Accurate certified domination number of graphs

V. G. Bhagavathi Ammal ${ }^{\# 1}$, R. Louisa Dickfania ${ }^{\# 2}$
${ }^{\# 1}$ Assistant professor, Department of Mathematics, S.T. Hindu College, Nagercoil, Tamil Nadu, India.
${ }^{\# 2}$ Scholar, Department of Mathematics, S.T. Hindu College, Nagercoil, Tamil Nadu, India.

Abstract

A dominating set D of a graph $G=(V, E)$ is an accurate dominating set, if $V-D$ has no dominating set of cardinality $|D|$. An accurate dominating set D of G is an accurate certified dominating set, if D has either zero or atleast two neighbours in $V-D$. The accurate certified domination number $\gamma_{a c e r}(G)$ of G is the minimum cardinality of an accurate certified dominating set of G. In this paper, we initiate a study of this new parameter and obtain some results concerning this parameter.

Keywords: Domination, accurate domination number, accurate certified domination number.

I. Introduction

All graphs considered here are finite, non-trivial, undirected with loops and multiple edges. For graph theoretic terminology we refer to Harary [2]. Let $G=(V, E)$ be a graph with $|V|=p$ and $|E|=q$. Let $\Delta(G)(\delta(G))$ denote the maximum(minimum) degree and $\lceil x\rceil(\lfloor x\rfloor)$ the least (greatest) integer greater(less) than or equal to x. The neighbourhood of a vertex u is the set $N(u)$ consisting of all vertices v which are adjacent with u. The closed neighbourhood is $N[u]=N(u) \cup\{u\}$. A set of vertices in G is independent, if no two of them are adjacent. The largest number of vertices in such a set is called the vertex independence number of G and is denoted by $\beta_{o}(G)$. A vertex cover is vertex set S such that each edge contains atleast one vertex in S and is denoted by $\alpha_{o}(G)$.

A bipartite graph $G=(V, E)$ with partition $V=\left\{V_{1}, V_{2}\right\}$ is said to be a complete bipartite graph if every vertex in V_{1} is connected to every vertex of V_{2} and is denoted by $K_{m, n}$. A wheel graph W_{p} is obtained from a cycle graph C_{p-1} by adding a new vertex. That new vertex is called a Hub which is connected to all the vertices of C_{p-1}. A star graph is a complete bipartite graph if a single vertex belong to one set and all the remaining vertices belong to the other set and is denoted by $K_{1, p-1}$. The helm graph is the graph obtained from an wheel graph by adjoining a pendant edge at each node of the cycle and is denoted by H_{n} where $2 n+1=p$. The diamond graph is a planar undirected graph with 4 vertices and 5 edges. A friendship graph is the graph obtained by taking m copies of the cycle graph C_{3} with a vertex in common and is denoted by F_{p}. The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

A set D of vertices in a graph $G=(V, E)$ is a dominating set of G, if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. For a comprehensive survey of domination in graphs see $[5,6]$.

A dominating set D of $G=(V, E)$ is an accurate dominating set, if $V-D$ has no dominating set of cardinality $|D|$. The accurate domination number $\gamma_{a}(G)$ of G is the minimum cardinality of an accurate dominating set. This concept was introduced by Kulli and Kattimani [7]. A dominating set D of $G=(V, E)$ is a certified dominating set, if D has either zero or atleast two neighbours in $V-D$. The certified domination number $\gamma_{\text {acer }}(G)$ of G is the minimum cardinality of certified dominating set. This concept was introduced by M.Dettlaff, M. Lemanska, and J.Topp [10]. A dominating set D of a graph G is a maximal dominating set if $V-D$ is not a dominating set of G. The maximal domination number $\gamma_{m}(G)$ of G is the minimum cardinality of a maximal dominating set. [4]

II. Accurate Certified Domination Number

Definition 2.1

An accurate dominating set D of $G=(V, E)$ is an accurate certified dominating set, if D has either zero or atleast two neighbours in $V-D$. The accurate certified domination number $\gamma_{\text {acer }}(G)$ of G is the minimum cardinality of accurate certified dominating set.

Example 2.2 For the following graph, $\mathrm{V}\left(\mathrm{G}_{1}\right)=\{1,2,3,4,5,6,7\}$ whereas, $\{1,4,5,6\}$ satisfied accurate certified condition. Hence, $\gamma_{\text {acer }}\left(G_{1}\right)=4$.

Figure 1

Accurate Certified Domination Number for some standard graphs.

Preposition 2.3

For any p vertices, $\gamma_{\text {acer }}\left(P_{p}\right)=\left\{\begin{array}{lc}\frac{p}{3} & p \equiv 0(\bmod 3) \\ \frac{p+2}{3} & p \equiv 1(\bmod 3) \\ \frac{p+1}{3} & p \equiv 2(\bmod 3) \\ p & p=2,4\end{array}\right.$
Proof: Let p be the number of vertices in the path P_{p} and D and D^{\prime} be the dominating set and accurate dominating set respectively.
Case 1. $p \equiv 0(\bmod 3)$
Every dominating set is adjacent to exactly two vertices of $V-D$. That is D has atleast two neighbours in $V-D$ and $V-D$ has no dominating set of cardinality $|D|$. Therefore D satisfies accurate certified dominating set. $\therefore \gamma_{\text {acer }}\left(P_{p}\right)=\frac{p}{3}$.
Case 2. $p \equiv 1(\bmod 3)$
We know, for $p \equiv 0(\bmod 3), \gamma_{\text {acer }}\left(P_{p}\right)=\frac{p}{3}$.
For $p \equiv 1(\bmod 3)$, we have one more extra vertex. So, $\gamma_{a c e r}\left(P_{p}\right)$ has $p \equiv 0(\bmod 3)$ plus one more vertex. Therefore $\gamma_{\text {acer }}\left(P_{p}\right)=\frac{p-1}{3}+1=\frac{p+2}{3}$.
Case 3. $p \equiv 2(\bmod 3)$
We know, for $p \equiv 0(\bmod 3), \gamma_{\text {acer }}\left(P_{p}\right)=\frac{p}{3}$.
For $p \equiv 2(\bmod 3)$, we have two more extra vertex. So, $\gamma_{a c e r}\left(P_{p}\right)$ has $p \equiv 0(\bmod 3)$ plus one more vertex.
Therefore $\gamma_{\text {acer }}\left(P_{p}\right)=\frac{p-2}{3}+1=\frac{p+1}{3}$.
Case 4. Suppose $p=2,4$. We know, $\gamma_{a}\left(P_{2}\right)=2$. Then clearly $\gamma_{a c e r}\left(P_{2}\right)=2$. Also we know, $\gamma_{a}\left(P_{4}\right)=3$. Then D^{\prime} has one neighbour in $V-D^{\prime}$. Which is contradiction to $\gamma_{a c e r}-$ set. So we choose p vertices. Therefore $\gamma_{\text {acer }}\left(P_{p}\right)=p$.

Observation 2.4

(i) For any cycle of order $p \geq 3, \gamma_{\text {acer }}\left(C_{p}\right)=p$.
(ii) For any complete graph of order $p \geq 3, \gamma_{\text {acer }}\left(K_{p}\right)=\left\{\begin{array}{ll}p & \text { if } p<5 \\ \left\lfloor\left.\frac{p}{2} \right\rvert\,+1\right. & \text { if } p \geq 5\end{array}\right.$.
(iii) For any complete bipartite graph of order $p \geq 3, \gamma_{\text {acer }}\left(K_{m, n}\right)= \begin{cases}4 & \text { if } m=n=2 \\ m+1 & \text { if } m=n \\ m & \text { if } m<n\end{cases}$ (Where $m \geq 1, n \geq 2$ and $m+n=p$).
(iv) For any wheel of order $p \geq 4, \gamma_{\text {acer }}\left(W_{p}\right)=\left\{\begin{array}{cc}p & \text { if } p=4 \\ 1 & \text { otherwise }\end{array}\right.$
(v) For any helm graph of order $p \geq 7, \gamma_{\text {acer }}\left(H_{n}\right)=n$ (Where $2 n+1=p, n \geq 3$).
(vi) For any star graph of order $p \geq 3, \gamma_{\text {acer }}\left(K_{1, p-1}\right)=1$.
(vii) For Petersen graph, $\gamma_{a c e r}(G)=6$.
(viii) For diamond graph of order $p=4, \gamma_{\text {acer }}(G)=4$.
(ix) For any friendship graph of order $p \geq 5, \gamma_{\text {acer }}\left(F_{p}\right)=1$ (Where $2 n+1=p, n \geq 2$).

Remark 2.5 An accurate certified dominating set of a graph G may or may not be a minimal dominating set.

Example 2.6

Figure 2

Figure 3

In Figure 2, $\gamma(G)=\{2\}$ and $\gamma_{\text {acer }}(G)=\{2\}$. Therefore $\gamma(G)=\gamma_{\text {acer }}(G)$.
In Figure $3, \gamma(G)=\{1,5\}$ and $\gamma_{\text {acer }}(G)=\{1,2,3,4,5\}$. Therefore $\gamma(G) \neq \gamma_{\text {acer }}(G)$.

Theorem 2.7 Every support vertex of G belongs to accurate certified dominating set of G.
Proof: Let D be an accurate certified dominating set of G. Let $S=\left\{v_{i}, i=1\right.$ to $\left.n\right\}$ be the support vertex of $V(G)=\left\{V_{j}, j=1\right.$ to $\left.m\right\}$. If $\left\{v_{i}\right\}$ is a support vertex which is not in D, then all the pendant should be in D. If so, all the pendant has only one neighbour in $V-D$, which is contradiction to $\gamma_{a c e r}$ set. Thus, every support vertex of G belongs to accurate certified dominating set of G.

Example 2.8

Figure 4
In Figure $4, \gamma_{\text {acer }}(G)=\{1,2,3,4,5\}$. Thus, the support vertex $\{1\}$ belongs to accurate certified dominating set of G.

Theorem 2.9 For any graph $G, 1 \leq \gamma_{\text {acer }}(G) \leq p$ and the bound is sharp.

Proof: If G is any non-trivial connected graph containing exactly one vertex of degree $\Delta(G)=p-1$, then $\gamma_{\text {acer }}(G)=1$, the lower bound holds. For the upper bound, Let D be an accurate dominating set of G. Then for some vertex $v \in D, N(v)=1$. Therefore D is not a accurate certified dominating set of G. So we choose the accurate certified dominating set with $N(v)=0$. Therefore $\gamma_{\text {acer }}(G) \leq p$. Hence $1 \leq \gamma_{\text {acer }}(G) \leq p$. For P_{3}, the lower bound is sharp. For C_{5}, the upper bound is sharp.

Theorem 2.10 For any graph $G, \gamma(G) \leq \gamma_{a}(G) \leq \gamma_{\text {acer }}(G)$ and $\gamma(G) \leq \gamma_{\text {cer }}(G) \leq \gamma_{\text {acer }}(\mathrm{G})$
Proof: Let G be a graph of order p. By theorem 2.9, $\gamma_{a c e r}(G) \leq p$ and by [7], $\gamma_{a}(G) \leq\left[\frac{p}{2}\right\rfloor+1$. From the above, $\gamma_{a}(G) \leq \gamma_{a c e r}(G)$. By [7], every accurate dominating set of G is a dominating set of G. Hence $\gamma(G) \leq \gamma_{a}(G) \leq$ $\gamma_{a c e r}(G)$. Also by [10], $\gamma_{c e r}(G) \leq p$. Therefore $\gamma_{c e r}(G) \leq \gamma_{a c e r}(G)$. By [10], any certified dominating is a dominating set. Hence $\gamma(G) \leq \gamma_{c e r}(G) \leq \gamma_{\text {acer }}(G)$.

Theorem 2.11 For any graph $G,\left\lceil\frac{P}{1+\Delta}\right\rceil \leq \gamma_{a c e r}(G)$ and the bound is sharp.

Proof: Let D be a γ-set of G. Each vertex can dominate atmost itself and $\Delta(G)$ other vertices. Hence $\gamma(G) \geq\left[\frac{p}{1+\Delta}\right]$. By theorem 2.10, $\gamma(G) \leq \gamma_{a c e r}(G)$. Therefore $\left[\frac{P}{1+\Delta}\right\rceil \leq \gamma_{a c e r}(G)$. For P_{3}, the bound is sharp.

Theorem 2.12 For any graph $G, \gamma_{\text {acer }}(G) \leq p-\gamma(G)+1$.
Proof: Let D be a minimum dominating set of G and V be a vertex set of G. Then for any vertex $v \in D$,

$$
\begin{aligned}
\gamma_{\text {acer }}(G) & \leq(V-D) \cup\{v\} \\
& \leq p-\gamma(G)+1
\end{aligned}
$$

The sharpness is attained for C_{3}.
Theorem 2.13 For any graph $G, \gamma_{\text {acer }}(G) \leq \alpha_{0}(G)+1$.
Proof: Let S be a vertex cover of G. We consider the following two cases.
Case 1: Suppose $|S|<\frac{p}{2}$. Then $\gamma_{\text {acer }}(G)=|S|$

$$
\begin{aligned}
& =\alpha_{0}(G) \\
& \leq \alpha_{0}(G)+1
\end{aligned}
$$

Case 2: Suppose $|S| \geq \frac{p}{2}$. Then for any vertex $v \in V-S$,

$$
\begin{aligned}
\gamma_{\text {acer }}(G) & \leq S \cup\{v\} \\
& \leq \alpha_{0}+1
\end{aligned}
$$

Corollary 2.14 For any graph $G, \gamma_{\text {acer }}(G) \leq p-\beta_{0}+1$.
Proof: By [3,5,6], $\alpha_{0}+\beta_{0}=p$.
By theorem 2.13, $\gamma_{\text {acer }}(G) \leq \alpha_{o}+1$

$$
\leq p-\beta_{0}+1
$$

Observation 2.15 The theorem 2.12, 2.13 and corollary 2.14 does not hold for
(i) $\quad \gamma_{\text {acer }}(G)=p, p \geq 4$
(ii) $\quad \gamma_{\text {acer }}\left(K_{2,2}\right)$

Proof: Let S be a vertex cover of G and p be the number of vertices of G. We know, The number of vertices of a graph is equal to its minimum vertex cover number plus the size of maximum independent set. Of so, the vertex cover does not have total number of vertices of G. Which is contradiction to $\gamma_{a c e r}(G) \leq \alpha_{0}+1$.
Also $p-\gamma(G)+1$ does not greater than or equal to $\gamma_{\text {acer }}(G)=p$. Hence proved.

Theorem 2.16 For any tree T with m cut vertices, $\gamma_{\text {acer }}(T) \leq m+1$. It is not true when $\gamma_{\text {acer }}\left(T_{p}\right)=p$.
Proof: Let $S=\left\{v_{j}, j=1\right.$ to $\left.m\right\}$ be the cut vertices of $V(G)=\left\{v_{i}, i=1\right.$ to $\left.n\right\}$ with $|S|=m$. Sometimes there is a vertex in S has one neighbour in $V-S$. Then for any end vertex $v \in T$,

$$
\begin{aligned}
\gamma_{\text {acer }}(G) & \leq S \cup\{v\} \\
& \leq m+1 .
\end{aligned}
$$

Corollary 2.17 For any tree T with m cut vertices and n end vertices, $\gamma_{\text {acer }}(T) \leq p-n+1$.
Proof: By [5,6], $m+n=p$.
By Theorem 2.16, $\gamma_{\text {acer }}(T) \leq m+1$

$$
\leq p-n+1
$$

Theorem 2.18 For any graph $G, \gamma_{\text {acer }}(G) \leq \gamma_{m}(G)+1$. It is not true when $\gamma_{\text {acer }}(G)=p, p \geq 5$.
Proof: Let D be a γ_{m}-set of G. Then $V-D$ is not a dominating set of G.For some graphs D has a one neighbour in $V-D$. Then for any vertex $v \in V-D, D \cup\{v\}$ is an accurate certified dominating set of G.

$$
\begin{aligned}
\therefore \gamma_{\text {acer }}(G) & \leq|D \cup\{v\}| \\
& =\gamma_{m}(G)+1 .
\end{aligned}
$$

For P_{4}, the bound is sharp.
Theorem 2.19 For any graph $G, \gamma_{a c e r}(G) \leq \gamma(G)+p-\Delta(\bar{G})$.
Proof: Let v be a vertex of minimum degree that is $\delta(G)=\operatorname{deg} v$. By [4], $\gamma_{m}(G) \leq \gamma(G)+\delta(G)$. By [3], $\delta(G)+\Delta(\bar{G})=p-1$ and by theorem 2.18,

$$
\begin{aligned}
\gamma_{\text {acer }}(G) & \leq \gamma_{m}(G)+1 \\
& \leq \gamma(G)+\delta(G)+1 \\
& \leq \gamma(G)+p-\Delta(\bar{G})
\end{aligned}
$$

For C_{5}, the bound is sharp.
Theorem 2.20 For any connected graph G with p vertices, $\gamma_{a c e r}(G)+\Delta(G) \leq 2 p-1$.
Proof: Let G be a connected graph with p vertices. We know that $\Delta(G) \leq p-1$ and by theorem 2.9 $\gamma_{\text {acer }}(G) \leq p$. Hence $\gamma_{\text {acer }}(G)+\Delta(G) \leq 2 p-1$. For K_{4}, the bound is sharp.

Theorem 2.21 If $G=H \circ K_{1}$, where H is any non-trivial connected graph then $\gamma_{a c e r}(G)=p$.

Proof: Let p be the number of vertices in $G=H \circ K_{1}$. Let l be the set of all pendant vertices in $G=H \circ K_{1}$ such that $|l|=\frac{p}{2}$. If $G=H \circ K_{1}$, then thereexist a minimal accurate certified dominating set D containing all pendant vertices and $V(H)$ of G.
Hence $\quad \gamma_{\text {acer }}(G)=|V(H)|+|l|$
$=\frac{p}{2}+\frac{p}{2}$

$$
=p
$$

Theorem 2.22 For the corona graph $C_{m} \circ P_{n}, n \geq 4, \gamma_{\text {acer }}\left(C_{m} \circ P_{n}\right)=m$.
Proof: Let $V\left(C_{m}\right)=\left\{v_{i}, i=1\right.$ to $\left.m\right\}$
The vertices of $m^{t h}$ copy corresponding to the path P_{n} is

$$
V\left(C_{m} \circ P_{n}\right)=\left\{v_{1}, v_{11}, v_{12}, \ldots, v_{1 n}, v_{2}, v_{21}, \ldots, v_{2 n}, \ldots, v_{m}, v_{m 1}, v_{m 2}, \ldots, v_{m n}\right\}
$$

Let D be a minimum accurate certified dominating set of G. We prove this result by induction on m. Suppose $m=3$, Then $D=\left\{v_{i}, i=1\right.$ to $\left.m\right\}$ dominate every vertices on the $C_{3} \circ P_{n}, n \geq 4$. Also D is the accurate certified dominating set of $C_{3} \circ P_{n}$. Thus, $\gamma_{\text {acer }}\left(C_{3} \circ P_{n}\right)=3, n \geq 4$.

Let us assume this result is true for $m-1$. And, $\gamma_{\text {acer }}\left(C_{m-1} \circ P_{n}\right)=m-1, n \geq 4$.
Let us prove for m, Let $\left\{v_{i}, i=1\right.$ to $\left.m\right\}$ be the vertices of C_{m}.
Since the result is true for $m-1, D=m-1$ Then for any vertex $v \in V-D,(m-1) \cup\{v\}$ is an accurate certified dominating set of G.
Thus $\gamma_{\text {acer }}\left(C_{m} \circ P_{n}\right)=|(m-1) \cup\{v\}|=m-1+1=m$.
Thus, $\gamma_{\text {acer }}\left(C_{m} \circ P_{n}\right)=m, n \geq 4$.

III. Accurate Certified Values for Some Graph Families

Definition 3.1

The p-barbell graph is the simple graph obtained by connecting two copies of a complete graph K_{p} by a bridge.

4-Barbell graph

Figure 5
Theorem 3.1 For the barbell graph $p \geq 3, \gamma_{\text {acer }}(G)=p+1$.
Proof: The barbell graph has $2 p$ vertices. Let V be the vertex set of first copy of K_{p}. Let U be the vertex set of second copy of K_{p} and $\left\{u_{1}, v_{1}\right\}$ be a bridge. Then $V \cup\left\{u_{1}\right\}$ is an accurate certified dominating set of G. Thus

$$
\begin{aligned}
\gamma_{\text {acer }}(G) & =\left|V \cup\left\{u_{1}\right\}\right| \\
& =p+1 .
\end{aligned}
$$

Definition 3.2

A web graph has defined as a prism graph $Y_{p+1,3}$ with the edges of the outer cycle removed and is denoted by W_{p}.

W_{3}
Figure 6
Theorem 3.2 For a web graph $W_{p}, p \geq 3, \gamma\left(W_{p}\right)=\gamma_{a}\left(W_{p}\right)=\gamma_{c e r}\left(W_{p}\right)=\gamma_{a c e r}\left(W_{p}\right)=p$.
Proof: Let W_{p} be a graph with $3 p$ vertices. Let D be a dominating set of G. Then the support vertex are a minimal dominating set of W_{p} such that $\gamma\left(W_{p}\right)=p$. Since this dominating set has atleast two neighbours in $V-D$ and in $(V-D)$ there is no dominating set of cardinality p it is both certified and accurate dominating set. Also it is an accurate certified dominating set.

Definition 3.3

The lollipop graph is a special type of a graph consisting of a complete graph on m vertices and a path graph on n vertices connected with a bridge and is denoted by $K_{m}\left(P_{n}\right)$.

$$
\boldsymbol{K}_{4}\left(\boldsymbol{P}_{2}\right)
$$

Figure 7

Theorem 3.3 For the lollipop graph $K_{m}\left(P_{n}\right), m \geq 3$,

$$
\gamma_{a c e r}\left(K_{m}\left(P_{n}\right)\right)= \begin{cases}\frac{n}{3}+1 & n \equiv 0(\bmod 3) \\ \frac{n+2}{3} & n \equiv 1(\bmod 3) \\ \frac{n+4}{3} & n \equiv 2(\bmod 3)\end{cases}
$$

Proof: Let u be the vertex with maximum degree in $K_{m}\left(P_{n}\right)$.
Case 1: $n \equiv 0(\bmod 3)$, By proposition 2.3, $\gamma_{\text {acer }}\left(P_{n}\right)=\frac{n}{3}$. Then $\gamma_{\text {acer }}\left(P_{n}\right) \cup\{u\}$ is an accurate certified dominating set of G. Thus $\gamma_{\text {acer }}\left(K_{m}\left(P_{n}\right)\right)=\frac{n}{3}+1$.
Case 2: $n \equiv 1(\bmod 3)$, The vertex u dominate the vertices in K_{m} and one vertex in P_{n}. In $K_{m}\left(P_{n}\right)$, $\gamma_{\text {acer }}\left(P_{n}\right)=\frac{n-1}{3}$. Then $\gamma_{\text {acer }}\left(P_{n}\right) \cup\{u\}$ is an accurate certified dominating set of G. Thus

$$
\begin{aligned}
\gamma_{\text {acer }}\left(K_{m}\left(P_{n}\right)\right) & =\frac{n-1}{3}+1 \\
& =\frac{n+2}{3} .
\end{aligned}
$$

Case 3: $n \equiv 2(\bmod 3)$, In $K_{m}\left(P_{n}\right)$, by preposition 2.3, $\gamma_{a c e r}\left(P_{n}\right)=\frac{n+1}{3}$. Then $\gamma_{a c e r}\left(P_{n}\right) \cup\{u\}$ is an accurate certified dominating set of G. Thus

$$
\begin{aligned}
\gamma_{\text {acer }}\left(K_{m}\left(P_{n}\right)\right) & =\frac{n+1}{3}+1 \\
& =\frac{n+4}{3} .
\end{aligned}
$$

Theorem 3.4 For the lollipop graph $K_{m}\left(P_{2}\right), m \geq 3, \gamma_{\text {acer }}\left(K_{m}\left(P_{2}\right)\right)=\left\lfloor\frac{m}{2}\right\rfloor+2$.
Proof: Let V be the vertex set of K_{m}. Let U be the vertex set of P_{2} and D be an accurate certified dominating set of $K_{m}\left(P_{2}\right)$. Thus

$$
\begin{aligned}
|D| & =\left\lfloor\frac{m}{2}\right\rfloor+\left|U\left(P_{2}\right)\right| \\
& =\left\lfloor\frac{m}{2}\right\rfloor+2
\end{aligned}
$$

IV. Nordhaus-Gaddum Type Results

In 1956 the original paper [1] by Nordhaus and Gaddum appeared. In it they gave sharp bounds on the sum and product of the chromatic numbers of a graph and its complement. Since then such results have been given for several parameters.

Theorem 4.1 If graphs G and \bar{G} have no isolated vertices, then

$$
\begin{aligned}
& \gamma_{\text {acer }}(G)+\gamma_{\text {acer }}(\bar{G}) \leq 2 p \\
& \gamma_{\text {acer }}(G) \gamma_{\text {acer }}(\bar{G}) \leq p^{2}
\end{aligned}
$$

Furthermore the bounds are attained if $G=C_{4}$.

Proof: Let G and \bar{G} have no isolated vertices and p be the number of vertices of G and \bar{G}. By theorem 2.9, $\gamma_{a c e r}(G) \leq p$. Since \bar{G} has no isolated vertices, $\gamma_{a c e r}(\bar{G}) \leq p$. Thus both upper bound holds. Clearly, if $G=C_{4}$, then $\gamma_{\text {acer }}(G)=4$ and $\gamma_{\text {acer }}(\bar{G})=4$. Therefore both bounds are attained.

Theorem 4.2 Nordhaus-Gaddum result for p - barbell graph

$$
\begin{aligned}
& \gamma_{\text {acer }}(G)+\gamma_{\text {acer }}(\bar{G})=2(p+1) \\
& \gamma_{\text {acer }}(G) \gamma_{\text {acer }}(\bar{G})=(p+1)^{2}
\end{aligned}
$$

Proof: Let G and \bar{G} be the p-barbell graph and its complement respectively. The p-barbell graph has $2 p$ vertices. By theorem 3.1, $\gamma_{\text {acer }}(G)=p+1$. Let D be an accurate dominating set of \bar{G}. We know by [7], $|D|=\left\lfloor\frac{p}{2}\right\rfloor+1$. Also D has atleast two neighbours in $V-D$. Therefore D is also an accurate certified dominating set of \bar{G}. But here we have $2 p$ vertices. Therefore $\gamma_{\text {acer }}(\bar{G})=p+1$. Hence $\gamma_{\text {acer }}(G)+\gamma_{\text {acer }}(\bar{G})=2(p+1)$ and $\gamma_{\text {acer }}(G) \gamma_{\text {acer }}(\bar{G})=(p+1)^{2}$.

Theorem 4.3 Nordhaus-Gaddum result for web graph

$$
\begin{aligned}
& \gamma_{\text {acer }}(G)+\gamma_{\text {acer }}(\bar{G}) \leq \frac{5 p+2}{2} \\
& \gamma_{\text {acer }}(G) \gamma_{\text {acer }}(\bar{G}) \leq \frac{3 p^{2}+2 p}{2}
\end{aligned}
$$

Proof: Let G and \bar{G} be the web graph and its complement respectively. The web graph has $3 p$ vertices. By theorem 3.2, $\gamma_{\text {acer }}(G)=p$. Let D be an accurate dominating set of \bar{G}. We know by $[7],|D|=\left\lfloor\frac{p}{2}\right\rfloor+1$. Also D has atleast two neighbours in $V-D$. Therefore D is also an accurate certified dominating set of \bar{G}. But here we have $3 p$ vertices. Therefore $\gamma_{\text {acer }}(\bar{G})=\left\lfloor\frac{3 p}{2}\right\rfloor+1 \leq \frac{3 p+2}{2}$. Hence $\gamma_{\text {acer }}(G)+\gamma_{a c e r}(\bar{G}) \leq \frac{5 p+2}{2}$ and $\gamma_{\text {acer }}(G) \gamma_{\text {acer }}(\bar{G}) \leq \frac{3 p^{2}+2 p}{2}$.

Theorem 4.4 Nordhaus-Gaddum result for lollipop graph $K_{m}\left(P_{2}\right), m \geq 3$

$$
\begin{aligned}
& \gamma_{\text {acer }}(G)+\gamma_{\text {acer }}(\bar{G}) \leq \frac{m+8}{2} \\
& \gamma_{\text {acer }}(G) \gamma_{\text {acer }}(\bar{G}) \leq m+4
\end{aligned}
$$

Proof: Let G and \bar{G} be the lollipop graph and its complement respectively. The lollipop graph has $m+n=p$ vertices. By theorem 3.4, $\gamma_{\text {acer }}(G)=\left\lfloor\frac{m}{2}\right\rfloor+2 \leq \frac{m}{2}+2$. Let D be a dominating set of \bar{G}. In \bar{G}, we have exactly one vertex of degree $\Delta(G)=p-2$. Therefore $|D|=2$ and $V-D$ has no dominating set of cardinality $|D|$. Also D has atleast two neighbours in $V-D$. Therefore $\gamma_{\text {acer }}(\bar{G})=2$. Hence $\gamma_{a c e r}(G)+\gamma_{a c e r}(\bar{G}) \leq \frac{m+8}{2}$ and $\gamma_{\text {acer }}(G) \gamma_{\text {acer }}(\bar{G}) \leq m+4$.

References

[1] E.A. Nordhaus and J.W. Gaddum, "On Complementary Graphs", Amer. Math. Monthly 63 (1956), 175-177.
[2] F.Harary, "Graph Theory", Addison-Wesley, Reading, Mass,(1969).
[3] Shaoji Xu, "Relation between parameters of a graph", Discr. Math., 89, 65-88 (1991).
[4] V.R. Kulli and B. Janakiram, "The Maximal Domination Number of a Graph", Graph Theory Notes of New York XXXIII, 11-13 (1997) New York Academy of Sciences.
[5] T.W.Haynes, S.T. Hedetniemi, and P.J.Slater, "Fundamentals of Domination in Graphs", Marcel Dekker, New York, 1998.
[6] V.R.Kulli, "Theory of Domination in graphs", Vishwa International Publications, Gulbagara, India(2010).
[7] V.R.Kulli and M.B.Kattimani, "Accurate Domination in Graphs", In V.R.Kulli, ed., Advances in Domination Theory-I, Vishwa International Publications, Gulbagara, India (2012).
[8] V.R.Kulli and M.B.Kattimani, "Connected Accurate Domination in Graphs", Journal of Computer and Mathematical Sciences, Vol.6(12).
[9] V.R.Kulli and M.B. Kattimani, "Global Accurate Domination in Graphs", Int. J.Sci. Res. Pub. 3 (2013) 1-3.
[10] M. Dettlaff, M. Lemanska, and J.Topp, "Certified Domination", AKCE International Journal of Graphs and Combinatorics, June 2016.
[11] B. Basavanagoud, S.Timmanaikar, "Further Results on Accurate Domination in Graphs", International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue-6, December(2018).
[12] J. Cyman, M.A.Henning and J.Topp, "On Accurate Domination in Graphs", Discussiones Mathematicae Graph Theory 39 (2019).

