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Stability And Hopf Branch of A Predator-prey
Model with Two Time Delays And Refuges
Effect

SU Xiao-ya ", ZHAIYan-hui™
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Abstract — This paper mainly investigated a Predator-prey Model with two time delays and refuges effect
.By analyzing the characteristic equations,we discussed the local stability of equilibrium point of the
system and the sufficient condition for the existence of Hopf branch.By choosing the delay as a bifurcation
parameter,we can determine the direction of the Hopf bifurcation and the stability of the bifurcating
periodic solutions by using the centermanifold theorem and normal form theory.At last, some numerical

simulation results are confirmed that the feasibility of the theoretical analysis.
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I. INTRODUCTION

In nature, predator and prey are the most common interactions among populations. In recent years, the
dynamic analysis of predator-prey model has attracted extensive research as an important subject and has made
great progress.The development trend of a population depends not only on the current, but also on the state in a
certain period of time in the past.Faria(2001)[1]for more detail about the biological interpretation of the

parameters. Celik (2008)[2] studied a ratio-dependent predator-prey model for a class of predator populations
with time delays. Celik(2009) [3] studied a proportionately dependent predator-prey model for a prey

population with time delay. In these two papers, the local stability of equilibrium point of the system and the
sufficient condition for the existence of Hopf branch were analyzed with the time delay 7 as a branching

parameter. Yuan and Song (2009) [4]studied the Leslie-Gower predator-prey model with time delay, and
analyzed the stability of its positive equilibrium and the existence of the Hopf branch. Ma(2012)[5] studied a

predator-prey model in which both predator and prey populations have time delay, the stability and the Hopf
bifurcation in this system are exploited successively. Chen and Zhang (2013)[6] proposed a delayed predator -

prey model with predator migration to describe biological control. They studied the existence and stability of
equilibrium point. The specific model is as follows:

{X(t) =x(O[r-ay(®)], O
y(®) = y(t)[-d +bx(t —7) —cy(t)]+ m[x(t) — py(t)].
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where X(t) and y(t) denote the population of the prey and the predator at time t ,respectively. I is the
intrinsic growth rate of the prey; ay(t) is the hunting term in the presence of predators; m is the migration rate
of predators; p is the consumption rate of the predator on prey per predator per unit time; C is the self-limitation
constant of the predator; d is the death rate of the predator ; the positive feedback bX(t — 7) has a positive delay
7, which is the time due to converting prey biomass into predator biomass.All parameters are positive except

d.

For individual predators, predators do not have the ability to catch at birth, they need time to grow from
childhood to adulthood, the impact of time on the ability to catch can not be ignored.We need to consider the
time delay effect of predator maturation.Zhang A1 Zhou(2019) investigated a predator-prey model with
time.The local asymptotic stability of the positive equilibrium and the existence of the Hopf branch is
demonstrated by using linearization. The following model is proposed.

{X(t) x(OLr —ay ()],
y(®) = y(O[-d +bx(t) —cy(t —z)]+ mx(t) - DY(t)]

Based on models(1)and(2), this paper introduces time delay for both predator and prey, and obtains a
predator-prey model with two time delays. The specific model is as follows:

{X(t) x(OLr —ay(®)l,
y(®) = y(O)[=d +bx(t —7,) —cy(t —7,)]+ m[x(t) - IOY(t)]

where 7, is the time due to converting prey biomass into predator biomass, 7, is growth time delay of predator.

ol
V() = —F— we get

In order to reduce the number of parameters, letu(t) =

%—u(t)[l 2y
dv(t b @
A v S+ Luge-ra)-vie-re )+ B -vol

Substitutea, d ,b, 7, , 7, and m respectively for a E b_p 7, rr,and — all ,We can get
cr c r
BO _u)-augwve
dt
dv(t) ©)
ek v(t)[-d +bu(t —7,) —v(t —7,)]+ m[u(t) — v(t)].

First, let the equilibrium point of model (5) be E(u,,V,)  so it satisfies the following equation:
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Uy —au,V, =0 ;v [-d +bu, —v,]+mfu, —v,]=0
That is

_l+a(m+d) 1

° ab+ma)

o |

1
Theorem 1. For system (5), if(Hl) —d — = < mso, the system has a unique positive equilibrium point.
a

II. STABILITY AND LOCAL HOPF BIFURCATION ANALYSIS

In this section, we focus on the problems of the Hopf bifurcation and stability for the system(5).

Let X(t) = u(t) —u,, y(t) = v(t) —V, ,then the linearized approximation equation corresponding to model (5)

at the equilibrium point E(u,,V,) is:

XV _ (1 av, )xt) - au, y(0)],

dt
dv(t) S
—HF—:nma)+b%xa—r0—(d—bu0+%+4Mya)—%ya—rg.
The correspoding characteristic equation of system (5) is as follows.
A +PA+Qe ™ +Rle ™2 +S=0. )

Where

_nMa+m%+ny_mﬂ+Mm+dﬂ>o

P ,
b+ma b+ma
o_blram+d)] o
a(b+ma)
R:£>Q
a
S=mﬂ+dm+dﬂ>0
b+ma

In order to study the stability and branching of the equilibrium point E of the system, we only need to
discuss the distribution of the roots of the characteristic equation (7).1f all the roots of equation (7) have
negative real parts, the equilibrium point E is asymptotically stable.If one root of the equation contains

positive real parts, the equilibrium point E is unstable.Since the dynamic properties of differential

equations with multiple delays are very complex, we discuss the two delay 7, and 7, of system (5) in three
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cases.
Case l:7; =7, =0we
Theorem 1. For system (5),when 7, =7, =0 ,the equilibrium E is stable.

Proof.When 7, = 7, = 0 ,the characteristic equation of system (5) becomes

X +(P+R)A+Q+S=0. (®)

SinceP+R >0, Q+S >0,the two roots of equation (8) always have negative real parts.So when
7, =7, =0, the equilibrium point of system (5) is asymptotically stable.
Case2:7;, =0, 7,>0
Lemma 1. For the system (5), assume that (H, ) is satisfied.

(i) WhenP?>-2(S+Q)-R*>0, so

mda+m’a+m,, .l+a(m+d) 1 o . o .
5 ) -2 —— >0 s satisfied, there is no pure imaginary root in
+Mma a a

(H,) (

equation (7);

(i) When P2 —2(S +Q)—R® < 0and[P* —2(S +Q) - R*[ > 4(S+Q)*. so

l1+a(m+d) 1

2

<0 and

mda+m?a+ m)2 5
b+ma a a

(Hs) (

mda+m?a+m,, .l+a(m+d) 1 ’ 1+am+d) 7]
( )2 -2 _ | > g EEIEE)
b+ma a a a

are satisfied, Then equation(7) has two pairs of purely imaginary roots +i@,, whenz, = T;i, where

. :\/2(S+Q)+R2—P2J_r\/[P2—2(8+Q)—R2]2—4(S+Q)2 o

2

i, = i[arccos(g) +2kz],k=012,-- (10)

@,

Proof.Whenz, =0, 7, >0 ,the characteristic equation of system (5) becomes

A +PA+Rle ™2 +Q+S=0.(11)
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First, we assume thatia)2 (@, >0)is a root of the characteristic equation (11), then it satisfies the following

equation

— o, +io,P+iRwe " +S+Q=0. (12)

Thatis —m,” +iw,P+iw,R(cos w,z, —isinm,z,)+S+Q=0. (13)

The separation of the real and imaginary parts, it follows

~o," +o,Rsinw,r, +S+Q =0, "
Pw, + w,Rcos w,r, =0.
From (14) we obtain
4 2 2 2 2 _
@, +[P°-2(S+Q)—-R%]w,” +(S+Q)" =0. (15)

When P —2(S +Q) — R? > 0 the equation has no positive root, so there is no pure imaginary root;

When P? —2(S +Q)—R? < 0and [P2 -2(S+Q)- R2]2 > 4(S +Q)?, the equation has two positive

roots @,, and @,_,

. _\/2(5 +Q)+R?—P? [P~ 2(5 +Q) - R?[ —4(5 + Q)?
2+ 2

. _\/2(3 +Q)+R?—P2—[P?~2(5 +Q)~R?[ —4(5 +Q)?
= 2

From(14), we can get

5, = i[arccos(g) +2kz],k =012,

W)
This completes the proof.
Lemma 2.Let 7,, = Min{zy, , 75 } =175, ,and let the corresponding c be @, .

Let A(7,) = a(z,) +ia(z,) be a root of the characteristicequation (7),which satisfies c(7,,) =0 and
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. : - dA._
@(7,,) = @,y then we have the following transversality condition Re(——)
&

> Ois satisfied.

T)=Ty

Proof. By differentiating both sides of equation (11) with regard toz, and applying the implicit function

theorem, we have :

di RA%e
dz, 21+P+Re ™2 —r,Rle™":

Therefore,

(Gya_ 22+P 1 g
dr,” R ™ 2 1

So

= 2m,,SIN W7,y + P COS ,57,, 1

T2=T20

daA .
Re(_) ' | 2 2
dr, — Ry, 5,
B 2(0220—2Q+ P2 _R?
R’w?,

Ja

dA
Obviously, Re(—=)"" |, _, =—— >0 the proof is completed.
dz,” 77 Ry,

Theorem 2. For system (5), suppose that(Hl) is true.Whenz, =0, 7, >0 the following conclusions are

true:

(@)When (H,) is satisfied, so for allz, >0, the equilibrium point E of system (5)is asymptotically
uniformly stable;

(b)When (H,) is satisfied, ifz, €[0,7,,), the equilibrium point E is asymptotically uniformly stable.If
T, = T,,,model (5) generates Hopf branch at the equilibrium point E .If 7, > 7,,,model (5) is unstable at the

equilibrium point E .
Case 3:7, >0, 7, €[0,7,,)
Lemma 3. Let g(@,) = (0 —S)* +2(S — @} )R, sin a,z, + 2PRay} cos wyz, + PPl + R*af —

Q°. suppose that (H,,) is true,so g(a,) has a finite number of positive roots{a,, ®,,, @4, @, }.Then

equation(7) has a pair of purely imaginary roots + i@, jwhenz, = rlkj , where
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2 -
1 o —Rw Sinw,.7, —
lej ———[aI’CCOS( d! d! 1z

a)lj Q

S
)+ 2kz],k =012, j=12,---,5 (6)

Proof.Ifi@, (e, > 0)is aroot of the equation (7), then it satisfies the following equation
— o +ioP+Qe " +im Re 72 +S =0, (17)

The separation of the real and imaginary parts, it follows

— o +Qcosmr, +wRsinwr, +S =0, a8)
Pw, —Qsinar, + o, Rcoswz, =0.
From (18) we obtain
(@ —S)?* +2(S - )Ry sinwyz, + 2PRaf cos ayz, + P?a} + R?awf —Q* =0 (19)

The positive roots of the equation are assumed to be{a@, ,, @,, @y, +, & },

From (18) we get that

2 -
1 o —Ro . Sihw,. 7, —
lej ———[aI’CCOS( 1 d! 1z

@ Q

S
Y+2kz], k=012, j=12,---,s

So equation(7) has a pair of purely imaginary roots + i@, jWhenz, = rlkj . This completes the proof.

Lemma 4.Let7,, = min{z, k=012, j=12,---,S}and let the corresponding e, . be @, , .
10 1j J 1 10

Let A(7;) = a(z,) +iw(z,) be a root of the characteristicequation (7),which satisfies (z,,) =0and

Ao 2 0 s satisfied.

1=%0

dAi
@(7,,) = @y, then we have the following transversality condition Re(—)
(41

Proof. By differentiating both sides of equation (7) with regard to 7, and applying the implicit function theorem,

we have :

@i Qe
dr, 21+P-Qre ™ +Re ™2 —r,Rie™™?’

Therefore,
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di., 21+P+Re ™ —rRle ™ ¢
(2= L
dr, Qle ™ A
So
Re(d_l)—l [iiono Rsin(@,7, —@14735) + Ry, COS(e01,7, — @y473) — PSIN @371 — 204, COS 0473

1=710
dz, —Qay,

dA\ 1 ei
Obviously, Re(d—)"1 |fl‘=';‘1’(*)° # 0.The proof is completed.
21

According to the above analysis and Hopf branching theory [7], we can obtain the following theorem.

Theorem 3. For system (5), whenz; =0, 7, >0 ,assume that (H,) and (H,) are true.the following
conclusions are true:

Ifr, € [0, Tlo) , the equilibrium point E is asymptotically uniformly stable;
If 7, = 7,,,model (5) generates Hopf branch at the equilibrium point E ;

If 7, > 7,,,model (5) is unstable at the equilibrium point E .

I1I. DIRECTION AND STABILITY OF THE HOPF BIFURCATION

In the analysis in the above section, we have obtained the conditions for the system to generate Hopf branch.
In thissection, we shall study the direction and stability of the bifurcating periodic solutions by applying the
normal form theoryand center manifold theorem introduced by Hassard et al.[7].

Let X(t) =u(t) —u,, y(t) = Vv(t) —V, ,we consider the Taylor expansion of model (5) at the equilibrium
point E ,

X(t) = (L—avy)x(t) —au, y(t) —ax(t) y(t),
y(t) = mx(t) — (d + m—bu, +v,) y(t) + bv,x(t —7,) — v, y(t — 7,) + (20)
bx(t—z,)y(t) - y(®) y(t—7,).

Without loss of generality, we assume that 7,,>7,, 7, €[0,7,,), t—(t/z,,).For the sake of

research, let 7, =7,,+ 2 ,then 1 = O represents the Hopf branch parameter of system (5).Then the model
(5) is equivalent to the following Functional Differential Equation (FDE) system

u(t) =L,u, +F(u,, w). (21)
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LA@=@@+#{&M®+BMF§%+B¢@D} (22)
and
- a¢1 (0)¢2 (O)
PO b 6,0, 5 [
Where
1+a(m+d)
B — 1-av, —au, 3 0 - b+ma
Im —d+m-buy+v,)) |, _m(da+ma+l)
b+ma

Bythe Riesz representation theorem, there exists a bounded variation function 7(€, 1) » € €[-1,0], such

that

L#=[,dn(@.1)é(0) #<C. @9

In fact, we can choose

(70 +1)(B,+B,+B;), 6=0, .
(ro+1)(B,+By),  Oe[--2,0),
7(6, 1) = o (25)
(710"'/1)83’ Oe(-1- z ),
T10
0, 6=-1.

For ¢ eC ([-1,0],R?), the operators A and R are defined as follow
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d(¢(9)) 0 <[-10),

A(u)p(0) =1 49 o6
[Ldot. me),  o=o0.

0, 0 [-1,0),

R(:)$(6) ={F W o-0 @

Hence the system (5) can be written as the following form:

u, = A(z)u, + R(z)u, (28)

Where u, =u(t+0),0 €[-10).

For y € C[01], we define the adjoint operator A"(0) of A(0)as

_dvs) se(04],
A*p(s)={ O (29)

f,old (1" (s.0)w(-s)),s =0.

For ¢ C'([-1,0],R*)andy e C[0,1], we define a Bilinear form

<y ¢>=y OO -[. [ w(E-0)dn@)p&)ds. (30)
where 17(6) = 1(6,0)

Lemma 5.The eigenvectors (&) = (p,,1)" € andq’(s) = D(p,",1)" € are respectively the

eigenvectors corresponding to the eigen values i@, z,, and —i@,7,, of A(0) and A*(0),and
<q",q>=1, <q’,q>=0,
where

i[l+ a(m + d)] ’1)1- , (pl* ,1)1_ _ (i(ma_'_beia)lorlo)

11)T
@,,(b+ma) am,,

(P )" =(

N — b —lwygr = * 1*—ir — ) —
- D=(pp +—ne ™ p e o) '

proof. i, 7, are the eigen values of A(0), so they are also the eigen values of A"(0).In order to
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determine the standard form of the operator A(0) ,we assume that the eigenvectors (€) andg,” (s) are

respectively the eigenvectors correspondingto the eigenvalues i@z, and —i@,7,, of A(0) and

A" (0) .We can obtain

{ A0)a(0) =i w,47,,0(0) (31)

A*(0) ql* (s)=-i a)IOTqul* (s)

From (24) and (26), (31) can be written as

da(e) .
% —iow0),  0<[-10).

L,d(0) = i,,7,,0(0), 0=0.

)

therefore q(0) = q(0)e' x| 6 [-10].
Where q(0) =(q, (0),q2(0))T e C?is a constant vector, obtained from (22), (23)
[B, + B, + B,e*10]q(0) = i;,1q(0)

i[l+a(m+d)]
By direct calculate, we get q(0) = ('TJ =| w,(b+ma)
1

then q(6) = (p,. )" e

For non-zero vectors g, (S), s € [0,1], we have [BlT + BzTei“’“’T; + B3Tei”’1°’1°]ql* (0) =—im,lq, (0)

. i(ma+ be'0)
Similarly g, (0) = P2 aw. :
1 110

thenq,” () = (0, 1)" €"*™* we makeq’(s) = D(pp," 1)" "3

Now let's prove that < ,q>=1and <q ,q>=1, from equation (30), we get
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(aa)

7@ 9O~ [ aTE-0dn@a)dE,

L 0 0 oy 1710
=Dl(3" V(D' |, [, (B Ve Idn(@)(p, 1) e d}
=Bl+p5, — (7 D[ e dn(0)(0, )]
b —logny = 1 —i@ygTn
=D@+pp" +— S F1o8 Pt " 7,6 "™ p o) (33)
~ — b —lwpr = * 1*—i 7, —#\-1 *
Let D=(+pp, +—1,08 ™ p +—1,6 “®pp"), wecanget < ,q>=1By
a a

(1//, qu) = <A*1//, q0> , We obtain

—lwy7y, <q*:q> = <q*, Aq> = <A*q*, q> = <_iw0710q*’q> =lmyry, <q*1q>- (34)

So < q*, g >=0. The proof is completed.

Next, we will use the same notations as in Hassard et al., we firstcompute the coordinates to describe the
center manifold C, at x=0. Define

z(t)=<q’,u, > (35)
and W (t,60) =u,(6) —2Re{z(t)q(0)}- (36)
On the center manifold C,, we have
W (t,0) =W (z(t), Z(t),6) (37)

=2

2
WhereW (z,Z,8) =W, (6) Z? +W,,(0)2Z +W,, () Z? een,

For the central epidemicC,, ZandZ respectively represent the local coordinates of the central epidemic in
the direction of  and q". Note that W is real if U, is real, therefore we onlyreal solutions. Since

4 =0, itis easy to see that
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2(t)=eay7,,2(1) +77(0) f (W(z, Z,0) + 2Re{z(t) (0)})

:ia’)loz'loz(t)+q*T fo(2,2). (38)
Let 2(t) =iw,r,2+09(2,7), (39)
z? 72
Where 9(z,7) =9, ?+ 01.2Z + 0, ?+---, (40)
from (28) and (40), we have
) ) AW —2ReJ"" (0) f,(z,2)q(6), 0 <[-1,0),
W=t — 2T eq" (0)f,(2,2)a(0) 10,0
AW —2Re{q"" (0) f,(z,2)q(8)}+ f,(z,Z), ©O=0.

Which can be rewritten as

W =AW +H(z,2,6) (42)
where
Z2 72
H(z,7,0)2H20(9)3+ H,,(0)zZ + HOZ(Q)?+--- (43)
On the other hand, on C,,
W =W,2 +W,Z (44)

Using (38) and (40) to replace W, and Z and their conjugates by their power series expansions, we obtain

W = 1,7, Wao (9)22 —lwyy 7, W, (9)72 Tt (45)

Comparing the coefficients of the above equation with those of (43) and (45), we get

(A=2ie,y7, 1)Wo, (0) =—H, (0),
AW, 0)= —Hy 9), (46)
(A+ 2l 7y, 1)W,, (6) = —H, (6).
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Notice that U, (8) =W (z(t), Z(t),0) +zq+7Zq and q(0) =(p,,1)" €™’ we get

W(; 7 . 5\
u,(0) = W"(z,7,0) 47| P |giaomnt | 7| Pt | griomonot (47)
W@ (z,2,6) 1 1

SO

2 =2
,0)=2p,+Zp, +Wy (0) Z? +W,0(0)zz +W2(0) Z? b
z? 72
#,(0)=2+Z + W, (0) ) +WS? (0)2Z +Wg;’ (0) St

—iwy,T; =5 = AloT 22 _ 72
A = 29,0 + 25, WD (D) T+ W (D2 WP (D) -+

2 2

* * 7
+W1(12) (- 2-_2) zz +W0(22) (- 2-_2) - T
Tio 7, 2

¢2 (_ T_Z =7 efiw.lOT; +7 ei("lOT; +W2(02) (_ T_Z) Z_
TlO TlO 2

From (23 ), we obtain

- K.z>+K,zz+K.z? +K,z%z
fo(zaz):ﬂo( ! 2 ’ ) J

Kyz2® + K22 +K,Z° + K,2°Z
where

K =-ap,, K,=-a(p+p), K;=-ap,,

K, = —al pW,@ (0) +W,,” (0) + % W, (0) + %wzo‘” o).

K, =bpe 0 — ple’i“’“’rz* ,

K, =b(pe ™ + pe'®io) — (e7 % 4elowz ),

K7 — bﬁleia’loﬁo _eia’mTz* s
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—wy19 1 = al®i0710 1
Ky =blpe "Wy, (0)+2 P Wag ™ (0)+ S Wag ™ (-1)+ W, (1)1 -

7 ’ 1 iy, —iwyr," 1 3 ’
[\N11(2) (—2)+ E g Wzo(Z) (0)+e ™ W11(2) (0) + §W20(2) (-1
T10 10

FromT "™ (0) = D(jp,",1) , we obtain

9(2,2) =9 (0) f,(z,2)

— . [KZ*+K,2zZ2+K,7* +K,z°Z
:TlOD(pl ’1) ! 2 ? - 3_2 ! 2
Koz +KezZ + K, Z° + K z°Z

= z-10D[(51*Kl + KS)ZZ + (,51*K2 + K6)Zz+ (ﬁl*KS + K7)22 + (ﬁl*KA + KB)ZZZ]
Comparing the cofficients of the above equation with those in (40), we get

Oy = 21—10[_)(:51’k K +Ks), 0y = z'10[3(/51* K, +Ko),

_ ~ . (48)
9o = 27,0D(0, K, + K;), 950 = 270D (5, K, + Kp).

In order to determine the value of g,,, we also need to compute the values of W, () and W,, (&) ,from

6 €[-1,0) ,we obtain

H(27,6)=-2Relq” 0) (2 2)(0)]
= —(02(6) 2+ 0,72 + Gy o+ (0) (“0)

=2
_ z _ 1 _
—(G5(9) B + 01,22 + 0, > +--)7(0).
Comparing the coefficients with (43), we gives that

Hzo (9) = _gzoq(e) - 602(7(9)1 (50)
H11 (9) = _gllq(g) - guq(‘g)-

When@ =0, we have

H(z,z,0)=-2Re[g" (0) f,(z,2)q(0)] + f,(z,Z)

Z _ 7
=—(09y ?+ 01122 +Jq, 7+ ---)q(0)

72 72 K,z> +K,zZ +K,Z° +K,z°7
—(9,,(0)—+0,,2z2+7,,—+---)q(0) + = ! ? : * -
(9 (9) 7 Tt 0e )a© 1°(K522+K627+ K,Z2+K,z%Z
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Comparing the coefficients with (43), we have

K
Hzo (0) = _gzoq(o) - gozq(o) + 2710 (K1]'

5

K (51)
H11 (0) =-05,9 (O) - 611q(0) +7 [KZ J
6
Using (46), (50), we obtain
WZO (0) — 192 q(o)eiﬂ’mfmg + 190 q(o)e*iaﬁofm‘g + EleZia’leoe,
10710 3wy, Ty, (52)

W11 (9) = _& q(o)eiﬂ’m‘ﬁog + & q(o)e—iwmrloe " Ez-

@710 W10
2 2 . .
Where E; € R", E, € R” are two two-dimensional vectors.

From the definition of A(0O) and (46) , we have
J. (—)ld ()W, (0) = 2iwy,7,\W,, (0) — Ho, (0)
_[ 91d n(O)W,;(6) =-H,(0)
. 0
and (imyo73ol — [ € d1(6))q(0) =0

. 0 im0 =
(mieyzol — [ €7 dn(6))q(0) = 0.

Hence, we can get

H 0 A2imyryf _ Kl
(iewyyrl —| e dn(0))E, =27, {K J

5

0 K
(J:ld nO)E, =—1, ( KZJ

6

Therefore, we have
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i, 1+a(m+d)

b+ma e ol
b . m(da+ma+l) 1 . .-| - (K
—-m-—e” 1710 2|w10+—+_e— [on2) 5
a b+ma a

53
~l+a(m+d) 9

b+ma _ (K
b m(da+ma+l) 1| ° K,
m+y— ——— =77 =
a b+ma a

By calculation we can get

i, 1+a(m+d)

b+ma E_> K,

b . mda+ma+l) 1 L. .| (K

—-m——e~ lanoTio 2|a)10 + + e o7, 5
a b+ma a

~l+a(m+d) 4

b+ma _ (K
b m(da+ma+l) 1| ° K,
m+— ———" 75 =
a b+ma a

Based on the above analysis, we can get the following parameter values:

i 1
C,(0)= ;(gzogn _2|911|2 _§|goz|z)+%y

2w,,7y,
__ Re{C,(0)}
f T T Rell ()}
B, =2Re{C,(0)},

T, =— | M{C, (0)}+ 4, (I m{A (7,,)})

@yyTg

.(55)

Theorem 4.1In the case of system (5), the conclusion holds

a) The direction of the Hopf bifurcation is determined by the parameter zz,. If g, >0, the Hopf

bifurcation is supercritical . If £, <O, the Hopf bifurcation is subcritical .

b) /3, determines the stability of the bifurcating periodic solution. If £, <O, the bifurcating periodic

solutions is stable; if /3, >0, the bifurcating periodic solutions is unstable.

c) The period of the bifurcating periodic solution is decided by the parameter T,. If T, >0(<0), the
period increases(decreases).
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IV.NUMERICAL SIMULATION

In this section, we present numerical results to confirm the analytical predictions obtained in the previous

section.

For system (5) , We take the parameters: a=10,b=0.1,m=1,d =2 .According to the previous

31 1 . .
analysis, we get thatthe equilibrium point of the system (5) is E = (1—01,E) And these coefficients satisfy
o T . 31 1
conditions (H,) and (H,) Whenz, =0, 7, >0 for allz, >0, the equilibrium point E = (ﬁ’ﬁ) of

system (5)is asymptotically uniformly stable(see Figl).
0.0

10
0.8 015
4 06 _ UHH dom

0.4 L -

0.6

0.2
0.0 0.0

0 20 40 60 80 100 00 01 02 03 04 05 0.6

. o _ 31 1. . _
Figure 1 the equilibrium point E = (— , —) is asymptotically stable with 7, = 5
101 10

For system (5) , We take the parameters: a=4,b=2,m=1,d = —1.According to the previous analysis,
11

we get thatthe equilibrium point of the system (5) isE = (ﬂ : Z) .And these coefficients satisfy conditions

(H,) and (H;) .When 7, =0, 7, >0 ,we can get @,,=0.18, 7,,=4.666 .When 7, <7, the

11
equilibrium point E = (—24 'Z) of system (5)is asymptotically uniformly stable(see Fig2).Whenz, =7,,,a
- . I 11 .
stable periodic solution branches off from the equilibrium E =(Q'Z) (see Fig3).Whent, > 7, the

11
equilibrium point E = (ﬂ , Z) of the system (5) loses its stability and the system is unstable(see Fig 4).

10
0%
08 0
|06 u 0B
E .y g
04 0.0
02 015
0.10
00
0 20 4 60 0 100 0.0 o 0.8 0.04 0 0.06 o7
ut ut
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Figure 2 the equilibrium point E = (ﬂ , Z) is asymptotically stable with 7, = 3
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Figure 3 a stable periodic solution appears when 7, = 4.666
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Figure 4 an unstable periodic solution appears when 7, = 5

Whenz, >0, 7,€[0,7,),let 7,=3€[0,7,,) wecanget 7, =0.996.Whenz, <7,

11
the equilibrium point E=(ﬂ,z) of system (5)is asymptotically uniformly stable(see Fig5).When

11
7, > 7,,,the equilibrium point E = (ﬂ , Z) of the system (5) loses its stability and the system is unstable(see

Fig 6).
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ut.
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Figure 5 the equilibrium point E = (ﬂ , Z) is asymptotically stable with 7, = 0.5
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Figure 6 an unstable periodic solution appears when 7; = 2

V. CONCLUSIONS

In this paper,a Predator-prey Model with two time delays and refuges effect is studied. Firstly,if

7, =0,when (H,) is satisfied, that is, there is a unique positive equilibrium point in model (5).If the
coefficients in model (5) satisfy condition (HZ) ,the delay will not affect the stability of the model positive

equilibrium;If the coefficients in model (5) satisfy the condition (HS) , the sufficient conditions for the
equilibrium stability of the system are obtained, and the existence conditions of the linear stability region and
Hopf branch of the system are given. Then, if 7, # 0 fixed 7, , (H,) is satisfied, when the hysteresis 7, reaches

a certain critical value, it will affect the stability of the equilibrium point of the model and lead to the
emergence of branches.Next,we can determine the direction of the Hopf bifurcation and the stability of the
bifurcating periodic solutions by using the center manifold theorem and normal form theory.Finally, some
numerical simulation results are confirmed that the feasibility of the theoretical analysis.The asymptotic
stability of the equilibrium point and the existence of the periodic orbit can be determined by using the obtained

fundamental theorem.
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