C - Compactness And Characterization Modulo An Ideal

R. Alagar¹, R. Thenmozhy²

¹Assistant Professor, Rajeshwari Vedhachalam Government Arts College – Chengalpattu, India ²Assistant Professor in Mathematics, Periyar Government Arts College – Cuddalore, India

Abstract: An ideal on a set X is a non-empty collection of subsets of X with heredity property which is also closed under arbitrary union and finite intersections. In this paper, we introduce C - compactness with respect to ideal and discuss some of their properties. Also, this paper gives the characterizations of C compactness with respect to ideal, some of which make use of filter.

Keywords: F- Compact 3 - compact, 3C - Compact, compatible ideal 3.

AMS Subject Classification No: 54A05,54A10,54C08

I. INTRODUCTION

Given a non-empty set X, a collection \Im of subsets of X is called an ideal if

(i) If $A \in \mathfrak{T}$ and $B \subseteq A$ implies $B \in \mathfrak{T}$ (heredity)

(ii) If $A \in \mathfrak{I}$ and $B \in \mathfrak{I}$ implies $A \cup B \in \mathfrak{I}$ (additivity)

If $X \notin \mathfrak{I}$, then \mathfrak{I} is called a proper ideal.

An ideal \Im is called a σ - ideal if the following holds:

If $\{A_n, n = 1, 2, \dots\}$ is a countable sub collection of \Im , then $\bigcup \{A_n, n = 1, 2, \dots\} \in \Im$

The notation (X, τ, \mathfrak{I}) denotes a nonempty set X, a topology τ on X and an ideal \mathfrak{I} on X. Given point $x \in X$, $\mathfrak{N}(x)$ denotes the neighbourhood system of x i.e $\mathfrak{N}(x) = \{U \in \tau : x \in U\}$. The symbol $\wp(X)$ denotes collection of all subsets of X. Given space (X, τ, \mathfrak{I}) and a subset A of X, we define $A^*(\mathfrak{I}, \tau) = \{x \in X: U \cap A \notin \mathfrak{I}, \text{ for every } U \in \mathfrak{N}(x)\}$

We simply write A* for A*(\Im , τ), when there is only one ideal \Im and only one topology τ under consideration. If we define cl* on $\wp(X)$ as,

 $cl^*(A) = A \cup A^*$, for all $A \in \mathcal{O}(X)$,

then cl* is a Kuratowski closure operator. The topology determined by this closure operator is denoted by $\tau^*(\mathfrak{T})$. $\beta(\mathfrak{T}, \tau) = \{U - I: U \in \tau, I \in \mathfrak{T}\}$ is a basis for $\tau^*(\mathfrak{T})$. The first unified and extensive study on $\tau^*(\mathfrak{T})$ - topology was done by Jankovic and Hamlett [2].

We shall use cl(A), int(A) will denotes closure and interior of a subset A respectively in topological space (X, τ) and $cl^*(A)$, $int^*(A)$ will denotes closure and interior of A respectively with respect to τ^* .

In topological space (X, τ) , a subset U is said to be regular- open if int (cl(U)) = U. A subset U in X is regular - closed if cl (int (U)) = U. Clearly U is regular- closed (open) if and only if its complement is regular open (closed). A subset A of (X, τ) is said to be compact if every open cover of A has a finite sub cover. If X is compact, then every closed subset of X is also compact. **Definition :** 1.1 A topological space (X, τ) is said to be C - compact if and only if for every family U of open sets of X and for every $a \in I$ such that for each closed subset $A \subseteq X$, each open cover $\{U_{\alpha} : \alpha \land\}$ of A has a finite sub cover $\{U_{\alpha i}: i = 1, 2, ..., n\}$ such that $A \subseteq \bigcup_{i=1}^{n} cl(U_{\alpha i})$.

Newcomb introduced the concept of compactness with respect an ideal [3]. An extensive study on compactness with respect to an ideal have been made by Hamlett and Dragan Jankovic [1].

Definition: 1.2 A subset A of a space (X, τ, \Im) is said to be \Im - compact if for every open cover $\{U_{\alpha} : \alpha \in \land\}$ of A, there exists finite sub collection $\{U_{\alpha i} : i = 1, 2, ..., n\}$ such that

$$A - \bigcup_{i=1}^n U_{\alpha\,i} \in \mathfrak{I}$$

A space (X, τ , \Im) is said to be \Im - compact if X is \Im - compact as a subset.

II. $\Im C$ - Compact sets

Let us start with a definition for \Im C - compact sets.

Definition : 2.1 A space (X, τ, \mathfrak{T}) is said to be \mathfrak{TC} -compact space if for each closed subset $A \subseteq X$ and each open cover $\{U_{\alpha} : \alpha \in \wedge\}$ of A has a finite sub collection $\{U_{\alpha i} : i = 1, 2, ..., n\}$ such that $A - \cup \{ cl (U_{\alpha i}) : i = 1, 2, ..., n\} \in \mathfrak{T}$.

The following results can be verified easily.

Results:

- i) Every C-compact space is $\Im C$ compact.
- ii) Every closed subspace of $\Im C$ -compact space is $\Im C$ compact.
- iii) A space is C compact if and only if it is $\Im C$ compact, for the ideal $\Im = \{\phi\}$.
- iv) Let (X, τ, \mathfrak{I}) be a \mathfrak{IC} compact. If \mathfrak{I} is an ideal on X such that $\mathfrak{I} \subseteq \mathfrak{I}$, then (X, τ, \mathfrak{I}) is \mathfrak{IC} compact.
- v) Let \mathfrak{I}_{f} denotes the ideal of all finite subsets of X. Then (X, τ) is \mathcal{C} compact if and only if (X, τ , \mathfrak{I}_{f}) is $\mathfrak{I}_{f}\mathcal{C}$ compact.

Example for a space which is \mathcal{FC} - compact, but not \mathcal{C} -compact.

Example: 2.2 Let $X = [0,1] \cup \{2, 3, ...\}$. The topology τ be the induced topology obtained from the usual topology on the real line. Let $\Im = \Im c$, the ideal of countable subsets of X.

Then (X, τ , \Im) is \Im \mathcal{C} -compact, but not \mathcal{C} -compact.

We recall the following results [1]. Let $f: X \to Y$ be a function and let \mathfrak{I} be an ideal on X. Then $f(\mathfrak{I}) = \{ f(I) : I \in \mathfrak{I} \}$ is a ideal on Y.

We know that the continuous image of compact set is compact. This result can be extended to $\Im C$ -compact.

Theorem: 2.3 Let $f: (X, \tau, \mathfrak{I}) \to (Y, \sigma)$ be a continuous surjection and let $f(\mathfrak{I})$ be an ideal on Y. If X is \mathfrak{I} *C*-compact, then Y is $f(\mathfrak{I})C$ -compact.

Proof: Let f: $(X, \tau, \mathfrak{I}) \to (Y, \sigma)$ be a continuous surjection. Let A be a closed subset in Y and let $\{U_{\alpha} : \alpha \in \wedge\}$ be an open cover of A in Y. Since f is continuous, $\{f^{-1}(U_{\alpha}) : \alpha \in \wedge\}$ is an open cover of $f^{-1}(A)$ in X. Since X is $\mathfrak{I} \, \mathcal{C}$ -compact and $f^{-1}(A)$ is closed in X, there is a finite subfamily $\{U_{\alpha i} : i = 1, 2, ..., n\}$ such

that
$$f^{-1}(A) - \bigcup_{i=1}^{n} cl (f^{-1}(U_{\alpha i})) \in \mathfrak{I}.$$

Therefore $f(f^{-1}(A) - \bigcup_{i=1}^{n} cl (f^{-1}(U_{\alpha i}))) \in f(\mathfrak{I}).$ Since
 $A - \bigcup_{i=1}^{n} f(cl(f^{-1}(U_{\alpha i}))) \subseteq f(f^{-1}(A) - \bigcup_{i=1}^{n} cl(f^{-1}(U_{\alpha i}))), \text{ we have } A - \bigcup_{i=1}^{n} f(cl(f^{-1}(U_{\alpha i}))) \in f(\mathfrak{I}).$

We note that $f^{-1}(U_{\alpha i}) \subseteq f^{-1}(cl(U_{\alpha i}))$ and $f^{-1}(cl(U_{\alpha i}))$ is closed in X.

Hence cl (f⁻¹ (U_{ai})) \subseteq f⁻¹(cl (U_{ai})). Therefore f(cl(f⁻¹(cl (U_{ai})))) \subseteq cl (U_{ai})

Hence $A \stackrel{n}{\underset{i=1}{\cup}} cl(U_{\alpha i}) \in f(\mathfrak{I})$. This shows that Y is $f(\mathfrak{I}) \mathcal{C}$ -compact.

Let (X, τ) be a topological space and \Im be a ideal in X. We say that the topology τ is compatible with the ideal \Im , denoted by $\tau \sim \Im$, if the following holds for every $A \subseteq X$: if for every $x \in A$, there exist a $U \in \aleph(x)$ such that $U \cap A \in \Im$, then $A \in \Im$.

T. R. Hamlett, D. A. Rose [4] has proved the following:

Theorem: 2.4 Let (X, τ) be a topological space with an ideal \Im on X. If $\tau \sim \Im$, then

- (i) $\tau * = \{ V I: V \in \tau, I \in \Im \}$
- (ii) A set $A \subseteq X$ is closed with respect to $\tau *$ if and only if it is a union of a set which is closed with respect to τ and a set in \mathfrak{I} .

In [8], R. Vaidyanathaswamy has proved the following theorem.

Theorem: 2.5 Let (X,τ) be a topological space with \Im a ideal on X. Then the following are equivalent.

- (i) $\tau \sim \Im$
- (ii) For every $A \subseteq X$, $A A^* \in \mathfrak{I}$

We now prove that if $\tau \sim \Im$ and $A \in \Im$, for all $A \in \Im$, then X is $\Im C$ - compact with respect to τ implies X is $\Im C$ - compact with respect to τ^* .

Theorem: 2.6 Let (X, τ) be a topological space and \mathfrak{I} be a ideal on X which is compatible with τ and $I \in \mathfrak{I}$, for all $I \in \mathfrak{I}$. If X is $\mathfrak{I} C$ - compact with respect to τ , then X is $\mathfrak{I} C$ - compact with respect to τ^* .

Proof: Let A be a closed subset with respect to τ^* . Then $A = B \cup I$, for some closed set B with respect to τ and $I \in \mathfrak{I}$. (This is possible as $\tau \sim \mathfrak{I}$).

Let $\xi = \{V_{\alpha} - I_{\alpha} : \alpha \in \land\}$ be an τ^* - open cover for A. Therefore $B \subseteq \bigcup \{V_{\alpha} : \alpha \in \land\}$

As B is closed subset of τ and (X, τ) is $\Im C$ - compact, there exist $\alpha_{1,\alpha_{2,\dots,n}} \alpha_{n}$ such that

B - $\bigcup_{i=1}^{n} \operatorname{cl}(V_{\alpha i}) \in \mathfrak{I}$(1) Note that $\operatorname{cl}^{*}(V_{\alpha}) = V_{\alpha} \cup (V_{\alpha})^{*}$.

We claim that $cl(V_{\alpha i}) - cl^*(V_{\alpha i}) \in \mathfrak{I}$, for all $i = 1, 2, \dots, n$.

Let $x \in cl (V_{\alpha i}) - cl^*(V_{\alpha i})$. Then there is one $U_X \in \tau$ and $I_X \in \mathfrak{I}$ such that $x \in U_X - I_X$ and $(U_X - I_X) \cap V_{\alpha i} = \phi$, $U_X \cap V_{\alpha i} = I_X \in \mathfrak{I}$ and $U_X \cap V_{\alpha i} \neq \phi$.

Let $y \in U_X \cap cl(V_{\alpha i})$. Then for every neighborhood W of y in τ , $(W \cap U_X) \cap V_{\alpha i} \neq \phi$. i.e. $W \cap (U_X \cap V_{\alpha i}) \neq \phi$. Then we get that $U_X \cap cl(V_{\alpha i}) \subseteq cl(U_X \cap V_{\alpha i}) \subseteq \overline{I} \in \mathfrak{I}$.

Hence to each $x \in cl(V_{\alpha i})$ - $cl^*(V_{\alpha i})$, there is a neighborhood $U_X \in \tau$ such that

 $U_X \cap (cl(V_{\alpha i}) - cl^*(V_{\alpha i})) \subseteq U_X \cap cl(V_{\alpha i}) \in \mathfrak{I}.$ As $\tau \sim \mathfrak{I}$, it follows that

 $cl(V_{\alpha\,i}\,)$ - $cl^*(\,V_{\alpha\,i}\,)\in \mathfrak{I}.$ This is true for all $i=1,\,2,\,....n.$

From (1), B - $\bigcup_{i=1}^{n} cl^{*}(V_{\alpha i}) \in \mathfrak{I}.$

As $\operatorname{cl}^*(V_{\alpha i}) \subseteq \operatorname{cl}^*(V_{\alpha i} - I_{\alpha i}) \cup \overline{I_{\alpha i}}$, we have $(B \cup I) \cup_{i=1}^n \operatorname{cl}^*(V_{\alpha i} - I_{\alpha i}) \in \mathfrak{I}$.

1) i.e.
$$A \stackrel{n}{\underset{i=1}{\cup}} cl^* (V_{\alpha i} I_{\alpha i}) \in \mathfrak{I}.$$

Hence X is $\Im C$ - compact with respect to τ^* .

It is well known that compact subset of Hausdorff space is closed. We generalize this as follows.

Theorem: 2.7 Let (X, τ, \Im) be a Hausdorff space. If $Y \subseteq X$ is $\Im C$ - compact, then Y is τ^* - closed.

Proof: Let $x \in X - Y$. Since X is Hausdorff, for each $y \in Y$, there exist τ - neighbourhood U_y , V_y of x and y respectively such that $U_y \cap V_y = \phi$. The family $\{V_y : y \in Y\}$ is an open cover of Y. Since Y is $\Im C$ -

compact, then there exist a finite sub collection $\{V_{y_i} : i = 1, 2, ..., n\}$, such that $Y - \bigcup_{i=1}^{n} cl(V_{y_i}) \in \mathfrak{T}$.

Let I = Y -
$$\bigcup_{i=1}^{n}$$
 cl (V_{y_i}). Define U = $\cap U_{y_i}$. Then U is τ - open and U $\cap (\bigcup_{i=1}^{n}$ cl (V_{y_i})) = ϕ .

Therefore $U \cap Y \subseteq I$ and hence $x \notin Y$. Thus $x \notin Y \Rightarrow x \notin Y^*$. Hence Y is τ^* - closed

We now give the equivalent meaning of definition [2.1].

Theorem: 2.8 A space X is \Im C - compact if and only if for each closed set $A \subseteq X$ and regular - open cover $\{U_{\alpha} : \alpha \in \land\}$ for A, there exist finite sub collection $\{U_{\alpha i} : i = 1, 2...n\}$ such that

$$A - \bigcup_{i=1}^{n} cl (U_{\alpha i}) \in \mathfrak{I}$$

Proof: If X is \Im C - compact, then from the definition (2.1), we get the required result.

Conversely, Let $\{U_{\alpha} : \alpha \in \land \}$ be an open cover of A, then $\{int (cl (U_{\alpha})) : \alpha \in \land \}$ is a

regular open cover for A. So by assumption, there exist finite sub collection {int (cl (U_{ci})) : i = 1, 2, ..., n}

such that A - $\bigcup_{i=1}^{n}$ cl (int (cl (U_{*a*i}))) $\in \mathfrak{I}$.

Since $U_{\alpha i} \subseteq int (cl (U_{\alpha i})) \subseteq cl (U_{\alpha i}) \Rightarrow cl (int (cl (U_{\alpha i}))) = cl (U_{\alpha i})$

Therefore A - $\bigcup_{i=1}^{n}$ cl (U_{*a*i}) $\in \mathfrak{I}$. Hence X is \mathfrak{I} C - compact.

III. Characterization of 3 C - Compact sets

We recall the following definitions.

Definition: 3.1 H is called a filter in X if and only if

- (i) $\mathbf{H} \subseteq \wp(X)$, $\wp(X)$ is the power set of X.
- (ii) $\phi \notin H$ and $X \in H$.
- (iii) **H** is closed under finite intersection.
- (iv) If $F \in \mathbf{H}$ and $F \subseteq G$, then $G \in \mathbf{H}$

It is clear that dual of a ideal in X is a filter in X.

Definition: 3.2 β is called filter base in X if and only if

- (i) $\beta \subseteq \wp(X)$
- (ii) $\phi \notin \beta$ and $\beta \neq \phi$
- (iii) The intersection of two sets of β contains a set of β .

Definition: 3.3 An ultra-filter on a set X is a filter H such that there is no filter on X which is strictly finer than H.

We will say that a filter base β is a filter base on $\wp(X) - \Im$ if $\beta \subseteq \wp(X) - \Im$.

The following theorem gives several Characterizations of \Im C- compact sets.

Theorem : 3.4 Let (X, τ) be a topological space and let \Im be a ideal in X. The following are equivalent.

- (i) X is 3 C compact.
- (ii) For every closed set A of X and each regular open- cover $\{U_{\alpha} : \alpha \in \land\}$ for A,

there exist a finite sub collection { $U_{\alpha 1}, U_{\alpha 2}, \dots, U_{\alpha n}$ } such that A - $\bigcup_{i=1}^{n} cl(U_{\alpha i}) \in \mathfrak{I}$.

- (iii) For each closed set $A \subseteq X$ and each collection of regular- closed sets $\{F_{\alpha} : \alpha \in \land\}$ such that that $(\bigcap_{\alpha} F_{\alpha}) \cap A = \phi$, there exist a finite sub collection $\{F_{\alpha i} : i = 1, 2, ..., n\}$ such that $(\bigcap_{i=1}^{n} int(F_{\alpha i})) \cap A \in \mathfrak{I}.$
- (iv) For each set $A \subset X$ and each filter base $\mathbf{H} = \{ A_{\alpha} : \alpha \in \land \}$ in $\wp(X) \Im$, there exist an $a \in A$ such that $A_{\alpha} \cap cl(V) \notin \Im$, for each open set V in X containing a.

(v) For each closed set $A \subset X$ and each ultra-filter $\mathbf{M} = \{ A_{\alpha} : \alpha \in \land \}$ in $\wp(X) - \Im$, there is an $a \in A$ such that to each open set V containing a, $A_{\alpha} \subset cl$ (V), for some $\alpha \in \land$.

Proof: (i) \Rightarrow (ii): If X is \Im C - compact, then from the definition 1.2, we get required result.

(ii) \Rightarrow (i): Let { $U_{\alpha} : \alpha \in \land$ } be an open cover of A, then {int (cl (U_{α})) : $\alpha \in \land$ } is a regular open cover for A. So by assumption, there exist finite sub collection {int (cl ($U_{\alpha i}$)) : i = 1, 2, ..., n} such that

A -
$$\bigcup_{i=1}^{n}$$
 cl (int (cl (U_{*a*i}))) $\in \mathfrak{I}$.

Since $U_{\alpha i} \subseteq int (cl (U_{\alpha i})) \subseteq cl (U_{\alpha i}) \Rightarrow cl (int (cl (U_{\alpha i}))) = cl (U_{\alpha i})$

Therefore A - $\bigcup_{i=1}^{n}$ cl (U_{α i}) \in \mathfrak{I} . Hence X is \mathfrak{I} C- compact.

(ii) \Rightarrow (iii): Let A be a closed set in X and $\{F_{\alpha} : \alpha \in \land\}$ be a collection of regular- closed sets such that $(\cap F_{\alpha}) \cap A = \phi$.

Let $G_{\alpha} = X - F_{\alpha}$. Then { $G_{\alpha} : \alpha \in \land$ } is a regular- open cover for A. So there exist

finite sub collection { $G_{\alpha 1}$, $G_{\alpha 2}$,, $G_{\alpha n}$ } such that $A - \bigcup_{i=1}^{n} cl (G_{\alpha i}) \in \mathfrak{I}$.

But X – cl (G_{ai}) = int (F_{ai}). Hence A $\cap (\bigcap_{i=1}^{n} int (F_{ai})) \in \mathfrak{I}$.

(iii) \Rightarrow (ii) : Let {U_{α} : $\alpha \in \land$ } be a regular- open cover for A, then A $\subset \bigcup_{\alpha} U_{\alpha}$ implies

 $(\cap (X\text{-} U_\alpha \,)) \cap A = \phi$. Since each X - $U_\alpha \,$ is regular- closed, by (iii), there exist finite

sub collection { X - U_{$\alpha i} : i = 1,2, ...,n$ } such that $(\bigcap_{i=1}^{n} \text{ int } (X - U_{\alpha i})) \cap A \in \mathfrak{I}$.</sub>

(ie)
$$A \cap (\bigcap_{i=1}^{n} (X - cl(U_{\alpha i}))) \in \mathfrak{I}$$

(ie) $A - (\bigcup_{i=1}^{n} cl(U_{\alpha i})) \in \mathfrak{I}$.

(i) \Rightarrow (iv): Assume that there is a filter base $\mathbf{H} = \{ A_{\alpha} : \alpha \in \land \}$ such that (a) $A_{\alpha} \notin \mathfrak{T}$, for all $\alpha \in \land$ and (b) to each $x \in A$, there is an open set $V_{(x)}$ and some $A_{\alpha(x)} \in \mathbf{H}$ such that $A_{\alpha(x)} \cap cl(V_{(x)}) \in \mathfrak{T}$. Then the collection

 $\{V_{(x)} : x \in A\}$ is an open cover for A. Hence there is a finite sub collection $\{V_{(xi)} : i = 1, 2, ..., n\}$ such that A - $\bigcup_{i=1}^{n} cl (V_{(xi)}) \in \mathfrak{I}.$

Let $A_{\alpha 0} \in \mathbf{H}$ such that $A_{\alpha 0} \subset \bigcap_{i=1}^{n} A_{\alpha(xi)}$.

Then $A_{\alpha 0} \cap cl (V_{(xi)}) \in \mathfrak{I}$, for all $i = 1, 2, \dots, n$

i.e. $A_{\alpha 0} \cap (\bigcup_{i=1}^{n} cl (V_{(xi)}) \in \mathfrak{I} and$

 $A_{\alpha 0} \cap (\bigcup_{i=1}^{n} cl (V_{(xi)}) \subseteq A - (\bigcup_{i=1}^{n} cl (V_{(xi)}) \in \mathfrak{I}, \text{ which is a contradiction as } A_{\alpha 0} \notin \mathfrak{I}$

(iv) \Rightarrow (v): Let A be a closed set in X and $\mathbf{M} = \{A_{\alpha} : \alpha \in \land\}$ be an ultra-filter in $\wp(X)$ -3. Then $A_{\alpha} \notin \Im$, for all $\alpha \in \land$. By (iv), there is an $a \in A$ such that $A_{\alpha} \cap cl(V) \notin \Im$, for each open set V in X containing a. As **M** is an ultra-filter and $A_{\alpha} \cap (cl(V) \cap A) \notin \Im$, for all $\alpha \in \land$. Hence $cl(V) \cap A \in \mathbf{M}$.

Let $A_{\alpha 0} = cl (V) \cap A$. Thus $A_{\alpha 0} \subseteq cl (V)$.

 $(\mathbf{v}) \Rightarrow (\mathbf{iii}): \text{ Let A be a closed set in X and let } \{ F_{\alpha} : \alpha \in \land \} \text{ be a collection of regular-closed set such that} \\ (\bigcap_{i=1}^{n} \text{ int } (F_{\alpha i})) \cap A \notin \mathfrak{I} \dots (1), \text{ for any finite subset } \{ \alpha_{1}, \alpha_{2} \dots \alpha_{n} \} \subseteq \land.$

In particular $A \cap int(F_{\alpha}) \notin \mathfrak{I}$, for all $\alpha \in \wedge$.

From (1), $\{A \cap \text{ int } (F_{\alpha}) : \alpha \in \land\}$ is an ultra filter base for some ultra filter **H** in $\wp(X)$ -3. By (v), there is a point $a \in A$ such that for every neighborhood V of a , cl (V) intersects every member of **H**. Therefore cl(V) \cap (int $(F_{\alpha}) \cap A$) $\neq \phi$, for all $\alpha \in \land$.

Let $y \in cl (V) \cap (int (F_{\alpha}) \cap A)$. Then int (F_{α}) is itself an open neighborhood of y. As $y \in cl(V)$, int $(F_{\alpha}) \cap V \neq \phi$. This is true for all open neighborhood V of a. Therefore $a \in int(F_{\alpha}) \subseteq F_{\alpha}$

 \Rightarrow a \in (F_{α} \cap A), for all $\alpha \in \land$.

Hence A $\cap (\bigcap_{\alpha} F_{\alpha}) \neq \phi$. Thus (v) \Rightarrow (iii) \Rightarrow (i).

A space is said to be quasi H-closed (denoted by QHC) if every open cover of the space contains finite sub collection whose closures cover the space. A Hausdorff space which is QHC is said to be H-closed.

REFERENCES

- [1] Hamlett, T.R and Dragan Jankovic: Compactness with respect to an ideal, Bollo . un. Mat. Ital. B(7) 4 (1990) 849 861.
- [2] Jankovic, D. and Hamlett, T.R: New topologies from old via ideals, American Math monthly, 97, (1990), 295 310 .
- [3] Newcomb, R.L.: Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. at Santa, Barbara, (1967).
- [4] T. R. Hamlett, D. A. Rose; Topological properties, Int. J. Math Sci., 13(3),(1990), 507-512
- [5] T. R. Hamlett, D. Jankovic; Ideals in topological and the set operator,. Boll UMI, 7(4-B) (1990), 863-974
- [6] K. Kuratowski; Topology, Vol.1 (Academic Press, New york, 1966)
- [7] A. Nasef, E.Hatir; On pre-I-open sets and a decomposition of I continuity, Chaos, Solitons & Fractals, 40 (2007), 1185-1189
- [8] A. Nasef, R. A. Mahmoud; Some topological applications via ideals; Chaos, Solitons & Fractals, 13 (2002), 825-831
- [9] T. Natkaniec; On I-continuity and I-semicontinuity points, Math. Slovaca, 36(3) (1986), 297-312
- [10] D.A.Rose, T. R. Hamlett; Ideally equivalent topologies and semi-topological properties, Math Chronicle, 20 (1991), 149-156
- [11] Vaidyanathaswamy, R: Set topology, Chelsea publishing company, (1960)
- [12] Vaidyanathaswamy, R: The localization theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51 61.