On an initial value problem of delay-refereed differential Equation

EL-Sayed A.M.A ${ }^{\# 1}$, Ebead H.R ${ }^{* 2}$
${ }^{1,2}$ Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract

In this paper we study the existence of positive solutions for an initial value problem of a delay-refereed differential equation. The continuous dependence of the unique solution on the initial data and the delay-refereed function will be proved. Some especial cases and examples will be given.

Keywords - Delay-refereed differential equation, existence of solutions, continuous dependence, Arzela-Ascoli Theorem, Schauder fixed point Theorem.

I. INTRODUCTION

Many authors studied the differential and integral equations with deviating arguments only in the time itself, however, the case of the deviating arguments depend on both the state variable x and the time t is important in theory and practice, see for example [1]-[4], [7], [8], [9], [11]-[17].

In [4], the author studied the existence of a unique solution $x \in C[a, b]$ and its continuous dependence on the initial data of the initial value problem of the self-refereed differential equation

$$
\frac{d}{d t} x(t)=f(t, x(x(t))), \quad t \in(0, T] \quad \text { and } x(0)=x_{o}
$$

where $f \in(C[a, b], C[a, b])$. Here we relax the assumptions of [4] and generalize the results.
Let $C[0, T]$ be the class of continuous functions defined on $[0, T]$ with norm

$$
\|x\|=\sup _{t \in[0, T]}|x(t)|, \quad x \in C[0, T] .
$$

Let g be a delay-refereed function defined such that

$$
g:[0, T] \times R^{+} \rightarrow[0, T] \text { be continuous and } g(t, x(t)) \leq t
$$

Consider the initial value problem of the delay-refereed differential equation

$$
\begin{gathered}
\frac{d}{d t} x(t)=f(t, x(g(t, x(t)))), \text { a.e., } t \in(0, T](1) \\
x(0)=x_{0} \in[0, T] .(2)
\end{gathered}
$$

Our aim in this work is to prove the existence of positive solutions $x \in C[0, T]$ of the initial value problem (1)-(2).

The continuous dependence of the unique solution on the initial data x_{0} and the delay-refereed functiongwill be studied.

II. Existence of solutions

Consider now, the initial value problem (1)-(2) under the following assumptions:
(1) $f:[0, T] \times R^{+} \rightarrow R^{+}$satisfies Carathéodory condition i.e. f is measurable in t for all $x \in C[0, T]$ and continuous in x for almost all $t \in[0, T]$.
(2)There exists a bounded measurable functionm: $[0, T] \rightarrow R^{+}$, $M=\sup _{t \in[0, T]}|m(t)|$ and a constant $b \geq 0$ such that

$$
|f(t, x)| \leq|m(t)|+b|x|
$$

(3) $g:[0, T] \times R^{+} \rightarrow[0, T]$ is continuous and $g(t, x(t)) \leq t$.
(4) $b T<1$.

Define the set S_{L} by

$$
S_{L}=\left\{x \in C[0, T]:\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leq L\left|t_{2}-t_{1}\right|\right\} \subset C[0, T], L=\frac{M+b\left|x_{0}\right|}{1-b T}
$$

It clear that S_{L} is nonempty, closed, bounded and convex subset of $C[0, T]$.
Now we have the following existence theorem.
Theorem 1 Let the assumptions (1) - (4) be satisfied, then the initial value problem (1), (2) has at least one positive solution $x \in S_{L} \subset C[0, T]$.
Proof. Let x be a soltion of the problem (1)-(2). Integrating the differential equation (1) we obtain the corresponding integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{0}^{t} f(s, x(g(t, x(s))) d s>0, \quad t \in[0, T] \tag{3}
\end{equation*}
$$

Define the operator F associated with equation (3) by

$$
F x(t)=x_{0}+\int_{0}^{t} f(s, x(g(t, x(s))) d s t \in[0, T]
$$

First, we prove that F is uniformly bounded.
Let $x \in C[0, T]$, then for $t \in[0, T]$ we have

$$
\begin{aligned}
& |F x(t)| \leq\left|x_{0}\right|+\int_{0}^{t} \mid f(s, x(g(s, x(s))) \mid d s \\
& \leq\left|x_{0}\right|+\int_{0}^{t}\{|m(s)|+b|x(g(s, x(s)))|\} d s \\
& \leq\left|x_{0}\right|+\int_{0}^{t}\{M+b|x(g(s, x(s)))|\} d s .
\end{aligned}
$$

But

$$
\mid x(g(t, x(t))))\left|-\left|x_{0}\right| \leq|x(g(t, x(t)))-x(0)| \leq L\right| g(t, x(t)) \mid
$$

and

$$
\begin{equation*}
|x(g(t, x(t)))| \leq L|g(t, x(t))|+\left|x_{0}\right| \tag{4}
\end{equation*}
$$

then

$$
\begin{aligned}
& |F x(t)| \leq\left|x_{0}\right|+\int_{0}^{t}\left\{M+b\left(L|g(s, x(s))|+\left|x_{0}\right|\right)\right\} d s \\
& \leq\left|x_{0}\right|+\int_{0}^{t}\left\{M+b\left(L s+\left|x_{0}\right|\right)\right\} d s \\
& \leq\left|x_{0}\right|+\left(M+b\left(L T+\left|x_{0}\right|\right)\right) t \\
& \leq L T+\left|x_{0}\right| .
\end{aligned}
$$

This proves that the class functions $\{F x\}$ is uniformly bounded on S_{L}.
Let $x \in S_{L}$ and $t_{1}, t_{2} \in[0, T]$ with $t_{1}<t_{2}$ such that $\left|t_{2},-t_{1}\right|<\delta$, then

$$
\begin{aligned}
& \left|F x\left(t_{2}\right)-F x\left(t_{1}\right)\right|=\mid \int_{t_{1}}^{t_{2}} f(s, x(g(s, x(s))) d s \mid \\
& \leq \int_{t_{1}}^{t_{2}} \mid f(s, x(g(s, x(s))) \mid d s \\
& \leq \int_{t_{1}}^{t_{2}}\{M+b|x(g(s, x(s)))|\} d s \\
& \leq \int_{t_{1}}^{t_{2}}\left\{M+b\left(L|g(t, x(s))|+\left|x_{0}\right|\right)\right\} d s \\
& \leq \int_{t_{1}}^{t_{2}}\left(M+b\left(L s+\left|x_{0}\right|\right)\right) d s \\
& \leq L\left|t_{2}-t_{1}\right|
\end{aligned}
$$

This proves that $F: S_{L} \rightarrow S_{L}$ and the class of functions $\{F x\}$ is equi-continuous on S_{L}. Now by Arzela-Ascoli Theorem [5] F is compact on S_{L}.

Finally, we will show that F is continuous.
Let $\left\{x_{n}\right\} \subset S_{L}, x_{n} \rightarrow x$ on $[0, T]$, i.e, $\left|x_{n}(t)-x(t)\right| \leq \epsilon_{1}$, this implies that $\mid x_{n}(g(t, x(t)))-$ $x(g(t, x(t))) \mid \leq \epsilon_{2}$ and for arbitrary $\epsilon_{1}, \epsilon_{2} \geq 0$, we can get

$$
\left|x_{n}\left(g\left(t, x_{n}(t)\right)\right)-x(g(t, x(t)))\right|=
$$

$$
\mid x_{n}\left(g\left(t, x_{n}(t)\right)\right)-x_{n}(g(t, x(t)))+x_{n}(g(t, x(t)))-x(g(t, x(t)) \mid
$$

$$
\leq\left|x_{n}\left(g\left(t, x_{n}(t)\right)\right)-x_{n}(g(t, x(t)))\right|+\left|x_{n}(g(t, x(t)))-x(g(t, x(t)))\right|
$$

$$
\leq L\left|g\left(t, x_{n}(t)\right)-g(t, x(t))\right|+\left|x_{n}(g(t, x(t)))-x(g(t, x(t)))\right|
$$

$$
\leq \epsilon
$$

and

$$
x_{n}\left(g\left(t, x_{n}(t)\right)\right) \rightarrow x(g(t, x(t))) i n S_{L} .
$$

From the continuity of the function f we obtain

$$
f\left(t, x_{n}\left(g\left(t, x_{n}(t)\right)\right)\right) \rightarrow f(t, x(g(t, x(t))))
$$

Then from the Lebesgues dominated convergence theorem [10] we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{n}(t)=x_{0}+\lim _{n \rightarrow \infty} \int_{0}^{t} f\left(s, x_{n}\left(g\left(s, x_{n}(s)\right)\right)\right) d s \\
& =x_{0}+\int_{0}^{t} f\left(s, x_{o}\left(g\left(s, x_{o}(s)\right)\right)\right) d s
\end{aligned}
$$

and the operator F is continuous.
Now all conditions of Schauder fixed point Theorem [10] are satisfied, then the operator F has at least one fixed point $x \in S_{L}$. Consequently there exist at leat one positive solution $x \in C[0, T]$ of the integral equation (3).

To complete the proof, differentiating the integral equation (3) we obtain the differential equation (1). Also letting $t=0$ in (3) we obtain the initial data (2).

This completes the proof of the equivalence between the initial value problem (1)-(2) and the integral equation (3). Hence the initial value problem (1)-(2) has at least one positive solution $x \in C[0, T]$.

III. Uniqueness of the solution

In this section we prove the uniqueness of the solution of the integral equation (3). For this aim we assume that:

$$
\left(1^{\prime}\right)|f(t, x)-f(t, y)| \leq b|x-y|
$$

$$
\left(2^{\prime}\right) \sup _{t \in[0, T]}|f(t, 0)| \leq M
$$

(3') There exists a constant $k \in(0,1)$ such that $|g(t, x)-g(t, y)| \leq k|x-y|$.
Theorem 2 Let the assumptions (1),(3),(4) of Theorem 1 and (1'), (2') and (3') be satisfied, if bT(Lk+ $1)<1$, then the solution of the integral equation (3) is unique. Proof. Let $y=0$ in (1) we obtain

$$
|f(t, x)| \leq b|x|+|f(t, 0)|
$$

then we deduce that all assumptions of Theorem 1 are satisfied and the solution of equation (3) exists.
Now let x, y be two solutions of the integral equation (3), then we obtain

$$
\begin{aligned}
& |x(t)-y(t)|=\mid \int_{0}^{t} f\left(s, x(g(s, x(s))) d s-\int_{0}^{t} f(s, y(g(s, y(s))) d s \mid\right. \\
& \leq \int_{0}^{t} \mid f(s, x(g(s, x(s)))-f(s, y(g(y, y(s))) \mid d s \\
& \leq b \int_{0}^{t}|x(g(s, x(s)))-y(g(s, y(s)))| d s \\
& \leq b \int_{0}^{t}|x(g(s, x(s)))-x(g(s, y(s)))| d s \\
& +b \int_{0}^{t}|x(g(s, y(s)))-y(g(s, y(s)))| d s \\
& \leq b L \int_{0}^{t}|g(s, x(s))-g(s, y(s))| d s \\
& +b \int_{0}^{t}|x(g(s, y(s)))-y(g(s, y(s)))| d s \\
& \leq b L k \int_{0}^{t}|x(s)-y(s)| d s \\
& \left.+b \int_{0}^{t} \mid x(g(s, y(s)))-y(s, y(s))\right) \mid d s \\
& \leq b L k T\|x-y\|+b T\|x-y\| \\
& =b T(L k+1)\|x-y\|
\end{aligned}
$$

and

$$
\|x-y\| \leq b T(L k+1)\|x-y\|
$$

Since $b T(L k+1)<1$, it follows that $x(t)=y(t), t \in C[0, T]$ and the solution of (3) is unique.

IV. Continuous dependence

Here we prove that the solution of integral equation (3) depends continuously of the initial data x_{0} and the delay-refereed function g.

Definition 1 The solution of the integral equation (3) depends continuously on the initial data x_{0} if, $\forall \epsilon>$
$0 \exists \delta(\epsilon)>0$ such that

$$
\begin{equation*}
\left|x_{0}-x_{0}^{*}\right| \leq \delta \Rightarrow\left\|x-x^{*}\right\| \leq \epsilon \tag{5}
\end{equation*}
$$

where x^{*} is the unique solution of the integral equation

$$
\begin{equation*}
x^{*}(t)=x_{0}^{*}+\int_{0}^{t} f\left(s, x^{*}\left(g\left(s,\left(x^{*}(s)\right)\right)\right) d s, \quad t \in[0, T]\right. \tag{6}
\end{equation*}
$$

Theorem 3 Let the assumptions of Theorem 2 be satisfied, then the solution of (3) depends continuously on the initial data x_{0}.
Proof. Let x, x^{*} be the solution of the integral equation (3) and (6), then we have

$$
\begin{aligned}
& \left|x(t)-x^{*}(t)\right|=\left|x_{0}+\int_{0}^{t} f(s, x(g(s, x(s)))) d s-x_{0}^{*}+\int_{0}^{t} f\left(s, x^{*}\left(g\left(s, x^{*}(s)\right)\right)\right) d s\right| \\
& \leq\left|x_{0}-x_{0}^{*}\right|+\int_{0}^{t} \mid f\left(s, x(g(s, x(s)))-f\left(s, x^{*}\left(g\left(s, x^{*}(s)\right)\right)\right) \mid d s\right. \\
& \leq\left|x_{0}-x_{0}^{*}\right|+b \int_{0}^{t}\left|x(g(s, x(s)))-x^{*}\left(g\left(s, x^{*}(s)\right)\right)\right| d s \\
& \leq\left|x_{0}-x_{0}^{*}\right|+b L \int_{0}^{t}\left|g(s, x(s))-g\left(s, x^{*}(s)\right)\right| d s \\
& +b \int_{0}^{t}\left|x\left(g\left(s, x^{*}(s)\right)\right)-x^{*}\left(g\left(s, x^{*}(s)\right)\right)\right| d s \\
& \leq\left|x_{0}-x_{0}^{*}\right|+b L k \int_{0}^{t}\left|x(s)-x^{*}(s)\right| d s \\
& +b \int_{0}^{t} \mid x\left(g\left(s,\left(x^{*}(s)\right)\right)-x^{*}\left(g\left(s, x^{*}(s)\right)\right) \mid d s\right. \\
& \leq \delta+b L k\left\|x-x^{*}\right\| T+b\left\|x-x^{*}\right\| T
\end{aligned}
$$

and

$$
\left\|x-x^{*}\right\| \leq \delta+b T(L k+1)\left\|x-x^{*}\right\|,
$$

then

$$
\left\|x-x^{*}\right\| \leq \frac{\delta}{(1-b T(L k+1))}
$$

Since $b T(L k+1)<1$ it follows that the solution of (3) depends continuously on the initial data x_{0}.
Definition 2 The solution of the integral equation (3) depends continuously on the function gif, $\forall \epsilon>$ $0 \exists \delta(\epsilon)>0$ such that

$$
\begin{equation*}
\mid g\left(t, x(t)-g^{*}\left(t, x(t) \mid \leq \delta \Rightarrow\left\|x-x^{*}\right\| \leq \epsilon\right.\right. \tag{7}
\end{equation*}
$$

where x^{*} is the unique solution of the integral equation

$$
\begin{equation*}
x^{*}(t)=x_{0}+\int_{0}^{t} f\left(s, x^{*}\left(g^{*}\left(s,\left(x^{*}(s)\right)\right)\right) d s, \quad t \in[0, T] .\right. \tag{8}
\end{equation*}
$$

Theorem 4 Let the assumptions of Theorem 2 be satisfied, then the solution of (3) depends continuously on the function g.
Proof. Let x, x^{*} be the solution of the integral equation (3) and (8), then we have

$$
\begin{aligned}
& \left|x(t)-x^{*}(t)\right|=\left|x_{0}+\int_{0}^{t} f(s, x(g(s, x(s)))) d s-x_{0}-\int_{0}^{t} f\left(s, x^{*}\left(g^{*}\left(s, x^{*}(s)\right)\right)\right) d s\right| \\
& \leq \int_{0}^{t} \mid f\left(s, x(g(s, x(s)))-f\left(s, x^{*}\left(g^{*}\left(s, x^{*}(s)\right)\right)\right) \mid d s\right. \\
& \leq b \int_{0}^{t}\left|x(g(s, x(s)))-x^{*}\left(g^{*}\left(s, x^{*}(s)\right)\right)\right| d s \\
& \leq b \int_{0}^{t}\left|x(g(s, x(s)))-x\left(g^{*}\left(s, x^{*}(s)\right)\right)\right| d s \\
& +b \int_{0}^{t}\left|x\left(g^{*}\left(s, x^{*}(s)\right)\right)-x^{*}\left(g^{*}\left(s, x^{*}(s)\right)\right)\right| d s \\
& \leq b L \int_{0}^{t}\left|g(s, x(s))-g^{*}\left(s, x^{*}(s)\right)\right| d s+b\left\|x-x^{*}\right\| T \\
& \leq b L \int_{0}^{t}\left|g(s, x(s))-g\left(s, x^{*}(s)\right)\right| d s \\
& +b L \int_{0}^{t}\left|g\left(s, x^{*}(s)\right)-g^{*}\left(s, x^{*}(s)\right)\right| d s+b\left\|x-x^{*}\right\| T \\
& \leq b L k \int_{0}^{t}\left|x(s)-x^{*}(s)\right| d s+\delta b L T+b\left\|x-x^{*}\right\| T \\
& \leq b L k\left\|x-x^{*}\right\| T+\delta b L T+b\left\|x-x^{*}\right\| T
\end{aligned}
$$

and

$$
\left\|x-x^{*}\right\| \leq b T(1+L k)\left\|x-x^{*}\right\|+\delta b L T,
$$

then

$$
\left\|x-x^{*}\right\| \leq \frac{\delta b L T}{(1-b T(L k+1))}
$$

Since $b T(L k+1)<1$ it follows that the solution of (3) depends continuously on the function g.

V. Examples

Example 1Consider the nonlinear differential equation

$$
\begin{equation*}
\frac{d x}{d t}=\frac{e^{-t}}{t+3}+\frac{1}{2}\left|x\left(\frac{t \sin ^{2} x(t)}{1+x^{2}(t)}\right)\right|, \quad t \in(0,1] \tag{9}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x(0)=\frac{1}{3} . \tag{10}
\end{equation*}
$$

Set

$$
f\left(t, x(g(t, x(t)))=\frac{e^{-t}}{t+3}+\frac{1}{2}\left|x\left(\frac{t \sin ^{2} x(t)}{1+x^{2}(t)}\right)\right|\right.
$$

then

$$
|f(t, x)| \leq \frac{e^{-t}}{t+3}+\frac{1}{2}|x|
$$

and we have $m(t)=\frac{e^{-t}}{t+3}, M=1 / 3, \quad b=1 / 2$, then $b T=1 / 2<1$.
Applying to Theorem 1, then the initial value problem (9)-(10) has a positive continuous solution.

Example 2Consider the nonlinear differential equation

$$
\begin{equation*}
\frac{d x}{d t}=\frac{1}{2} \ln (1+t)+\frac{1}{6}\left|x\left(\frac{t e^{-x^{2}(t)}}{1+|x(t)|}\right)\right|, \quad t \in\left(0, \frac{1}{2}\right] \tag{11}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x(0)=0.1 \tag{12}
\end{equation*}
$$

Set

$$
f\left(t, x(g(t, x(t)))=\frac{1}{2} \ln (1+t)+\frac{1}{6}\left|x\left(\frac{t e^{-x^{2}(t)}}{1+|x(t)|}\right)\right|\right.
$$

then

$$
|f(t, x)| \leq \frac{1}{2}|\ln (1+t)|+\frac{1}{6}|x|
$$

and we have $m(t)=\frac{1}{2} \ln (1+t), \quad M=1 / 4$ and $b=1 / 6$, then $b T=1 / 12<1$.
Applying to Theorem 1, then the initial value problem (11)-(12) has a continuous solution.

REFERENCES

[1] P. K. Anh, N. T. T. Lan, N. M. Tuan, Solutions to systems of partial differential equations with weighted self-reference and heredity, Electronic Journal of Differential Equations 2012 (2012) 1-14.
[2] J. Banaś, J. Cabrera, On existence and asymptotic behaviour of solutions of a functional integral equation, Nonlinear Analysis: Theory, Methods \& Applications 66 (2007) 2246-2254.
[3] V. Berinde, Existence and approximation of solutions of some first order iterative differential equations, Miskolc Mathematical Notes 11 (2010) 13-26.
[4] A. Buicá, Existence and continuous dependence of solutions of some functional differential equations, Seminar on Fixed Point Theory 3 (1995) 1-14.
[5] R.F. Curtain, A.J. Pritchard, Functional Analysis in Modern Applied Mathematics. Academic Press, 1977.
[6] N. Dunford, J. T. Schwartz, Linear Operators, (Part 1), General Theory, NewYork Interscience, 1957.
[7] E. Eder, The functional differential equation $x^{\prime}(t)=x(x(t))$, J. Differential Equations 54 (1984) 390-400.
[8] M. Féckan, On a certain type of functional differential equations, Mathematica Slovaca 43 (1993) 39-43.
[9] C. G. Gal, Nonlinear abstract differential equations with deviated argument, Journal of mathematical analysis and applications, 333 (2007) 971-983.
[10] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, (Vol. 1), Metric and normed spaces, 1957.
[11] R. Haloi, P. Kumar, D. N. Pandey, Sufficient conditions for the existence and uniqueness of solutions to impulsive fractional integro-differential equations with deviating arguments, Journal of Fractional Calculus and Applications, 5 (2014) 73-84.
[12] N. T. Lan, E. Pascali, A two-point boundary value problem for a differential equation with self-refrence, Electronic Journal
of Mathematical Analysis and Applications, 6 (2018) 25-30.
[13] J. Letelier, T. Kuboyama, H. Yasuda, M. Cárdenas, A. Cornish-Bowden, A self-referential equation, $f(f)=f$, obtained by using the theory of $(m ; r)$ systems: Overview and applications, Algebraic Biology (2005) 115-126.
[14] M. Miranda, E. Pascali, On a type of evolution of self-referred and hereditary phenomena, Aequationes mathematicae, 71 (2006) 253-268.
[15] N. M. Tuan, L. T. Nguyen, On solutions of a system of hereditary and self-referred partial-differential equations, Numerical Algorithms, 55 (2010) 101-113.
[16] U. Van Le, L. T. Nguyen, Existence of solutions for systems of self-referred and hereditary differential equations, Electronic Journal of Differential Equations, 51 (2008) 1-7.
[17] D. Yang, W. Zhang, Solutions of equivariance for iterative differential equations, Applied mathematics letters, 17 (2004) 759-765.

