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I. INTRODUCTION

Many authors studied the differential and integral equations with deviating arguments only in the
time itself, however, the case of the deviating arguments depend on both the state variable x and the time ¢
is important in theory and practice, see for example [1]-[4], [7], [8], [9], [11]-[17].

In [4], the author studied the existence of a unique solution x € C[a, b] and its continuous
dependence on the initial data of the initial value problem of the self-refereed differential equation

%x(t) = f(t,x(x(t))), te(0,T] and x(0) = x,
where f € (C[a, b],C[a, b] ). Here we relax the assumptions of [4] and generalize the results.

Let C[0,T] be the class of continuous functions defined on [0, T] with norm
[lx[| = sup |x(t)], x€C[O,T].
t€[0,T]

Let g be a delay-refereed function defined such that
g:[0,T] x R* > [0,T] be continuous and g(t,x(t)) <'t.

Consider the initial value problem of the delay-refereed differential equation

%x(t) =f (t,x (g(t,x(t)))), a.e., te€(0,T](1)

x(0) = x, € [0,T].(2)

Our aim in this work is to prove the existence of positive solutions x € C[0,T] of the initial value problem
1)-@).
The continuous dependence of the unique solution on the initial data x,and the delay-refereed
functiongwill be studied.

II. Existence of solutions

Consider now, the initial value problem (1)-(2) under the following assumptions:

(1) f:[0,T] x R* - R™ satisfies Carathéodory condition i.e. f is measurable in t for all x € C[0,T] and
continuous in x for almostall t € [0,T].

(2)There exists a bounded measurable functionm: [0,T] - RY,
M = sup,e[o.r) Im(t)| and a constant b = 0 such that

£ (£, 0] < [m(©)| + blxl.

(3)g:[0,T] x R* - [0,T] is continuous and g(t,x(t)) < t.

(4)bT < 1.

Define the set S, by
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M+b|xg|

5, = {x € C[0,T]: |x(t) — x(t)] < LIt — 5]} < C[0,T], L =20l

It clear that S; is nonempty, closed, bounded and convex subset of C[0, T].
Now we have the following existence theorem.

Theorem 1 Let the assumptions (1) — (4) be satisfied, then the initial value problem (1), (2) has at least one
positive solution x € S; < C[0,T].
Proof. Letxbe a soltion of the problem (1)-(2). Integrating the differential equation (1) we obtain the
corresponding integral equation
x(t) = x0+ f, f(5,%(g(t,x(s))) ds >0, t €[0,T].
Define the operator F associated with equation (3) by
Fx(t) = xo + [ f(s,x(g(t,x(s)))dst € [0,T].

First, we prove that F is uniformly bounded.
Let x € C[0,T], then for t € [0,T] we have

[Fx(®)| < |xo] + f(f |f (s, x(g(s,x(s)))ds

< |xo| + f(f {lm(s)| + blx(g(s,x(s)))}ds

t
< Ixol + Jy {M + blx(g(s,x(s)))}ds.

But
] lx(g (&, x| = |xo] < [x(g(t, x(8))) —x(0)] < L|g(t, x(t))]
an
lx(g (&, x(®))] < L|g(t, x())] + |xol,
then

IFx(6)] < |2 + J; {M + b(LIg(s, ()| + |xo])}ds
< |xo| + [ {M + b (Ls + |x])}ds

< |xo| + (M + b(LT + |xo|))t

< LT + |xp]-

This proves that the class functions {Fx} is uniformly bounded on S;.

Let x € S, and ¢, t, € [0,T] with t; < t, suchthat |t,, —t;]| < §, then
|Fx(t) = Fx(t)] = | [, f(s,%(g(s, x(s)))ds]|
< [ 1f (s, x(g (s, x(s)))Ids
< [ (M + blx(g(s, x(s))}ds
< 7 (M + b(LIg(L,x())| + Ixo])}ds
< f:f (M + b(Ls + |x,]))ds
<Llt, — t,].

This proves that F:S; —» S; and the class of functions {Fx} is equi-continuous on S, . Now by
Arzela-Ascoli Theorem [5] F is compact on S;.

Finally, we will show that F is continuous.
Let {x,}cS;, x,=>x on [0,T], ie, |x,(t)—x(t)|<e, this implies that |x,(g(t x(t))) —
x(g(t,x(t)))| < €, and for arbitrary €;,€, = 0, we can get
1%, (g (t, %, (1)) — x(g (&, x()))| =
1%, (g (& X, () — %, (g (&, x(2))) + x, (g (¢, x(1))) — x(g(t, x(1))]
< 1%, (9 (& x, (1)) — %, (g, x (D) + |x, (9 (&, x(2))) — x(g (L, x(D)))]
< Llgt x, (1) — g(t, x()] + |x, (g (&, x(1))) — x(g(t, x(1)))]

<e€
and

%, (9(t, X, (1)) = x(g(t, x(1))) inS,.
From the continuity of the function f we obtain
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f(t,x,(g(t x,(£)))) = f(t,x(g (L, x(D))).

Then from the Lebesgues dominated convergence theorem [10] we have
limx, (t) = xy, + lim fot f(s,x,(g(s,x,(s))))ds

t
= xo + Jy f(5,%,(g(5,%,(5))))ds
and the operator F is continuous.

Now all conditions of Schauder fixed point Theorem [10] are satisfied, then the operator F has at
least one fixed point x € S;. Consequently there exist at leat one positive solution x € C[0,T] of the
integral equation (3).

To complete the proof, differentiating the integral equation (3) we obtain the differential equation
(1). Also letting t = 0 in (3) we obtain the initial data (2).

This completes the proof of the equivalence between the initial value problem (1)-(2) and the
integral equation (3). Hence the initial value problem (1)-(2) has at least one positive solution x € C[0,T].

III. Uniqueness of the solution

In this section we prove the uniqueness of the solution of the integral equation (3). For this aim we assume
that:
DIf &) = fEyI<blx =yl
(2) supeepo,r|f (£, 0)] < M.
(3) There exists a constant k € (0,1) such that|g(t,x) — g(t,¥)| < k|x — y|.

Theorem 2 Let the assumptions (1),(3),(4) of Theorem 1 and (1), (2") and (3") be satisfied, if bT(Lk +
1) < 1, then the solution of the integral equation (3) is unique. Proof. Let y = 0 in (1") we obtain

lf &) < b |x| +|f(t0)l,
then we deduce that all assumptions of Theorem 1 are satisfied and the solution of equation (3) exists.
Now let x,y be two solutions of the integral equation (3), then we obtain

lx(@) —y(@®| = fot f(s,x(g(s,x(s)))ds — fot f(s,y(g(s,y(s)))ds|
< fot If (s, x(g(s,x(5))) — f(s,y(g(y, y(s)))lds
<b fot |x(g (s, x(s))) —y(g(s,y(s)))lds
<b fot |x(g (s, x(s))) —x(g(s,y(s)))lds
+b fot lx(g(s,y(s))) — y(g(s,y(s)))lds
< bLJ, 19(s,x(s)) — g(s,y(s))lds
+b fot lx(g(s,y(s))) — y(g(s,y(s)))lds
< bLk f |x(s) — y(s)lds
+b fot lx(g(s,y(s))) — y(s,¥(s)))lds
SDbLET lx—y I +bT llx —y
=bT (Lk+1) lx—yl
and

lx—yI<bT (Lk+1) lx—yl.
Since bT (Lk + 1) < 1, it follows that x(t) = y(t), t € C[0,T] and the solution of (3) is unique.

IV. Continuous dependence

Here we prove that the solution of integral equation (3) depends continuously of the initial data x,
and the delay-refereed function g.

Definition 1 The solution of the integral equation (3) depends continuously on the initial data x,if, Ve >
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036(e) > 0 such that

[xg — x5l <6 =>lx—x"lI<e€
where x* is the unique solution of the integral equation

X () = x5+ Jy f(s,x°(g(s, (x*()))ds, t€[0,T].

Theorem 3 Let the assumptions of Theorem 2 be satisfied, then the solution of (3) depends continuously on
the initial data x,.
Proof. Let x,x* be the solution of the integral equation (3) and (6), then we have

[x(t) = x* ()] = [xo + f(f f(s,x(g(s,x(s))))ds — x5 + fot f(s,x7(g(s,x7(s))))ds|
< |xo — x| + fot [f(s,x(g(s,x(s))) — f(s,x"(g(s,x7(s))))|ds
< |xo —xo|l +b fot [x(g(s, x(s))) —x*(g(s,x"(s)))|ds
< |xo —xo| + bL fot lg(s,x(s)) —g(s,x*(s))|ds
+b fot [x(g(s,x"(s))) —x"(g(s,x"(s)))|ds
< |xtg — x5| + bLk f |x(s) —x"(s)|ds
+b fy x(g(s, (x"(5))) — x* (g(s,x" (s)))|ds
. <SS+bLk lx—x* N T+bllx—x"II T

lx—x"I<6+bT(Lk+1) Il x—x"1,

then
5

[l x—x "S(l—bT(Tl))'

Since bT(Lk + 1) < 1 it follows that the solution of (3) depends continuously on the initial data x,,.

Definition 2 The solution of the integral equation (3) depends continuously on the function gif, Ve >
036(e) > 0 such that

lgt, x(@®) —g" x| < d=1x—x" <€
where x* is the unique solution of the integral equation

x'() = xo+ i f(5,2°(g" (s, (" ()))ds, t € [0,T].

Theorem 4 Let the assumptions of Theorem 2 be satisfied, then the solution of (3) depends continuously on
the function g.
Proof. Let x,x* be the solution of the integral equation (3) and (8), then we have

lx(t) = x* (O] = |xo + fot f(s,x(g(s,x(s))))ds — xo — fot f(s,x"(g"(s,x7(s))))ds|
S fot If (s, x(g(s,x(5))) = f(s,x"(g"(s,x7(s))))|ds

<b fot lx(g (s, x(s))) —x"(g"(s,x"(s)))lds

<b fot lx(g (s, x(s))) —x(g*(s,x"(s)))|ds

+b fot lx(g™ (s, x7(s))) — x"(g"(s,x7(s)))|ds

< bL fot lg(s,x(s)) —g (s, x*(s)|ds+bllx—x*II T

< bL [ 1g(s,x(s)) = g(s,x"(s))lds

+bL fot |g(s,x*(s)) — g (s,x*(s)|ds+bllx—x"II T

< bLk [ |x(s) = x"(s)lds + 6BLT + b Il x —x* || T

<bLk |x—x*I T+SbLT+bllx—x*II T
and
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Il x —x* 1< bT (1 + Lk) Il x — x* | +6bLT,

then
SbLT

lx—x"lI< oAy

Since bT(Lk + 1) < 1 it follows that the solution of (3) depends continuously on the function g.
V. Examples

Example 1Consider the nonlinear differential equation

dx et 1 tsin x(t)

dt ~ t+3 2 |x (1+ z(t))| t € (0,1] ©)
with the initial condition
x(0) =3. )
Set
FEx(g(tx(®) = 5+ 3 (D)
then

If (e, X)I_—+ |x|
and we have m(t) = g =1/3, b=1/2, then bT=1/2 < 1.

Applying to Theorem 1, then the initial value problem (9)-(10) has a positive continuous solution.

Example 2Consider the nonlinear differential equation

-2t 1
d_t = -l n(l+t) +- | (1+| Pl t€O3] (11)
with the initial condition
x(0) = 0.1. 12)
Set
x2()
ft,x(g(t,x(t))) = —ln(l +1) +1 |x(1+|x(t)|)|
then

If (&0 <5 IIn(1+ )] +7 x|
and we have m(t) = %ln(l +t), M=1/4 and b = 1/6, then bT =1/12 < 1.
Applying to Theorem 1, then the initial value problem (11)-(12) has a continuous solution.
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