Accurate certified domination number of graphs

V. G. Bhagavathi Ammal^{#1}, R. Louisa Dickfania^{#2}

^{#1}Assistant professor, Department of Mathematics, S.T. Hindu College, Nagercoil, Tamil Nadu, India.
^{#2}Scholar, Department of Mathematics, S.T. Hindu College, Nagercoil, Tamil Nadu, India.

Abstract: A dominating set D of a graph G = (V, E) is an accurate dominating set, if V - D has no dominating set of cardinality |D|. An accurate dominating set D of G is an accurate certified dominating set, if D has either zero or atleast two neighbours in V - D. The accurate certified domination number $\gamma_{acer}(G)$ of G is the minimum cardinality of an accurate certified dominating set of G. In this paper, we initiate a study of this new parameter and obtain some results concerning this parameter.

Keywords: Domination, accurate domination number, accurate certified domination number.

I. Introduction

All graphs considered here are finite, non-trivial, undirected with loops and multiple edges. For graph theoretic terminology we refer to Harary [2]. Let G = (V, E) be a graph with |V| = p and |E| = q. Let $\Delta(G)(\delta(G))$ denote the maximum(minimum) degree and [x]([x]) the least (greatest) integer greater(less) than or equal to x. The neighbourhood of a vertex u is the set N(u) consisting of all vertices v which are adjacent with u. The closed neighbourhood is $N[u] = N(u) \cup \{u\}$. A set of vertices in G is independent, if no two of them are adjacent. The largest number of vertices in such a set is called the vertex independence number of G and is denoted by $\beta_o(G)$. A vertex cover is vertex set S such that each edge contains atleast one vertex in S and is denoted by $\alpha_o(G)$.

A bipartite graph G = (V, E) with partition $V = \{V_1, V_2\}$ is said to be a complete bipartite graph if every vertex in V_1 is connected to every vertex of V_2 and is denoted by $K_{m,n}$. A wheel graph W_p is obtained from a cycle graph C_{p-1} by adding a new vertex. That new vertex is called a Hub which is connected to all the vertices of C_{p-1} . A star graph is a complete bipartite graph if a single vertex belong to one set and all the remaining vertices belong to the other set and is denoted by $K_{1,p-1}$. The helm graph is the graph obtained from an wheel graph by adjoining a pendant edge at each node of the cycle and is denoted by H_n where 2n + 1 = p. The diamond graph is a planar undirected graph with 4 vertices and 5 edges. A friendship graph is the graph obtained by taking *m* copies of the cycle graph C_3 with a vertex in common and is denoted by F_p . The corona of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 where i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2 .

A set *D* of vertices in a graph G = (V, E) is a dominating set of *G*, if every vertex in V - D is adjacent to some vertex in *D*. The domination number $\gamma(G)$ of *G* is the minimum cardinality of a dominating set. For a comprehensive survey of domination in graphs see [5,6].

A dominating set D of G = (V, E) is an **accurate dominating set**, if V - D has no dominating set of cardinality |D|. The accurate domination number $\gamma_a(G)$ of G is the minimum cardinality of an accurate dominating set. This concept was introduced by Kulli and Kattimani [7]. A dominating set D of G = (V, E) is a **certified dominating set**, if D has either zero or atleast two neighbours in V - D. The certified domination number $\gamma_{acer}(G)$ of G is the minimum cardinality of certified dominating set. This concept was introduced by M.Dettlaff, M. Lemanska, and J.Topp [10]. A dominating set D of a graph G is a **maximal dominating set** if V - D is not a dominating set of G. The maximal domination number $\gamma_m(G)$ of G is the minimum cardinality of a maximal dominating set. [4]

II. Accurate Certified Domination Number

Definition 2.1

An accurate dominating set *D* of G = (V, E) is an **accurate certified dominating set**, if *D* has either zero or atleast two neighbours in V - D. The accurate certified domination number $\gamma_{acer}(G)$ of *G* is the minimum cardinality of accurate certified dominating set.

Example 2.2 For the following graph, $V(G_1) = \{1, 2, 3, 4, 5, 6, 7\}$ whereas, $\{1, 4, 5, 6\}$ satisfied accurate certified condition. Hence, $\gamma_{acer}(G_1) = 4$.

Accurate Certified Domination Number for some standard graphs.

Preposition 2.3

For any *p* vertices,
$$\gamma_{acer}(P_p) = \begin{cases} \frac{p}{3} & p \equiv 0 \pmod{3} \\ \frac{p+2}{3} & p \equiv 1 \pmod{3} \\ \frac{p+1}{3} & p \equiv 2 \pmod{3} \\ p & p = 2, 4 \end{cases}$$

Proof: Let *p* be the number of vertices in the path P_p and *D* and *D'* be the dominating set and accurate dominating set respectively.

Case 1. $p \equiv 0 \pmod{3}$

Every dominating set is adjacent to exactly two vertices of V - D. That is D has atleast two neighbours in V - Dand V - D has no dominating set of cardinality |D|. Therefore D satisfies accurate certified dominating set. $\therefore \gamma_{acer} (P_p) = \frac{p}{2}$.

Case 2.
$$p \equiv 1 \pmod{3}$$

We know, for $p \equiv 0 \pmod{3}$, $\gamma_{acer} \left(P_p \right) = \frac{p}{2}$.

For $p \equiv 1 \pmod{3}$, we have one more extra vertex. So, $\gamma_{acer}(P_p)$ has $p \equiv 0 \pmod{3}$ plus one more vertex. Therefore $\gamma_{acer}(P_p) = \frac{p-1}{3} + 1 = \frac{p+2}{3}$.

Case 3.
$$p \equiv 2 \pmod{3}$$

We know, for $p \equiv 0 \pmod{3}$, $\gamma_{acer} \left(P_p \right) = \frac{p}{3}$.

For $p \equiv 2 \pmod{3}$, we have two more extra vertex. So, $\gamma_{acer} \left(P_p\right)$ has $p \equiv 0 \pmod{3}$ plus one more vertex. Therefore $\gamma_{acer} \left(P_p\right) = \frac{p-2}{3} + 1 = \frac{p+1}{3}$.

Case 4. Suppose p = 2,4. We know, $\gamma_a(P_2) = 2$. Then clearly $\gamma_{acer}(P_2) = 2$. Also we know, $\gamma_a(P_4) = 3$. Then D' has one neighbour in V - D'. Which is contradiction to γ_{acer} - set. So we choose p vertices. Therefore $\gamma_{acer}(P_p) = p$.

Observation 2.4

(i) For any cycle of order $p \ge 3$, $\gamma_{acer}(C_p) = p$.

- (ii) For any complete graph of order $p \ge 3$, $\gamma_{acer} \left(K_p \right) = \begin{cases} p & \text{if } p < 5 \\ \left\lfloor \frac{p}{2} \right\rfloor + 1 & \text{if } p \ge 5 \end{cases}$
- (iii) For any complete bipartite graph of order $p \ge 3$, $\gamma_{acer} (K_{m,n}) = \begin{cases} 4 & if \ m = n = 2 \\ m+1 & if \ m = n \\ m & if \ m < n \end{cases}$

(Where $m \ge 1, n \ge 2$ and m + n = p).

- (iv) For any wheel of order $p \ge 4$, $\gamma_{acer}(W_p) = \begin{cases} p & if \ p = 4\\ 1 & otherwise \end{cases}$
- (v) For any helm graph of order $p \ge 7$, $\gamma_{acer}(H_n) = n$ (Where 2n + 1 = p, $n \ge 3$).
- (vi) For any star graph of order $p \ge 3$, $\gamma_{acer}(K_{1,p-1}) = 1$.
- (vii) For Petersen graph, $\gamma_{acer}(G) = 6$.
- (viii) For diamond graph of order p = 4, $\gamma_{acer}(G) = 4$.
- (ix) For any friendship graph of order $p \ge 5$, $\gamma_{acer}(F_p) = 1$ (Where 2n + 1 = p, $n \ge 2$).

Remark 2.5 An accurate certified dominating set of a graph G may or may not be a minimal dominating set.

Example 2.6

In Figure 2, $\gamma(G) = \{2\}$ and $\gamma_{acer}(G) = \{2\}$. Therefore $\gamma(G) = \gamma_{acer}(G)$. In Figure 3, $\gamma(G) = \{1,5\}$ and $\gamma_{acer}(G) = \{1,2,3,4,5\}$. Therefore $\gamma(G) \neq \gamma_{acer}(G)$.

Theorem 2.7 Every support vertex of *G* belongs to accurate certified dominating set of *G*.

Proof: Let *D* be an accurate certified dominating set of *G*. Let $S = \{v_i, i = 1 \text{ to } n\}$ be the support vertex of $V(G) = \{V_j, j = 1 \text{ to } m\}$. If $\{v_i\}$ is a support vertex which is not in *D*, then all the pendant should be in *D*. If so, all the pendant has only one neighbour in V - D, which is contradiction to γ_{acer} set. Thus, every support vertex of *G* belongs to accurate certified dominating set of *G*.

Example 2.8

In Figure 4, γ_{acer} (*G*) = {1,2,3,4,5}. Thus, the support vertex {1} belongs to accurate certified dominating set of *G*.

Theorem 2.9 For any graph G, $1 \le \gamma_{acer}(G) \le p$ and the bound is sharp.

Proof: If *G* is any non-trivial connected graph containing exactly one vertex of degree $\Delta(G) = p - 1$, then $\gamma_{acer}(G) = 1$, the lower bound holds. For the upper bound, Let *D* be an accurate dominating set of *G*. Then for some vertex $v \in D$, N(v) = 1. Therefore *D* is not a accurate certified dominating set of *G*. So we choose the accurate certified dominating set with N(v) = 0. Therefore $\gamma_{acer}(G) \leq p$. Hence $1 \leq \gamma_{acer}(G) \leq p$. For P_3 , the lower bound is sharp. For C_5 , the upper bound is sharp.

Theorem 2.10 For any graph G, $\gamma(G) \leq \gamma_a(G) \leq \gamma_{acer}(G)$ and $\gamma(G) \leq \gamma_{cer}(G) \leq \gamma_{acer}(G)$

Proof: Let *G* be a graph of order *p*. By theorem 2.9, $\gamma_{acer}(G) \leq p$ and by [7], $\gamma_a(G) \leq \left\lfloor \frac{p}{2} \right\rfloor + 1$. From the above, $\gamma_a(G) \leq \gamma_{acer}(G)$. By [7], every accurate dominating set of *G* is a dominating set of *G*. Hence $\gamma(G) \leq \gamma_a(G) \leq \gamma_{acer}(G)$. Also by [10], $\gamma_{cer}(G) \leq p$. Therefore $\gamma_{cer}(G) \leq \gamma_{acer}(G)$. By [10], any certified dominating is a dominating set. Hence $\gamma(G) \leq \gamma_{cer}(G) \leq \gamma_{acer}(G)$.

Theorem 2.11 For any graph G, $\left[\frac{P}{1+\Delta}\right] \leq \gamma_{acer}(G)$ and the bound is sharp.

Proof: Let *D* be a γ -set of *G*. Each vertex can dominate atmost itself and $\Delta(G)$ other vertices. Hence $\gamma(G) \ge \left[\frac{p}{1+\Delta}\right]$. By theorem 2.10, $\gamma(G) \le \gamma_{acer}(G)$. Therefore $\left[\frac{P}{1+\Delta}\right] \le \gamma_{acer}(G)$. For P_3 , the bound is sharp.

Theorem 2.12 For any graph G, $\gamma_{acer}(G) \leq p - \gamma(G) + 1$.

Proof: Let *D* be a minimum dominating set of *G* and *V* be a vertex set of *G*. Then for any vertex $v \in D$, $\gamma_{acer}(G) \leq (V - D) \cup \{v\}$

$$\leq p - \gamma(G) + 1.$$

The sharpness is attained for C_3 .

Theorem 2.13 For any graph G, $\gamma_{acer}(G) \leq \alpha_0(G) + 1$.

Proof: Let S be a vertex cover of G. We consider the following two cases.

Case 1: Suppose $|S| < \frac{p}{2}$. Then $\gamma_{acer}(G) = |S|$ $= \alpha_0(G)$ $\leq \alpha_0(G) + 1$ **Case 2:** Suppose $|S| \ge \frac{p}{2}$. Then for any vertex $v \in V - S$, $\gamma_{acer}(G) \le S \cup \{v\}$ $\le \alpha_0 + 1$.

Corollary 2.14 For any graph G, $\gamma_{acer}(G) \leq p - \beta_0 + 1$.

Proof: By [3,5,6], $\alpha_0 + \beta_0 = p$. By theorem 2.13, γ_{acer} (G) $\leq \alpha_o + 1$ $\leq p - \beta_0 + 1$.

Observation 2.15 The theorem 2.12, 2.13 and corollary 2.14 does not hold for

- (i) $\gamma_{acer}(G) = p, \ p \ge 4$
- (ii) $\gamma_{acer}(K_{2,2})$

Proof: Let *S* be a vertex cover of *G* and *p* be the number of vertices of *G*. We know, The number of vertices of a graph is equal to its minimum vertex cover number plus the size of maximum independent set. Of so, the vertex cover does not have total number of vertices of *G*. Which is contradiction to $\gamma_{acer}(G) \le \alpha_0 + 1$. Also $p - \gamma(G) + 1$ does not greater than or equal to $\gamma_{acer}(G) = p$. Hence proved. **Theorem 2.16** For any tree *T* with *m* cut vertices, $\gamma_{acer}(T) \le m + 1$. It is not true when $\gamma_{acer}(T_p) = p$. **Proof:** Let $S = \{v_j, j = 1 \text{ to } m\}$ be the cut vertices of $V(G) = \{v_i, i = 1 \text{ to } n\}$ with |S| = m. Sometimes there is a vertex in *S* has one neighbour in V - S. Then for any end vertex $v \in T$,

$$\gamma_{acer} (G) \leq S \cup \{v\}$$
$$\leq m + 1.$$

Corollary 2.17 For any tree *T* with *m* cut vertices and *n* end vertices, $\gamma_{acer}(T) \leq p - n + 1$.

Proof: By [5,6], m + n = p. By Theorem 2.16, $\gamma_{acer}(T) \le m + 1$ $\le p - n + 1$.

Theorem 2.18 For any graph G, $\gamma_{acer}(G) \leq \gamma_m(G) + 1$. It is not true when $\gamma_{acer}(G) = p$, $p \geq 5$.

Proof: Let *D* be a γ_m -set of *G*. Then V - D is not a dominating set of *G*. For some graphs *D* has a one neighbour in V - D. Then for any vertex $v \in V - D, D \cup \{v\}$ is an accurate certified dominating set of *G*.

$$\therefore \gamma_{acer} (G) \le |D \cup \{v\}|$$

= $\gamma_m(G) + 1.$

For P_4 , the bound is sharp.

Theorem 2.19 For any graph G, $\gamma_{acer}(G) \leq \gamma(G) + p - \Delta(\overline{G})$.

Proof: Let v be a vertex of minimum degree that is $\delta(G) = \deg v$. By [4], $\gamma_m(G) \le \gamma(G) + \delta(G)$. By [3], $\delta(G) + \Delta(\overline{G}) = p - 1$ and by theorem 2.18,

$$\begin{aligned} \gamma_{acer} \left(G \right) &\leq \gamma_m(G) + 1 \\ &\leq \gamma(G) + \delta(G) + 1 \\ &\leq \gamma(G) + p - \Delta(\bar{G}) \end{aligned}$$

For C_5 , the bound is sharp.

Theorem 2.20 For any connected graph *G* with *p* vertices, $\gamma_{acer}(G) + \Delta(G) \leq 2p - 1$.

Proof: Let *G* be a connected graph with *p* vertices. We know that $\Delta(G) \leq p - 1$ and by theorem 2.9 $\gamma_{acer}(G) \leq p$. Hence $\gamma_{acer}(G) + \Delta(G) \leq 2p - 1$. For K_4 , the bound is sharp.

Theorem 2.21 If $G = H \circ K_1$, where *H* is any non-trivial connected graph then $\gamma_{acer}(G) = p$.

Proof: Let *p* be the number of vertices in $G = H \circ K_1$. Let *l* be the set of all pendant vertices in $G = H \circ K_1$ such that $|l| = \frac{p}{2}$. If $G = H \circ K_1$, then there exist a minimal accurate certified dominating set *D* containing all pendant vertices and *V*(*H*) of *G*.

Hence $\gamma_{acer}(G) = |V(H)| + |l|$ = $\frac{p}{2} + \frac{p}{2}$ = p.

Theorem 2.22 For the corona graph $C_m \circ P_n$, $n \ge 4$, $\gamma_{acer} (C_m \circ P_n) = m$.

Proof: Let $V(C_m) = \{v_i, i = 1 \text{ to } m\}$

The vertices of m^{th} copy corresponding to the path P_n is

 $V(C_m \circ P_n) = \{v_1, v_{11}, v_{12}, \dots, v_{1n}, v_2, v_{21}, \dots, v_{2n}, \dots, v_m, v_{m1}, v_{m2}, \dots, v_{mn}\}$

Let *D* be a minimum accurate certified dominating set of *G*. We prove this result by induction on *m*. Suppose m = 3, Then $D = \{v_i, i = 1 \text{ to } m\}$ dominate every vertices on the $C_3 \circ P_n$, $n \ge 4$. Also *D* is the accurate certified dominating set of $C_3 \circ P_n$. Thus, $\gamma_{acer} (C_3 \circ P_n) = 3$, $n \ge 4$. Let us assume this result is true for m - 1. And, $\gamma_{acer} (C_{m-1} \circ P_n) = m - 1$, $n \ge 4$. Let us prove for m, Let $\{v_i, i = 1 \text{ to } m\}$ be the vertices of C_m . Since the result is true for m - 1, D = m - 1 Then for any vertex $v \in V - D$, $(m - 1) \cup \{v\}$ is an accurate certified dominating set of G. Thus $\gamma_{acer} (C_m \circ P_n) = |(m - 1) \cup \{v\}| = m - 1 + 1 = m$. Thus, $\gamma_{acer} (C_m \circ P_n) = m, n \ge 4$.

III. Accurate Certified Values for Some Graph Families

Definition 3.1

The *p*- barbell graph is the simple graph obtained by connecting two copies of a complete graph K_p by a bridge.

4-Barbell graph Figure 5

Theorem 3.1 For the barbell graph $p \ge 3$, $\gamma_{acer}(G) = p + 1$.

Proof: The barbell graph has 2*p* vertices. Let *V* be the vertex set of first copy of K_p . Let *U* be the vertex set of second copy of K_p and $\{u_1, v_1\}$ be a bridge. Then $V \cup \{u_1\}$ is an accurate certified dominating set of *G*. Thus $\gamma_{acer} (G) = |V \cup \{u_1\}|$ = p + 1.

Definition 3.2

A web graph has defined as a prism graph $Y_{p+1,3}$ with the edges of the outer cycle removed and is denoted by W_p .

Figure 6 **Theorem 3.2** For a web graph W_p , $p \ge 3$, $\gamma(W_p) = \gamma_a(W_p) = \gamma_{cer}(W_p) = \gamma_{acer}(W_p) = p$.

Proof: Let W_p be a graph with 3p vertices. Let D be a dominating set of G. Then the support vertex are a minimal dominating set of W_p such that $\gamma(W_p) = p$. Since this dominating set has atleast two neighbours in V - D and in (V - D) there is no dominating set of cardinality p it is both certified and accurate dominating set. Also it is an accurate certified dominating set.

Definition 3.3

The lollipop graph is a special type of a graph consisting of a complete graph on m vertices and a path graph on n vertices connected with a bridge and is denoted by $K_m(P_n)$.

Theorem 3.3 For the lollipop graph $K_m(P_n), m \ge 3$,

$$\gamma_{acer}(K_m(P_n)) = \begin{cases} \frac{n}{3} + 1 & n \equiv 0 \pmod{3} \\ \frac{n+2}{3} & n \equiv 1 \pmod{3} \\ \frac{n+4}{3} & n \equiv 2 \pmod{3} \end{cases}$$

Proof: Let *u* be the vertex with maximum degree in $K_m(P_n)$. **Case 1:** $n \equiv 0 \pmod{3}$, By proposition 2.3, $\gamma_{acer}(P_n) = \frac{n}{3}$. Then $\gamma_{acer}(P_n) \cup \{u\}$ is an accurate certified dominating set of *G*. Thus $\gamma_{acer}(K_m(P_n)) = \frac{n}{3} + 1$.

Case 2: $n \equiv 1 \pmod{3}$, The vertex *u* dominate the vertices in K_m and one vertex in P_n . In $K_m(P_n)$, $\gamma_{acer}(P_n) = \frac{n-1}{3}$. Then $\gamma_{acer}(P_n) \cup \{u\}$ is an accurate certified dominating set of *G*. Thus

$$\gamma_{acer} (K_m(P_n)) = \frac{n-1}{3} + 1$$

= $\frac{n+2}{3}$.

Case 3: $n \equiv 2 \pmod{3}$, In $K_m(P_n)$, by preposition 2.3, $\gamma_{acer}(P_n) = \frac{n+1}{3}$. Then $\gamma_{acer}(P_n) \cup \{u\}$ is an accurate certified dominating set of *G*. Thus

$$\gamma_{acer} (K_m(P_n)) = \frac{n+1}{3} + 1$$

= $\frac{n+4}{3}$.

Theorem 3.4 For the lollipop graph $K_m(P_2), m \ge 3, \gamma_{acer}(K_m(P_2)) = \lfloor \frac{m}{2} \rfloor + 2.$

Proof: Let *V* be the vertex set of K_m . Let *U* be the vertex set of P_2 and *D* be an accurate certified dominating set of $K_m(P_2)$. Thus

$$|D| = \left\lfloor \frac{m}{2} \right\rfloor + |U(P_2)|$$
$$= \left\lfloor \frac{m}{2} \right\rfloor + 2.$$

IV. Nordhaus-Gaddum Type Results

In 1956 the original paper [1] by Nordhaus and Gaddum appeared. In it they gave sharp bounds on the sum and product of the chromatic numbers of a graph and its complement. Since then such results have been given for several parameters.

Theorem 4.1 If graphs *G* and \overline{G} have no isolated vertices, then

 $\begin{array}{l} \gamma_{acer}\left(G\right) + \gamma_{acer}\left(\bar{G}\right) \leq 2p\\ \gamma_{acer}\left(G\right)\gamma_{acer}\left(\bar{G}\right) \leq p^{2}\\ \end{array}$ Furthermore the bounds are attained if $G = C_{4}$.

Proof: Let *G* and \overline{G} have no isolated vertices and *p* be the number of vertices of *G* and \overline{G} . By theorem 2.9, $\gamma_{acer}(G) \leq p$. Since \overline{G} has no isolated vertices, $\gamma_{acer}(\overline{G}) \leq p$. Thus both upper bound holds. Clearly, if $G = C_4$, then $\gamma_{acer}(G) = 4$ and $\gamma_{acer}(\overline{G}) = 4$. Therefore both bounds are attained.

Theorem 4.2 Nordhaus-Gaddum result for *p*- barbell graph

$$\gamma_{acer} (G) + \gamma_{acer} (\bar{G}) = 2(p+1)$$

$$\gamma_{acer} (G)\gamma_{acer} (\bar{G}) = (p+1)^2$$

Proof: Let *G* and \bar{G} be the *p*-barbell graph and its complement respectively. The *p*-barbell graph has 2p vertices. By theorem 3.1, $\gamma_{acer}(G) = p + 1$. Let *D* be an accurate dominating set of \bar{G} . We know by [7], $|D| = \left\lfloor \frac{p}{2} \right\rfloor + 1$. Also *D* has atleast two neighbours in V - D. Therefore *D* is also an accurate certified dominating set of \bar{G} . But here we have 2p vertices. Therefore $\gamma_{acer}(\bar{G}) = p + 1$. Hence $\gamma_{acer}(G) + \gamma_{acer}(\bar{G}) = 2(p + 1)$ and $\gamma_{acer}(G) \gamma_{acer}(\bar{G}) = (p + 1)^2$.

Theorem 4.3 Nordhaus-Gaddum result for web graph

$$\begin{aligned} \gamma_{acer} \left(G \right) + \gamma_{acer} \left(\bar{G} \right) &\leq \frac{5p+2}{2} \\ \gamma_{acer} \left(G \right) \gamma_{acer} \left(\bar{G} \right) &\leq \frac{3p^2+2p}{2} \end{aligned}$$

Proof: Let *G* and \bar{G} be the web graph and its complement respectively. The web graph has 3p vertices. By theorem 3.2, $\gamma_{acer}(G) = p$. Let *D* be an accurate dominating set of \bar{G} . We know by [7], $|D| = \left|\frac{p}{2}\right| + 1$. Also *D* has atleast two neighbours in V - D. Therefore *D* is also an accurate certified dominating set of \bar{G} . But here we have 3p vertices. Therefore $\gamma_{acer}(\bar{G}) = \left|\frac{3p}{2}\right| + 1 \le \frac{3p+2}{2}$. Hence $\gamma_{acer}(G) + \gamma_{acer}(\bar{G}) \le \frac{5p+2}{2}$ and $\gamma_{acer}(G)\gamma_{acer}(\bar{G}) \le \frac{3p^2+2p}{2}$.

Theorem 4.4 Nordhaus-Gaddum result for lollipop graph $K_m(P_2), m \ge 3$

$$\begin{aligned} \gamma_{acer} \left(G \right) + \gamma_{acer} \left(\bar{G} \right) &\leq \frac{m+8}{2} \\ \gamma_{acer} \left(G \right) \gamma_{acer} \left(\bar{G} \right) &\leq m+4 \end{aligned}$$

Proof: Let *G* and \bar{G} be the lollipop graph and its complement respectively. The lollipop graph has m + n = p vertices. By theorem 3.4, $\gamma_{acer}(G) = \left\lfloor \frac{m}{2} \right\rfloor + 2 \leq \frac{m}{2} + 2$. Let *D* be a dominating set of \bar{G} . In \bar{G} , we have exactly one vertex of degree $\Delta(G) = p - 2$. Therefore |D| = 2 and V - D has no dominating set of cardinality |D|. Also *D* has atleast two neighbours in V - D. Therefore $\gamma_{acer}(\bar{G}) = 2$. Hence $\gamma_{acer}(G) + \gamma_{acer}(\bar{G}) \leq \frac{m+8}{2}$ and $\gamma_{acer}(G)\gamma_{acer}(\bar{G}) \leq m + 4$.

References

- [1] E.A. Nordhaus and J.W. Gaddum, "On Complementary Graphs", Amer. Math. Monthly 63 (1956), 175-177.
- [2] F.Harary, "Graph Theory", Addison-Wesley, Reading, Mass,(1969).
- [3] Shaoji Xu, "Relation between parameters of a graph", Discr. Math., 89, 65-88 (1991).
- [4] V.R. Kulli and B. Janakiram, "The Maximal Domination Number of a Graph", Graph Theory Notes of New York XXXIII, 11-13 (1997) New York Academy of Sciences.
- [5] T.W.Haynes, S.T. Hedetniemi, and P.J.Slater, "Fundamentals of Domination in Graphs", Marcel Dekker, New York, 1998.
- [6] V.R.Kulli, "Theory of Domination in graphs", Vishwa International Publications, Gulbagara, India(2010).
- [7] V.R.Kulli and M.B.Kattimani, "Accurate Domination in Graphs", In V.R.Kulli, ed., Advances in Domination Theory-I, Vishwa International Publications, Gulbagara, India (2012).

- [8] V.R.Kulli and M.B.Kattimani, "Connected Accurate Domination in Graphs", Journal of Computer and Mathematical Sciences, Vol.6(12).
- [9] V.R.Kulli and M.B. Kattimani, "Global Accurate Domination in Graphs", Int. J.Sci. Res. Pub. 3 (2013) 1-3.
- [10] M. Dettlaff, M. Lemanska, and J.Topp, "Certified Domination", AKCE International Journal of Graphs and Combinatorics, June 2016.
- [11] B. Basavanagoud, S.Timmanaikar, "Further Results on Accurate Domination in Graphs", International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue-6, December(2018).
- [12] J. Cyman, M.A.Henning and J.Topp, "On Accurate Domination in Graphs", Discussiones Mathematicae Graph Theory 39 (2019).