  



 
   

  
  
  

 
   

   
 

  
 

 

Where      1 2 1 2 1 2, ,..., , , ,..., 0, , ,..., 0,n n ndiag diag Q diag q q q          

 1 2, ,..., ,ndiag       is a positive constant satisfies Assumption 1 and NI  is an appropriate identity 

matrix. Then, under the controllers the error systems (4.3), are synchronized under the periodically intermittent 

controllers and intermittent updating laws in a finite time 
 1/2

5

2 0
,

2

V
T

k
  

where                 
0

2

1

1 1
0 0 0 0 , 0 , 0

2

N
T T
i i i i i i i i

ii

V e Pe q e s Pe s ds r e r




 

 
   
 
 

  are the initial conditions of 

   , .i ie t r t
 

D. Synchronization of coupled networks via discontinuous controllers with finite time 

Some of the earlier research on the synchronization of coupled neural networks have implemented 

linear feedback controller and can only achieve exponential or asymptotic convergence. Nevertheless, in 

practical application the finite-time convergence is more significant. The finite- time synchronization advantage 

requires robustness and higher convergence rate against uncertainties. As is well known, certain discontinuous 

dynamic systems are more likely to achieve convergence of the finite-time. Discontinuous controllers are often 

deliberately configured to monitor and stabilize finite-time. For example, two discontinuous control algorithms 

have been developed in Cortes (2006), which achieve consensus on multi-agent systems in finite time. The 

authors discussed finite-time semi-stability for discontinuous dynamic systems in Hui et al. (2009, 2010), and 

extended this principle to finite-time consensus with topology switches. 

Jun shen explores the finite- synchronization by discontinuous controllers of an array of coupled neural 

networks. Some appropriate parameters for finite-time synchronization are obtained based on the Lyapunov 

method. In addition, author suggested strategies for shifted control and adaptive tuning parameter to reduce the 

settling time. Additionally, the pinning control scheme is also configured for finite-time synchronization via a 

single controller. With the hypothesis that the topology of the coupling network includes a directed spanning 

tree and that each of the strongly connected components is detail-, it has been shown that finite- synchronization 
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can be accomplished by pinning. With the hypothesis that the topology of the coupling network includes a 

directed spanning tree and that each of the strongly connected components is detail-, it has been shown that 

finite- synchronization can be accomplished by pinning. 

Find the following configuration for a neural network: 

        'x t Bx t Tg x t J t            (35) 

where   n
ix t R  represents the state vector associated with the neurons,  1 2, ,..., nB diag b b b  is a positive 

diagonal matrix with  ib modelling self-inhibition of i
th

 neuron, n n
ijT t R     , is the interconnection matrix, 

        1 2, ,..., n
nJ t J t J t J t R   with  J t J  is a bounded external input, and 

        1 1 2 2, ,...,
T

n ng x g x g x g x with  .ig modelling the input-output activation of the i
th

 neuron.  

The following model of N linearly coupled neural networks can be considered for studying 

synchronization:             
1

' ,

N

i i i ij j i i

j

y t By t Tg y t J t c a y y u t i N



           (36) 

where
ijA a     the adjacency matrix of the coupled neural networks, c > 0 denotes the coupling strength 

and   n
iu t  is the control input formulated as follows: 

     ,ii i iu t d y x sign y x i N


             (37) 

Under the above control scheme (37), systems (35) and (36) can be represented as follows: 

        

                

'

' 1 1N N N N N N N

x t Bx t Tg x t J t

y t I B y I T G y I J t c L I y D I y x sign y x

    


               

where NI represents Dimensional identity matrix N and1N denote the column vector of n- with all entries equal 

to one,  1 2, ,..., ND diag d d d and L denotes matrix Laplacian associated with matrix A of adjacence. 

Theorem 9: Suppose the activation function  .g  satisfies Assumption 1 and a positive constant  exists such 

that the following inequality holds the following: 

 
2 21

0
2 4

T

N N Nn N

L L
I B c D I T I I l



 
          

 
                   (38) 

where  1 2, ,..., .nl diag l l l Then the coupled neural networks (6) conduct finite-time synchronisation 

 
1/2

2 0
*

V
t


  where      

1
.

2

TV t e t e t  

Adopt the following continuous feedback controller to reduce the settling time via switched 

control:      ,ii i iu t d y x sign y x i N


            (39) 

It's clear to see that V (t) decreases monotonically under condition (38). The initial error may be very large, so 

continuous controller (39) is easier to use. Then, after some time, the synchronization error gets smaller and the 

use of discontinuous controller (37) is easier. The following switched control technique, i.e. flipping the 

parameter  according to the synchronization error, is therefore fair to suggest: 

 
  

 

 

2

2

2 1
1 , when

2ln 2 0

1
0, when

2

V t e
V

t

V t e




 


 




       (40) 

Theorem 10: Suppose the  .g  activation function satisfies Assumption 1 and holds Condition (39). Then, 

under the switched control scheme (40), the coupled neural networks (35, 36) achieve finite-time 

synchronisation and the approximate settling time is  
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        
2

ln 2 0
ln 2 0 ln 2 0 2

*
2

V
e V V e e

t


 
  where      

1
.

2

TV t e t e t
  

 

The control parameter is modified by the adaptive tuning parameter method according to the synchronisation 

error as follows: 

 
  

   

 

2

2

2 1
1 0 1 , when ,

2ln 2
.

1
0, when

2

k
k V t e

V t
t

V t e




   


 




      (41) 

Theorem 11: Suppose the activation function  .h  fulfills Assumption 1 and holds condition (39). Then, under 

the switched control scheme (41) the coupled neural networks (35, 36) achieve convergence in finite time and 

the approximate settling time is 

   ln 2 0 2 2
*

2

ke V e
t



 
  where      

1
.

2

TV t e t e t  

Nonlinear coupling and pinning control scheme: The finite-time synchronization of complex dynamic networks 

was investigated in Chen and Lu (2009) via nonlinear coupling and pinning control. It was suggested that 

suitable nonlinear coupling can often boost the efficiency of the network. Consider the problem of 

synchronization by pinning control of nonlinearly coupled neural networks. The nonlinear neural networks was 

constructed by the 

             
1

' ,

N

i i i ij j i j i i

j

y t By t Th y t J t c a y y sign y y u t i N


             (42) 

The pinning function scheme considered as follows with a single controller: 

 
   1 1 1 , 1;

0, otherwise
i

d y x sign y x if i
u t

    
 


      (43) 

Within the aforementioned control scheme (43), the global nature of Filippov's solutions of the coupled system's 

initial value problem can be evaluated similarly as in Theorem 9. On the following we prove that if the coupling 

network topology G is closely connected and detail-balanced this pinning control scheme can work. 

Theorem 12: Suppose the topology G of the coupling network is strongly connected and accurate. If the 

activation function  .g  satisfies Assumption 1 and a positive constant  exists, such that the following 

inequality is found: 

  2 21
0

4
n NB T I l cL D I



 
        

 
 

where  1 2, ,..., nl diag l l l and  1,0,0,...,0 .D diag d The coupled neural networks (42) would then 

synchronize the isolated neural network (35) in a finite time, under control algorithm (43). 

E. Finite-time synchronization of Markovian jump complex networks 

Over the past decade [30–37], Markovian Jump Complex Networks (MJCNs) have provided a wide 

range of coverage. This is partly due to Markovian jump being a suitable mathematical pattern for representing a 

class of complex networks subject to spontaneous abrupt structural variations [31–35]. Additionally, MJCNs 

may be viewed as a special class of stochastic network systems. This class of network systems has finite modes 
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that move at various times from one to the next [38]. In addition, such a turn (or jump) can be controlled by a 

Markovian chain [37]. MJCNs occur in a variety of fields, such as NNs [35], genetic regulatory networks [36] 

and hopfield networks [33].The study of the dynamic and topological structure of MJCNs is therefore of 

fundamental importance for understanding the real-world functions. 

Synchronization has been intensively studied in recent years for MJCNs, with or without delays, as one 

of the most important dynamic behaviours [31–36, 39–42]. For example, synchronization issues with mode-

dependent mixed time delays in [39] were resolved for the discrete MJCNs. Exponential synchronization for 

MJCNs with mixed time delays has been studied in [32]. And synchronization of hybrid coupled MJCNs with 

mode-dependent mixed delays has studied in [41, 42]. In practice engineering, however, synchronization is 

often needed to be accomplished in a finite time. It thus becomes necessary to investigate the synchronization 

for MJCNs with time delays in the finite-time convergence range. 

Wenxia Cui et al studied the synchronization of a class of Markovian jump complex networks (MJCNs) 

with largely unknown transition rates and time delays in the finite-time convergence process. By building the 

correct stochastic functional Lyapunov-Krasovskii, using the finite-time stability theorem, inequality techniques 

and pinning control techniques, several adequate parameters have been proposed to ensure finite-time 

synchronization with or without time delays for the MJCNs. Since finite-time synchronization implies optimal 

convergence time and has better robustness and disturbance rejection properties, this paper has important 

theoretical significance and practical value for application. Finally, he demonstrated by considering numerical 

simulations. 

a) Finite-time Synchronization of MJCNs with partially unknown transition rates  

Consider a complex Markovian jump network consisting of N identical nodes with diffusive couplings, in which 

each node is a dynamic system of n dimensions, i.e.
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Let us consider the transition rates 0,ij  the method of jumping to be reached partially and can be represented 

as a network system (44) 
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The network's isolated node (or uncoupled node) (44) is supported by the 
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    ' , ,s t f s t t         (46) 

where  s t 'is the System's basic solution (46). 

The following dynamical error system is generated by subtracting (46) from 

(44):            
1

' ,

N

i i ij j i

j

e t F e t c r t e t u t i N


           (47) 

where               , , .i i i iF e t f x t f s t e t x t s t i N      

The following linear negative feedback-pinning controllers are used for the coupled device (47). 

             ,i i i i i iu t r e t k r sign e t e t


         (48) 

Where    0, 0, ,i ir k r i J     otherwise     0, , .i ir k r i J r S      

The following theorem is provided to give the Markovian jump complex networks finite-time synchronization 

(44) with partly uncertain probabilities of transition and stochastic noise disruption to the homogenous trajectory 

(46). 

Theorem 13: Let Hypothesis hold. When 
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   0ie  is the condition, i = 1, 2, ..., N.  

b) Finite-time Synchronization of MJCNs with partially unknown transition rates and time delays 

Time delays are well known to be inevitable when designing complex network models. Hence, 

considering the dynamics for the complex networks with time delays is very important.. In this section, the 

finite-time synchronization conditions for the presented MJCNs with time delays are obtained by the use of the 

finite-time stability theory. 

Consider a complex Markovian jump network consisting of N equal nodes with time delays, in which each node 

is a dynamic system in n dimensions, i.e.
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where 0  is the time-delay of node i,     ,i if x t x t  Is a continuous function indexed by vectors. 

The Network Isolated Node (50) is given by       ' , ,s t f s t s t t      (50) 

Where the basic device solution is (46). 
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The following dynamical error system is generated by subtracting (49) from 

(48):                       
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The following theorem is presented to give Markovian jump complex networks finite-time synchronization (49) 

with some uncertain probabilities of transfer and time delays to the homogenous trajectory (50). 

Theorem 14: Let Hypotheses 3 and 4 hold. When 
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Therefore, under the controls set (49), the complex network (50) is finite time synchronization  
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IV. APPLICATIONS OF SYNCHRONIZATION OF COMPLEX NETWORKS 

Complex network synchronization or controllability has been widely applied in many fields such as power grids 

and neuroscience and other fields which are briefly evaluated as follows: 
1.  The synchronization or controllability of complex networks has been commonly observed in natural 

systems such as transport systems, chemical reactions and communications (Arenas et al., 2008; 

Pikovsky et al., 2001; Vicsek & Zafeiris, 2012) as well as in other fields such as serving as a novel 

model for drug discovery in molecular networks (Csermely et al., 2013), understanding cancer 

progression . 

2.  Due to increasingly complex interconnections at continent scale and environmental opportunities, the 

modern power grid faces diverse challenges (Giannakis et al., 2014). The optimal power grid is 

designed to provide unparalleled visibility and controllability of its facilities and assets in order to 

provide rapid and reliable diagnosis / prognosis, operational flexibility to contingencies and deliberate 

attacks (Pasqualetti, Döfler & Bullo, 2013) and continuous incorporation of distributed renewable 

energy resources (Giannakis et al., 2014). 

3.  Power grid synchronization has been a classic engineering subject for more than three decades 

(Ribbens-Pavella & Evans, 1985) and is nowadays a longstanding and continuing research endeavour 

(Chiang et al., 1995; Machowski et al., 2008), which is an imperative element in the functioning of a 

power grid. 

4.  A study for transient stability analysis of large-scale electrical power systems with two distinct 

methodologies is presented in 1985 (Ribbens-Pavella & Evans, 1985). The first approach explores the 

application of the Lyapunov direct method to the study of traditional transient stability. The second 

approach focuses on deriving stability indexes, which are targeted at online surveillance, risk 

assessment and security regulation. Following this study, Chiang et al (1995) offers a corresponding 
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systematic review for the transient stability analysis. Synchronization of power grids networks has also 

been studied in Menck, Heitzig, Kurths, and Schellnhuber (2014), based on the basin stability 

suggested in Menck et al. (2013), to preserve robustness. Basin stability actually falls within the 

framework of transient stability which aims to characterize the attraction area. The method used in 

Menck et al. (2013), Menck et al. (2014) for basin stability is in fact the time-domain approach used in 

Chiang et al. (1995) or the numerical integration approach used in Ribbens-Pavella and Evans (1985). 

Based on the graph theory, it is found that dead ends and dead trees significantly reduce power grid 

stability. The principle of basin stability refers to the Northern European power structure, which 

supports this finding and verifies that the opposite holds as well. 

5.  In Motter, Myers, Anghel, and Nishikawa (2013), easy-to-verify conditions are obtained by a 

linearization approach for spontaneous synchrony in power grid networks, which is in reality low 

signal stability of power grids (Machowski et al., 2008). Nonetheless, new conditions for 

synchronization are introduced due to the implementation of the graph theory and the master stability 

function, and the optimization of synchronization efficiency is also investigated (Motter et al., 2013). 

6.  Latest developments in structural and functional magnetic resonance imaging, diffusion tensor 

imaging, magneto encephalography and electro encephalography, as well as modern methods of 

dynamic network theory, facilitate research into the structural and functional structures of the brain. 

Brain network has been shown to have a spatial topology and representative properties of complex 

networks, such as the presence of strongly connected hubs, small-world topology, and modularity-both 

at the entire brain (a macroscopic level) and cellular (a microscopic level) scale (Bullmore & Sporns, 

2009; Bullmore & Sporns, 2012; Gu et al., 2014; Tang et al., 2013a; Zamora-López et al., 2010). 

7.  Synchronization of distributed brain activity has been confirmed to play a key role in the processing 

and synchronization of neural information (Engel, Fries, & Singer, 2001; Palva, Monto, Kulashekhar, 

& Palva, 2010; Uhlhaas & Singer, (2006); Abnormal neural synchronization is found from studies to be 

closely linked to schizophrenia, depression, autism, Alzheimer's disease, and Parkinson's disease as 

demonstrated in Palva et al. (2010), Tang et al. (2012c, 2012b, 2013a), Dahlem et al. (2013), studying 

the synchronization or controllability of a neuronal network remains of great importance, not only 

having a thorough understanding of the intrinsic features of weighted and guided synchronization or 

control networks, but also having some suggestions to avoid irregular synchronization; 

A 2-D SCDN adaptive synchronization to image encryption based on the proposed spatiotemporal Crypto 

system in [19, 20]. 

V. CONCLUSIONS 

A brief review is presented in this paper on recent developments in finite-time and fixed-time 

synchronization of complex dynamic networks with non-identical discontinuous nodes, time delay, output-

coupling class by continuous control and complex Markovian jump networks. Then, several synchronization 

applications in complex networks, especially in neuroscience and power grids, were viewed. This paper's main 

aim is to make some new innovations and serve as good advice for people working in the area. If any of the 

latest published studies on the subject are missed, we give the writers and readers our apologies. There are some 

issues that should be addressed in future research given diverse findings. Some of them we high-light as 

follows: 

(i) One can investigate the effect of communication network topologies and network-induced constraints on 

pinning controllability efficiency, pinning observability and pinning synchronization for a complex 

dynamic network with general topology. Since the shared communication network is vulnerable to 

malicious attacks and exploits, the issue of cyber security has received increasing interest in research and 

needs to be investigated in depth, especially for application-level multi-agent systems. In addition, 

problems related to stochastic complex network and randomly occurring pinning control strategies are 

interesting topics for study. It is also interesting and important to consider a complex dynamic network 

with non-identical nodes and the case that the pinning cost and the quantity of pinned nodes are finite for 

a large-scale, distributed, directed network. 

(ii)  It is still important to further examine the design of controllers with delays to achieve finite-time 

synchronization of coupled neural networks. 

(iii)  Another interesting but challenging problem is the analysis of finite-time synchronization of coupled 

neural networks with discontinuous activation functions through discontinuous controllers.  
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(iv)  Power grids are becoming more distributed, smarter and more versatile. Nowadays, as small distributed 

power generators and decentralized energy storage systems need to be connected to the power network, 

smart grids are being introduced to supply electricity from producers to customers in order to conserve 

resources, thus lowering costs and increasing efficiency and transparency. 

(v)  Due to the advent of micro grids in power grids nowadays, it is becoming more important to use a droop 

controller to prevent the propagation of currents between converters without any essential 

communication). It is therefore imperative that complex network theory and control theory be used to 

enhance the controllability of power grids by the use of hierarchical control. 

(vi)  In the case of complex network synchronization studies, it is important to incorporate distinct network-

induced constraints into the synchronization structures, such as time delays, time-varying sampling 

intervals, packet dropouts, saturations, communication noises and quantization errors, where network-

induced constraints can be modelled either deterministically or stochastically. 

(vii)  Methods from control theory to the synchronization of complex networks, such as linear system theory 

(Rough, 1996), nonlinear system theory (Khalil, 2002) and stochastic system theory (Mao, 2007) are 

promising. In addition, the synchronization of complex networks can be considered under different 

output indices. Furthermore, statistical knowledge in various scales (microscopic, mesoscopic and 

macroscopic scales) can also be incorporated into the conventional control theory to capture the main 

points of complex systems, thereby promoting a detailed understanding of large-scale networked 

structures. Using these tools will provide solutions that not only deal with different types of problems in 

complex network functions, but also provide a more accurate way to understand the coordination of 

complex networks in the real world. 

(viii) Including model-based methods, data-driven control uses the knowledge gathered from the available 

measurements to explain specific complex behaviours (Yin, Ding et al, 2014), thereby providing an 

effective control strategy for complex engineering applications. As for heterogeneous complex networks 

(Zhang et al, 2014), in complicated circumstances the self-dynamics of such nodes may be uncertain and 

time-varying. Hence, developing controllers is important in realizing synchronization based on historical 

data analysis. 

(ix)  Intelligent methods for modelling dynamics of complex networks, such as neural networks and fuzzy 

structures can be adopted. In addition, single objective or multi-objective evolutionary algorithms and 

constraint evolutionary algorithms are promising to serve as a candidate for managing complicated 

problems of optimization in complex networks such as problems of controllability. 

(x) It should be noted that comprehensive studies incorporating some of the above topics are not yet 

appropriate, especially for the controllability of interdependent, complex networks and the robustness of 

complex network control (Bakule, 2014). Considering controllability, robustness, multiple layers, 

particularly applying the results in robotic systems, neuroscience and power grids would be challenging 

and promising at the same time. 

 Experimental findings, including a decrease in histogram variance, low PSNR, entropy closeness to 8 and a 

small association between plain images and ciphered images, indicate successful implementation of the 

theoretical results obtained in (Tengda Wei et al, 2017). Future work will concentrate on implementing 

permutation operation in encryption scheme, as NPCR (number of pixel change rate) and UACI (unified 

average change intensity) cannot achieve desired performance and hopefully the permutation operation will 

solve the problems. 
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